Fault Detection of Wind Turbine Pitch System Based on Multiclass Optimal Margin Distribution Machine

In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal ma...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Wu, Huawei, Zhao, Qi, Kuang, Zijie, Tang, Mingzhu, Yang, Xu
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal margin distribution machine. In this method, the power output of the wind turbine generator system is used as the main status parameter, and the operating data history of the wind turbine generator system in the wind power supervisory control and data acquisition (SCADA) system is subject to correlation analysis with the Pearson correlation coefficient, to eliminate the features that have low correlation with the power output status parameter. Secondary analysis is performed to the remaining features, thus reducing the number and complexity of samples. Datasets are divided into the training set for training of the multiclass optimal margin distribution machine fault detection model and test set for testing. Experimental verification was carried out with the operating data of one wind farm in China. Experimental results show that, compared with other support vector machines, the proposed method has higher fault detection accuracy and precision and lower false-negative rate and false-positive rate.
AbstractList In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system, this paper proposes a method for fault detection of the pitch system of the wind turbine generator system based on the multiclass optimal margin distribution machine. In this method, the power output of the wind turbine generator system is used as the main status parameter, and the operating data history of the wind turbine generator system in the wind power supervisory control and data acquisition (SCADA) system is subject to correlation analysis with the Pearson correlation coefficient, to eliminate the features that have low correlation with the power output status parameter. Secondary analysis is performed to the remaining features, thus reducing the number and complexity of samples. Datasets are divided into the training set for training of the multiclass optimal margin distribution machine fault detection model and test set for testing. Experimental verification was carried out with the operating data of one wind farm in China. Experimental results show that, compared with other support vector machines, the proposed method has higher fault detection accuracy and precision and lower false-negative rate and false-positive rate.
Author Zhao, Qi
Yang, Xu
Wu, Huawei
Kuang, Zijie
Tang, Mingzhu
Author_xml – sequence: 1
  fullname: Wu, Huawei
– sequence: 2
  fullname: Zhao, Qi
– sequence: 3
  fullname: Kuang, Zijie
– sequence: 4
  fullname: Tang, Mingzhu
– sequence: 5
  fullname: Yang, Xu
BookMark eNqFkMtLxDAQxoMo-Lx5loBHrWby6LZHXZ_goqCitzJNZzVS2zVJEf97s64gCOJlZg6_75uZb50td31HjG2DOAAw5lAKKVIpQRVyia2ByVVmQI-W0yykzkCqx1W2HsKLEBIMFGusOcOhjfyEItno-o73U_7guobfDb52HfEbF-0zv_0IkV75MQZqeKImSeRsiyHw61l0r9jyCfon1_ETF6J39fBlNkH7nEw22coU20Bb332D3Z-d3o0vsqvr88vx0VVmVS5ihkhlI1GKHMkiaAN1oQsqagmqxjwvJGkakTVajKSCHFQjJGFh6tKiaqTaYLsL35nv3wYKsXrpB9-llZXUSmtlhIBEyQVlfR-Cp2llXcT5vdGjaysQ1TzNap5m9Z1mEu3_Es18ett__IXvLfD0foPv7j96Z0FTYmiKPzSUKi-V-gTig42b
CitedBy_id crossref_primary_10_1080_15435075_2024_2407533
crossref_primary_10_1109_ACCESS_2023_3244838
crossref_primary_10_1007_s40313_024_01076_y
Cites_doi 10.1049/iet-rpg.2018.0156
10.3390/en13040807
10.1016/j.renene.2017.03.097
10.1109/28.903156
10.1109/tii.2018.2885365
10.1016/j.renene.2018.10.088
10.1016/j.ymssp.2017.11.024
10.3390/en11051309
10.1016/j.measurement.2019.01.020
10.1016/j.engappai.2019.103457
10.1016/j.renene.2016.02.063
10.1016/j.epsr.2017.10.010
10.1016/j.ymssp.2018.09.026
10.1007/s10586-018-1854-3
10.1016/j.ins.2019.04.032
10.1049/iet-rpg.2016.0248
10.1016/j.renene.2017.09.061
10.1016/j.renene.2020.03.036
10.1016/j.renene.2020.04.041
10.1109/TCST.2019.2947876
10.1109/TNNLS.2020.2985223
10.1016/j.renene.2017.11.011
10.1016/j.apenergy.2018.06.150
10.1016/j.renene.2012.06.013
10.1109/tii.2019.2952931
10.1016/j.fss.2015.07.005
10.1016/j.automatica.2018.10.047
ContentType Journal Article
Copyright Copyright © 2020 Mingzhu Tang et al.
Copyright © 2020 Mingzhu Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Mingzhu Tang et al.
– notice: Copyright © 2020 Mingzhu Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1155/2020/2091382
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1563-5147
Editor Chen, Yong
Editor_xml – sequence: 1
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
EndPage 10
ExternalDocumentID 10_1155_2020_2091382
1193693
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2019JJ40304
– fundername: National Natural Science Foundation of China
  grantid: 61403046
– fundername: Hubei Superior and Distinctive Discipline Group of Mechatronics and Automobiles
  grantid: XKQ2020009
– fundername: CSUST
– fundername: Research Foundation of Education Bureau of Hunan Province
  grantid: 19K007
– fundername: Key Laboratory of Renewable Energy Electric-Technology of Hunan Province
– fundername: Changsha University of Science and Technology
  grantid: 2018IC14
– fundername: Hunan Provincial Department of Transportation 2018 Science and Technology Progress and Innovation Plan Project
  grantid: 201843
– fundername: Innovative Team of Key Technologies of Energy Conservation, Emission Reduction and Intelligent Control for Power-Generating Equipment and System
– fundername: Key Laboratory of Efficient and Clean Energy Utilization of Hunan Province
GroupedDBID -~9
188
24P
29M
2UF
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
ADJCN
AENEX
AFFNX
AFKRA
AHFXO
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CAG
CAHYU
CCPQU
CNMHZ
COF
CS3
CWDGH
E3Z
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
IEA
IL9
IOF
IPNFZ
ISR
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHX
RIG
RNS
TR2
TUS
UGNYK
XSB
YQT
~8M
ITC
RHW
0R~
AAYXX
ACCMX
CITATION
OVT
PHGZM
PHGZT
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c360t-aae9d2a206aeca1451b848e8b213ba6682e4e7ec5407231613d02ea85b9ca3d23
IEDL.DBID RHX
ISSN 1024-123X
IngestDate Fri Jul 25 10:12:35 EDT 2025
Tue Jul 01 02:14:00 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Sun Jun 02 18:51:02 EDT 2024
Tue Nov 26 16:44:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-aae9d2a206aeca1451b848e8b213ba6682e4e7ec5407231613d02ea85b9ca3d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3305-362X
0000-0002-9371-3207
OpenAccessLink https://dx.doi.org/10.1155/2020/2091382
PQID 2434435001
PQPubID 237775
PageCount 10
ParticipantIDs proquest_journals_2434435001
crossref_citationtrail_10_1155_2020_2091382
crossref_primary_10_1155_2020_2091382
hindawi_primary_10_1155_2020_2091382
emarefa_primary_1193693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 22
24
25
26
27
28
29
10
11
12
13
14
15
16
18
19
1
2
3
4
5
6
7
8
9
(17) 2017; 7
20
21
References_xml – ident: 8
  doi: 10.1049/iet-rpg.2018.0156
– ident: 29
  doi: 10.3390/en13040807
– ident: 12
  doi: 10.1016/j.renene.2017.03.097
– ident: 24
  doi: 10.1109/28.903156
– ident: 9
  doi: 10.1109/tii.2018.2885365
– ident: 16
  doi: 10.1016/j.renene.2018.10.088
– ident: 11
  doi: 10.1016/j.ymssp.2017.11.024
– ident: 3
  doi: 10.3390/en11051309
– ident: 21
  doi: 10.1016/j.measurement.2019.01.020
– ident: 7
  doi: 10.1016/j.engappai.2019.103457
– ident: 26
  doi: 10.1016/j.renene.2016.02.063
– ident: 14
  doi: 10.1016/j.epsr.2017.10.010
– ident: 25
  doi: 10.1016/j.ymssp.2018.09.026
– ident: 4
  doi: 10.1007/s10586-018-1854-3
– ident: 22
  doi: 10.1016/j.ins.2019.04.032
– ident: 2
  doi: 10.1049/iet-rpg.2016.0248
– ident: 18
  doi: 10.1016/j.renene.2017.09.061
– ident: 10
  doi: 10.1016/j.renene.2020.03.036
– ident: 15
  doi: 10.1016/j.renene.2020.04.041
– ident: 6
  doi: 10.1109/TCST.2019.2947876
– volume: 7
  start-page: 758
  issue: 2
  year: 2017
  ident: 17
  publication-title: International Journal of Renewable Energy Research
– ident: 27
  doi: 10.1109/TNNLS.2020.2985223
– ident: 13
  doi: 10.1016/j.renene.2017.11.011
– ident: 1
  doi: 10.1016/j.apenergy.2018.06.150
– ident: 19
  doi: 10.1016/j.renene.2012.06.013
– ident: 28
  doi: 10.1109/tii.2019.2952931
– ident: 20
  doi: 10.1016/j.fss.2015.07.005
– ident: 5
  doi: 10.1016/j.automatica.2018.10.047
SSID ssj0021518
Score 2.2396088
Snippet In response to the unbalanced sample categories and complex sample distribution of the operating data of the pitch system of the wind turbine generator system,...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Complexity
Correlation analysis
Correlation coefficients
Efficiency
Engineering
Fault detection
Fault diagnosis
Feature selection
Hydraulics
Model testing
Parameters
Sample variance
Supervisory control and data acquisition
Support vector machines
Training
Turbines
Turbogenerators
Wavelet transforms
Wind farms
Wind power
Wind turbines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ZS8QwEA4eCPrgfawXedAnKbY5avskXssieCCK-1bSZBYXtLvudvHvO9NmXUHUl1LaaQKdZI5k8n2MHUgLyjrIA2lMGqg81GgHdRiktoPBrk4wzaXzzje3cetJXbd12y-4DX1Z5dgmVoba9SytkR8LJRW6drSqp_33gFijaHfVU2hMs1k0wQkmX7PnV7f3D18pF_qz-jCcIHQ-2R6XvmtNWX-Il7QG4fvmlObgzeANeqq5F8qLP7o_7HTlfJrLbNFHjfysVvMKm4JilS35CJL7-TlcZQvf4AXXmGua0WvJL6Gs6q0K3uvwZ-yLP44GmBADv--izngNWs7P0Z85jlLVmVxLUTW_Q4Pyhh0THW634JeEsusJsvAZlWHCOntqXj1etALPqhBYGYdlYAykThgRxgasIaLePFEJJLmIZG7iOBGg4AQsIfNh8Ifu3oUCTKLz1BrphNxgM0WvgC3Go_iEgMfT0EZGycTlGM1EpoMfgVVCuQY7Gv_WzHrIcWK-eM2q1EPrjJSQeSU02OGXdL-G2vhFbtNraCIWES-hbLADr7F_GtgdqzPzM3aYTcbX9t-vd9g8NVYvw-yymXIwgj0MTMp834--T_Uo3Lw
  priority: 102
  providerName: ProQuest
Title Fault Detection of Wind Turbine Pitch System Based on Multiclass Optimal Margin Distribution Machine
URI https://search.emarefa.net/detail/BIM-1193693
https://dx.doi.org/10.1155/2020/2091382
https://www.proquest.com/docview/2434435001
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uMvDF3z-mc-RhPkmhTdLaPjp1DkWdsuHeSprecDCruA7_fe_aTNEh-lKackkhl-T7rk2-Y6wlDSiTQuJIrSNHJa6P66DvOpEZIdn1Qwxz6bzzzW3QHairoT-0IknTxV_4iHYUnrt4iUgtr8IqOMAoKO8OP-MqBK3yxJsgCT45nO9v_1H3G_LU4FnjDcJR7YmC3_fxwmJcIExnna1aashPS19usCXINtmapYncTsLpFks7ejbJ-TnkxTaqjL-M-CO2zvuzN4xzgffG6ApeapHzNsJUytGqOGpriCzzO1wnnvFVlOV2nPFzEs-1ea_wGe2uhG026Fz0z7qOTZbgGBm4uaM1RKnQwg00GE35d5NQhRAmwpOJDoJQgIITMCS4h5wOUTx1BejQTyKjZSrkDqtmLxnsMe4FJ6QnHrnG00qGaYIkxdMjrARGCZXW2fG8I2NjlcQpocUkLiIK34-p22Pb7XV29Gn9Wipo_GK3a33yZeZRukFZZy3roz8aaMwdGNuJOI2FkgoZIYLx_v9aOWArVCy_sjRYNX-bwSHyjjxp4tjrXDbZcvvitveApev7sFmMxA-Eo9AO
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRRVwoFBeoQX20J6Qhb0P1z6gCgghpQ84pCI3d707EZFapzSOKv4Uv7Ez9rqthIBTL5Zlj73Sznge653vA9hUDrXzWEbK2jzSZWzID5o4yt2Ekl2TUZnL_c4Hh-nwSH8Zm_ES_O56YXhbZecTG0ftZ47XyN9KrTSFdvKqO2c_I2aN4r-rHYVGaxZ7-OuCSrb5u90-6XdLysGn0cdhFFgFIqfSuI6sxdxLK-PUorNMVFtmOsOslIkqbZpmEjVuo2NkOkp-KNz5WKLNTJk7qzwDHZDLv6OVyvmLygafrwo8ip5t651kLEA17jbaG8NrDDEd8hby70YIXMFTSycUF1d-cBV-Mf0jKjShbvAQHoQcVbxvjeoRLGG1BqshXxXBG8zX4P4NMMPH4Ad2cVKLPtbN7q5KzCbiO40lRotzKr9RfJuShYgWIl18oOjpBUk1HcCOc3jxldzXKQ3M5LvTSvQZ0zfQcdE13vSJT-DoVmb7KSxXswqfg0jSbYY5z2OXWK0yX1LulNgJPYROS-178Kab1sIFgHPm2TgpmkLHmIKVUAQl9GDrSvqsBfb4i9yzoKFrsYRZEFUPNoPG_vOCjU6dRfAP8-Laml_8-_ZruDscHewX-7uHe-twj1_cLgBtwHJ9vsCXlBLV5avGDgUc37bhXwKuHhgt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD4hSzD6IIq3FdR5gCdTaGempX0wRKnrIoo8QNi3OrcNG6CLbDdEfhp_xT_jOe0UiEZ94sGXZtM926az35zL9Mz3ASwL46SxTgdCqSyQOozRD8ZhkJkhJrtximUu7Xf-vJP09-XHQTyYgct2Lwy1VbY-sXbUdmxojXyNSyExtBNj0NC3RezmvY3TbwEpSNGb1lZOo4HItvt-juXb5M1Wjv_1Cue993ub_cArDARGJGEVKOUyyxUPE-WMItFancrUpZpHQqskSbmTbt0ZYqnDRAhDnw25U2msM6OEJdIDdP-zpOokOzC7eZB_6F-VexhLm414nJgBxaBtu49jWnEI8ZA1BIA3AuKcO1H4AaPk3CHV5Oej32JEHfh68_CjHbKm3-VodVrpVXPxC5vk_zmmD-C-z8fZ22YCPYQZVy7AvM_Nmfd8kwW4d4O48RHYnpoeVyx3Vd3JVrLxkB3gSLK96ZlGM7Y7wtnAGjp49g4zBcvQqt7tbKheYV_QVZ_gjUloeFSynPiLvfQYnqMGV_cY9m_lyZ9ApxyX7hmwKFknSvcsNJGSIrUa88RIDfFHzkgubRdet6ApjCdzJ02R46Iu6uK4IIgVHmJdWLmyPm1ITP5g99Tj79osIsVH0YVlj8d_XGCpBVrhfeGkuEbZ879__QruIPyKT1s724twl67brHUtQac6m7oXmP1V-qWfZgy-3jYKfwLOpGUV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+of+Wind+Turbine+Pitch+System+Based+on+Multiclass+Optimal+Margin+Distribution+Machine&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Tang%2C+Mingzhu&rft.au=Kuang%2C+Zijie&rft.au=Zhao%2C+Qi&rft.au=Wu%2C+Huawei&rft.date=2020&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2020&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2020%2F2091382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2020_2091382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon