Fault Detection of Wind Turbine Pitch System Based on Multiclass Optimal Margin Distribution Machine
In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal ma...
Saved in:
Published in | Mathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal margin distribution machine. In this method, the power output of the wind turbine generator system is used as the main status parameter, and the operating data history of the wind turbine generator system in the wind power supervisory control and data acquisition (SCADA) system is subject to correlation analysis with the Pearson correlation coefficient, to eliminate the features that have low correlation with the power output status parameter. Secondary analysis is performed to the remaining features, thus reducing the number and complexity of samples. Datasets are divided into the training set for training of the multiclass optimal margin distribution machine fault detection model and test set for testing. Experimental verification was carried out with the operating data of one wind farm in China. Experimental results show that, compared with other support vector machines, the proposed method has higher fault detection accuracy and precision and lower false-negative rate and false-positive rate. |
---|---|
AbstractList | In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal margin distribution machine. In this method, the power output of the wind turbine generator system is used as the main status parameter, and the operating data history of the wind turbine generator system in the wind power supervisory control and data acquisition (SCADA) system is subject to correlation analysis with the Pearson correlation coefficient, to eliminate the features that have low correlation with the power output status parameter. Secondary analysis is performed to the remaining features, thus reducing the number and complexity of samples. Datasets are divided into the training set for training of the multiclass optimal margin distribution machine fault detection model and test set for testing. Experimental verification was carried out with the operating data of one wind farm in China. Experimental results show that, compared with other support vector machines, the proposed method has higher fault detection accuracy and precision and lower false-negative rate and false-positive rate. |
Author | Zhao, Qi Yang, Xu Wu, Huawei Kuang, Zijie Tang, Mingzhu |
Author_xml | – sequence: 1 fullname: Wu, Huawei – sequence: 2 fullname: Zhao, Qi – sequence: 3 fullname: Kuang, Zijie – sequence: 4 fullname: Tang, Mingzhu – sequence: 5 fullname: Yang, Xu |
BookMark | eNqFkMtLxDAQxoMo-Lx5loBHrWby6LZHXZ_goqCitzJNZzVS2zVJEf97s64gCOJlZg6_75uZb50td31HjG2DOAAw5lAKKVIpQRVyia2ByVVmQI-W0yykzkCqx1W2HsKLEBIMFGusOcOhjfyEItno-o73U_7guobfDb52HfEbF-0zv_0IkV75MQZqeKImSeRsiyHw61l0r9jyCfon1_ETF6J39fBlNkH7nEw22coU20Bb332D3Z-d3o0vsqvr88vx0VVmVS5ihkhlI1GKHMkiaAN1oQsqagmqxjwvJGkakTVajKSCHFQjJGFh6tKiaqTaYLsL35nv3wYKsXrpB9-llZXUSmtlhIBEyQVlfR-Cp2llXcT5vdGjaysQ1TzNap5m9Z1mEu3_Es18ett__IXvLfD0foPv7j96Z0FTYmiKPzSUKi-V-gTig42b |
CitedBy_id | crossref_primary_10_1080_15435075_2024_2407533 crossref_primary_10_1109_ACCESS_2023_3244838 crossref_primary_10_1007_s40313_024_01076_y |
Cites_doi | 10.1049/iet-rpg.2018.0156 10.3390/en13040807 10.1016/j.renene.2017.03.097 10.1109/28.903156 10.1109/tii.2018.2885365 10.1016/j.renene.2018.10.088 10.1016/j.ymssp.2017.11.024 10.3390/en11051309 10.1016/j.measurement.2019.01.020 10.1016/j.engappai.2019.103457 10.1016/j.renene.2016.02.063 10.1016/j.epsr.2017.10.010 10.1016/j.ymssp.2018.09.026 10.1007/s10586-018-1854-3 10.1016/j.ins.2019.04.032 10.1049/iet-rpg.2016.0248 10.1016/j.renene.2017.09.061 10.1016/j.renene.2020.03.036 10.1016/j.renene.2020.04.041 10.1109/TCST.2019.2947876 10.1109/TNNLS.2020.2985223 10.1016/j.renene.2017.11.011 10.1016/j.apenergy.2018.06.150 10.1016/j.renene.2012.06.013 10.1109/tii.2019.2952931 10.1016/j.fss.2015.07.005 10.1016/j.automatica.2018.10.047 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Mingzhu Tang et al. Copyright © 2020 Mingzhu Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 Mingzhu Tang et al. – notice: Copyright © 2020 Mingzhu Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1155/2020/2091382 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Middle East & Africa Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1563-5147 |
Editor | Chen, Yong |
Editor_xml | – sequence: 1 givenname: Yong surname: Chen fullname: Chen, Yong |
EndPage | 10 |
ExternalDocumentID | 10_1155_2020_2091382 1193693 |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province grantid: 2019JJ40304 – fundername: National Natural Science Foundation of China grantid: 61403046 – fundername: Hubei Superior and Distinctive Discipline Group of Mechatronics and Automobiles grantid: XKQ2020009 – fundername: CSUST – fundername: Research Foundation of Education Bureau of Hunan Province grantid: 19K007 – fundername: Key Laboratory of Renewable Energy Electric-Technology of Hunan Province – fundername: Changsha University of Science and Technology grantid: 2018IC14 – fundername: Hunan Provincial Department of Transportation 2018 Science and Technology Progress and Innovation Plan Project grantid: 201843 – fundername: Innovative Team of Key Technologies of Energy Conservation, Emission Reduction and Intelligent Control for Power-Generating Equipment and System – fundername: Key Laboratory of Efficient and Clean Energy Utilization of Hunan Province |
GroupedDBID | -~9 188 24P 29M 2UF 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV ADJCN AENEX AFFNX AFKRA AHFXO AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ C1A CAG CAHYU CCPQU CNMHZ COF CS3 CWDGH E3Z EBS EJD ESX GROUPED_DOAJ H13 HCIFZ I-F IAO IEA IL9 IOF IPNFZ ISR K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHX RIG RNS TR2 TUS UGNYK XSB YQT ~8M ITC RHW 0R~ AAYXX ACCMX CITATION OVT PHGZM PHGZT 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c360t-aae9d2a206aeca1451b848e8b213ba6682e4e7ec5407231613d02ea85b9ca3d23 |
IEDL.DBID | RHX |
ISSN | 1024-123X |
IngestDate | Fri Jul 25 10:12:35 EDT 2025 Tue Jul 01 02:14:00 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Sun Jun 02 18:51:02 EDT 2024 Tue Nov 26 16:44:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-aae9d2a206aeca1451b848e8b213ba6682e4e7ec5407231613d02ea85b9ca3d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3305-362X 0000-0002-9371-3207 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/2091382 |
PQID | 2434435001 |
PQPubID | 237775 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2434435001 crossref_citationtrail_10_1155_2020_2091382 crossref_primary_10_1155_2020_2091382 hindawi_primary_10_1155_2020_2091382 emarefa_primary_1193693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
PublicationTitle | Mathematical problems in engineering |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 24 25 26 27 28 29 10 11 12 13 14 15 16 18 19 1 2 3 4 5 6 7 8 9 (17) 2017; 7 20 21 |
References_xml | – ident: 8 doi: 10.1049/iet-rpg.2018.0156 – ident: 29 doi: 10.3390/en13040807 – ident: 12 doi: 10.1016/j.renene.2017.03.097 – ident: 24 doi: 10.1109/28.903156 – ident: 9 doi: 10.1109/tii.2018.2885365 – ident: 16 doi: 10.1016/j.renene.2018.10.088 – ident: 11 doi: 10.1016/j.ymssp.2017.11.024 – ident: 3 doi: 10.3390/en11051309 – ident: 21 doi: 10.1016/j.measurement.2019.01.020 – ident: 7 doi: 10.1016/j.engappai.2019.103457 – ident: 26 doi: 10.1016/j.renene.2016.02.063 – ident: 14 doi: 10.1016/j.epsr.2017.10.010 – ident: 25 doi: 10.1016/j.ymssp.2018.09.026 – ident: 4 doi: 10.1007/s10586-018-1854-3 – ident: 22 doi: 10.1016/j.ins.2019.04.032 – ident: 2 doi: 10.1049/iet-rpg.2016.0248 – ident: 18 doi: 10.1016/j.renene.2017.09.061 – ident: 10 doi: 10.1016/j.renene.2020.03.036 – ident: 15 doi: 10.1016/j.renene.2020.04.041 – ident: 6 doi: 10.1109/TCST.2019.2947876 – volume: 7 start-page: 758 issue: 2 year: 2017 ident: 17 publication-title: International Journal of Renewable Energy Research – ident: 27 doi: 10.1109/TNNLS.2020.2985223 – ident: 13 doi: 10.1016/j.renene.2017.11.011 – ident: 1 doi: 10.1016/j.apenergy.2018.06.150 – ident: 19 doi: 10.1016/j.renene.2012.06.013 – ident: 28 doi: 10.1109/tii.2019.2952931 – ident: 20 doi: 10.1016/j.fss.2015.07.005 – ident: 5 doi: 10.1016/j.automatica.2018.10.047 |
SSID | ssj0021518 |
Score | 2.2396088 |
Snippet | In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system,... |
SourceID | proquest crossref hindawi emarefa |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Complexity Correlation analysis Correlation coefficients Efficiency Engineering Fault detection Fault diagnosis Feature selection Hydraulics Model testing Parameters Sample variance Supervisory control and data acquisition Support vector machines Training Turbines Turbogenerators Wavelet transforms Wind farms Wind power Wind turbines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEA4eCPrgfawXedAnKbY5avskXssieCCK-1bSZBYXtLvudvHvO9NmXUHUl1LaaQKdZI5k8n2MHUgLyjrIA2lMGqg81GgHdRiktoPBrk4wzaXzzje3cetJXbd12y-4DX1Z5dgmVoba9SytkR8LJRW6drSqp_33gFijaHfVU2hMs1k0wQkmX7PnV7f3D18pF_qz-jCcIHQ-2R6XvmtNWX-Il7QG4fvmlObgzeANeqq5F8qLP7o_7HTlfJrLbNFHjfysVvMKm4JilS35CJL7-TlcZQvf4AXXmGua0WvJL6Gs6q0K3uvwZ-yLP44GmBADv--izngNWs7P0Z85jlLVmVxLUTW_Q4Pyhh0THW634JeEsusJsvAZlWHCOntqXj1etALPqhBYGYdlYAykThgRxgasIaLePFEJJLmIZG7iOBGg4AQsIfNh8Ifu3oUCTKLz1BrphNxgM0WvgC3Go_iEgMfT0EZGycTlGM1EpoMfgVVCuQY7Gv_WzHrIcWK-eM2q1EPrjJSQeSU02OGXdL-G2vhFbtNraCIWES-hbLADr7F_GtgdqzPzM3aYTcbX9t-vd9g8NVYvw-yymXIwgj0MTMp834--T_Uo3Lw priority: 102 providerName: ProQuest |
Title | Fault Detection of Wind Turbine Pitch System Based on Multiclass Optimal Margin Distribution Machine |
URI | https://search.emarefa.net/detail/BIM-1193693 https://dx.doi.org/10.1155/2020/2091382 https://www.proquest.com/docview/2434435001 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uMvDF3z-mc-RhPkmhTdLaPjp1DkWdsuHeSprecDCruA7_fe_aTNEh-lKackkhl-T7rk2-Y6wlDSiTQuJIrSNHJa6P66DvOpEZIdn1Qwxz6bzzzW3QHairoT-0IknTxV_4iHYUnrt4iUgtr8IqOMAoKO8OP-MqBK3yxJsgCT45nO9v_1H3G_LU4FnjDcJR7YmC3_fxwmJcIExnna1aashPS19usCXINtmapYncTsLpFks7ejbJ-TnkxTaqjL-M-CO2zvuzN4xzgffG6ApeapHzNsJUytGqOGpriCzzO1wnnvFVlOV2nPFzEs-1ea_wGe2uhG026Fz0z7qOTZbgGBm4uaM1RKnQwg00GE35d5NQhRAmwpOJDoJQgIITMCS4h5wOUTx1BejQTyKjZSrkDqtmLxnsMe4FJ6QnHrnG00qGaYIkxdMjrARGCZXW2fG8I2NjlcQpocUkLiIK34-p22Pb7XV29Gn9Wipo_GK3a33yZeZRukFZZy3roz8aaMwdGNuJOI2FkgoZIYLx_v9aOWArVCy_sjRYNX-bwSHyjjxp4tjrXDbZcvvitveApev7sFmMxA-Eo9AO |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRRVwoFBeoQX20J6Qhb0P1z6gCgghpQ84pCI3d707EZFapzSOKv4Uv7Ez9rqthIBTL5Zlj73Sznge653vA9hUDrXzWEbK2jzSZWzID5o4yt2Ekl2TUZnL_c4Hh-nwSH8Zm_ES_O56YXhbZecTG0ftZ47XyN9KrTSFdvKqO2c_I2aN4r-rHYVGaxZ7-OuCSrb5u90-6XdLysGn0cdhFFgFIqfSuI6sxdxLK-PUorNMVFtmOsOslIkqbZpmEjVuo2NkOkp-KNz5WKLNTJk7qzwDHZDLv6OVyvmLygafrwo8ip5t651kLEA17jbaG8NrDDEd8hby70YIXMFTSycUF1d-cBV-Mf0jKjShbvAQHoQcVbxvjeoRLGG1BqshXxXBG8zX4P4NMMPH4Ad2cVKLPtbN7q5KzCbiO40lRotzKr9RfJuShYgWIl18oOjpBUk1HcCOc3jxldzXKQ3M5LvTSvQZ0zfQcdE13vSJT-DoVmb7KSxXswqfg0jSbYY5z2OXWK0yX1LulNgJPYROS-178Kab1sIFgHPm2TgpmkLHmIKVUAQl9GDrSvqsBfb4i9yzoKFrsYRZEFUPNoPG_vOCjU6dRfAP8-Laml_8-_ZruDscHewX-7uHe-twj1_cLgBtwHJ9vsCXlBLV5avGDgUc37bhXwKuHhgt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD4hSzD6IIq3FdR5gCdTaGempX0wRKnrIoo8QNi3OrcNG6CLbDdEfhp_xT_jOe0UiEZ94sGXZtM926az35zL9Mz3ASwL46SxTgdCqSyQOozRD8ZhkJkhJrtximUu7Xf-vJP09-XHQTyYgct2Lwy1VbY-sXbUdmxojXyNSyExtBNj0NC3RezmvY3TbwEpSNGb1lZOo4HItvt-juXb5M1Wjv_1Cue993ub_cArDARGJGEVKOUyyxUPE-WMItFancrUpZpHQqskSbmTbt0ZYqnDRAhDnw25U2msM6OEJdIDdP-zpOokOzC7eZB_6F-VexhLm414nJgBxaBtu49jWnEI8ZA1BIA3AuKcO1H4AaPk3CHV5Oej32JEHfh68_CjHbKm3-VodVrpVXPxC5vk_zmmD-C-z8fZ22YCPYQZVy7AvM_Nmfd8kwW4d4O48RHYnpoeVyx3Vd3JVrLxkB3gSLK96ZlGM7Y7wtnAGjp49g4zBcvQqt7tbKheYV_QVZ_gjUloeFSynPiLvfQYnqMGV_cY9m_lyZ9ApxyX7hmwKFknSvcsNJGSIrUa88RIDfFHzkgubRdet6ApjCdzJ02R46Iu6uK4IIgVHmJdWLmyPm1ITP5g99Tj79osIsVH0YVlj8d_XGCpBVrhfeGkuEbZ879__QruIPyKT1s724twl67brHUtQac6m7oXmP1V-qWfZgy-3jYKfwLOpGUV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+of+Wind+Turbine+Pitch+System+Based+on+Multiclass+Optimal+Margin+Distribution+Machine&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Tang%2C+Mingzhu&rft.au=Kuang%2C+Zijie&rft.au=Zhao%2C+Qi&rft.au=Wu%2C+Huawei&rft.date=2020&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2020&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2020%2F2091382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2020_2091382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |