Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei

The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic pol...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 24; p. 17202
Main Authors Adnan, Muhammad, Ma, Xuekun, Xie, Yanping, Waheed, Abdul, Liu, Gang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.12.2023
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms242417202

Cover

Loading…
Abstract The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.
AbstractList The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of ( CDH) in (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant CDH was found to be 45 °C and the optimum pH of CDH was observed as 4.5. CDH has high cello-oligosaccharide k , K and k /K values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.
Author Liu, Gang
Xie, Yanping
Adnan, Muhammad
Waheed, Abdul
Ma, Xuekun
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Adnan
  fullname: Adnan, Muhammad
– sequence: 2
  givenname: Xuekun
  surname: Ma
  fullname: Ma, Xuekun
– sequence: 3
  givenname: Yanping
  surname: Xie
  fullname: Xie, Yanping
– sequence: 4
  givenname: Abdul
  surname: Waheed
  fullname: Waheed, Abdul
– sequence: 5
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38139031$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vEzEQhi1URD_gyBVZ4sJlYWzvR_dYpYEiBcGhnFeOPU4cee1ge6XuP-rPxCGpBBUnjzXP-85o3kty5oNHQt4y-ChED5_sbky85jXrOPAX5ILVnFcAbXf2V31OLlPaAXDBm_4VORfXrGgFuyCPd5gxBhc2YUpupsuHfcSUUNMFOhfWNiSkt7iddQwb9LL8blROVCa6NMYqiz7TpUOVY_DVbfAh0mDoas5W0R_BzUkqtZXRaqTfSjc8zCcbU8jDjMkdR2yi1DLb4Kn19D5atQ0a4yhpRExoX5OXRrqEb07vFfn5eXm_uKtW3798XdysKiVayJWUDTRaCtP3GkCqrhZKAlt3qsEOTdNozlkvmKg1SHEtQPK2LTjnnSnStbgiH46--xh-TZjyMNqkyp7SYznRwHtommLR9gV9_wzdhSn6st2BqtsWeAuFeneipvWIethHO8o4D08ZFEAcARVDShHNoGz-c4kcpXUDg-GQ9PBP0kVVPVM9Gf-f_w39Iq1V
CitedBy_id crossref_primary_10_1007_s43538_024_00373_z
Cites_doi 10.1021/acscatal.3c02116
10.1126/science.abj1342
10.3389/fbioe.2021.815990
10.1016/j.enzmictec.2022.110171
10.1186/s13068-020-01673-4
10.1021/acs.biomac.0c01393
10.1016/S0167-4838(97)00180-5
10.1111/j.1742-4658.2005.04707.x
10.1016/0378-1119(87)90164-8
10.1021/acs.jafc.0c05979
10.1271/bbb.50692
10.1186/s13068-018-1156-2
10.1186/1475-2859-11-84
10.1016/j.biortech.2017.12.061
10.1002/elsc.201800039
10.1016/j.nbt.2010.10.001
10.1021/acssuschemeng.2c02255
10.1021/acs.langmuir.3c00343
10.1007/s00253-009-2062-0
10.1186/s12934-020-01492-0
10.3389/fmicb.2018.01080
10.1074/jbc.RA119.008196
10.1111/1462-2920.14826
10.1046/j.1432-1327.1998.2530101.x
10.1073/pnas.1105776108
10.1016/j.jobab.2021.02.001
10.1016/j.fuel.2021.122757
10.1021/acssuschemeng.0c02564
10.1128/AEM.67.4.1766-1774.2001
10.1021/acs.biochem.8b01178
10.1039/C5TB00671F
10.1016/j.bbagen.2018.01.016
10.3891/acta.chem.scand.29b-0419
10.1371/journal.pone.0235642
10.1186/s13068-016-0608-9
10.1016/j.rser.2017.08.074
10.1038/nchembio.2470
10.1016/j.micres.2022.127011
10.1186/s13068-022-02112-2
10.1111/febs.15067
10.3389/fmicb.2016.00620
10.1126/science.1192231
10.1021/cb200351y
10.1038/ncomms11134
10.1073/pnas.1602566113
10.1038/ncomms8542
10.1016/j.sbi.2019.02.015
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOI 10.3390/ijms242417202
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID 38139031
10_3390_ijms242417202
Genre Journal Article
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
ESTFP
PUEGO
ID FETCH-LOGICAL-c360t-aa505da3f99d00ac743ca01b7c5e7ef55d22193134d0a3830a266a3f227fa50b3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Fri Sep 05 09:35:31 EDT 2025
Sat Jul 26 00:25:27 EDT 2025
Mon Jul 21 05:31:03 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Tue Jul 01 02:23:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords LPMO
Trichoderma reesei
CDH
Phanerochaete chrysosporium
cellulase
electron donor
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-aa505da3f99d00ac743ca01b7c5e7ef55d22193134d0a3830a266a3f227fa50b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2904660260?pq-origsite=%requestingapplication%
PMID 38139031
PQID 2904660260
PQPubID 2032341
ParticipantIDs proquest_miscellaneous_2905521969
proquest_journals_2904660260
pubmed_primary_38139031
crossref_citationtrail_10_3390_ijms242417202
crossref_primary_10_3390_ijms242417202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec-06
PublicationDateYYYYMMDD 2023-12-06
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec-06
  day: 06
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_13) 2023; 13
Hu (ref_3) 2020; 22
Xu (ref_22) 2023; 39
Zanchetta (ref_34) 2018; 252
ref_11
Henriksson (ref_37) 1998; 1383
Cannella (ref_47) 2016; 7
ref_18
Laurent (ref_24) 2019; 58
ref_15
Bissaro (ref_26) 2017; 13
Smuts (ref_14) 2023; 164
Lipovsky (ref_30) 2015; 3
Pricelius (ref_31) 2009; 85
ref_20
Wohlschlager (ref_6) 2021; 20
Forsberg (ref_19) 2019; 59
Long (ref_40) 2020; 8
ref_28
Phillips (ref_8) 2011; 6
Srivastava (ref_4) 2018; 82
Sabbadin (ref_16) 2021; 373
Igarashi (ref_12) 2005; 272
Nakagame (ref_35) 2006; 70
Varnai (ref_39) 2019; 294
Manikandan (ref_1) 2022; 314
Chorozian (ref_9) 2022; 10
ref_33
Chen (ref_49) 2018; 11
Baminger (ref_48) 2001; 67
Andlar (ref_17) 2018; 18
ref_38
Cheng (ref_42) 2020; 68
Quinlan (ref_32) 2011; 108
Tan (ref_25) 2015; 6
Westereng (ref_21) 2010; 330
Kracher (ref_29) 2020; 287
Igarashi (ref_44) 1998; 253
Punt (ref_46) 1987; 56
ref_43
Westermark (ref_36) 1975; 29
Courtade (ref_23) 2016; 113
Farinas (ref_41) 2010; 27
Califano (ref_27) 2020; 21
Li (ref_45) 2012; 11
ref_5
Bodenheimer (ref_10) 2018; 1862
ref_7
Patel (ref_2) 2021; 6
References_xml – volume: 13
  start-page: 8195
  year: 2023
  ident: ref_13
  article-title: Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c02116
– volume: 373
  start-page: 774
  year: 2021
  ident: ref_16
  article-title: Secreted Pectin Monooxygenases Drive Plant Infection by Pathogenic Oomycetes
  publication-title: Science
  doi: 10.1126/science.abj1342
– ident: ref_18
  doi: 10.3389/fbioe.2021.815990
– volume: 164
  start-page: 110171
  year: 2023
  ident: ref_14
  article-title: Supplementation of Recombinant Cellulases with LPMOs and CDHs Improves Consolidated Bioprocessing of Cellulose
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2022.110171
– ident: ref_28
  doi: 10.1186/s13068-020-01673-4
– volume: 21
  start-page: 5315
  year: 2020
  ident: ref_27
  article-title: Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c01393
– volume: 1383
  start-page: 48
  year: 1998
  ident: ref_37
  article-title: Substrate Specificity of Cellobiose Dehydrogenase from Phanerochaete chrysosporium
  publication-title: Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(97)00180-5
– volume: 272
  start-page: 2869
  year: 2005
  ident: ref_12
  article-title: Electron Transfer Chain Reaction of the Extracellular Flavocytochrome Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2005.04707.x
– volume: 56
  start-page: 117
  year: 1987
  ident: ref_46
  article-title: Transformation of Aspergillus Based on the Hygromycin B Resistance Marker from Escherichia coli
  publication-title: Gene
  doi: 10.1016/0378-1119(87)90164-8
– volume: 68
  start-page: 15257
  year: 2020
  ident: ref_42
  article-title: Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c05979
– volume: 70
  start-page: 1629
  year: 2006
  ident: ref_35
  article-title: Purification and Characterization of Cellobiose Dehydrogenase from White-Rot Basidiomycete Trametes hirsuta
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.50692
– volume: 11
  start-page: 1
  year: 2018
  ident: ref_49
  article-title: Regioselectivity of Oxidation by a Polysaccharide Monooxygenase from Chaetomium thermophilum
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1156-2
– volume: 11
  start-page: 84
  year: 2012
  ident: ref_45
  article-title: Achieving Efficient Protein Expression in Trichoderma reesei by Using Strong Constitutive Promoters
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-11-84
– volume: 252
  start-page: 143
  year: 2018
  ident: ref_34
  article-title: Temperature Dependent Cellulase Adsorption on Lignin from Sugarcane Bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.12.061
– volume: 18
  start-page: 768
  year: 2018
  ident: ref_17
  article-title: Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201800039
– volume: 27
  start-page: 810
  year: 2010
  ident: ref_41
  article-title: Finding Stable Cellulase and Xylanase: Evaluation of the Synergistic Effect of pH and Temperature
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2010.10.001
– volume: 10
  start-page: 8919
  year: 2022
  ident: ref_9
  article-title: Characterization of a Dual Cellulolytic/Xylanolytic AA9 Lytic Polysaccharide Monooxygenase from Thermothelomyces thermophilus and Its Utilization toward Nanocellulose Production in a Multi-Step Bioprocess
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c02255
– volume: 39
  start-page: 5880
  year: 2023
  ident: ref_22
  article-title: Molecular Insights of Cellobiose Dehydrogenase Adsorption on Self-Assembled Monolayers
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c00343
– volume: 85
  start-page: 75
  year: 2009
  ident: ref_31
  article-title: Substrate Specificity of Myriococcum thermophilum Cellobiose Dehydrogenase on Mono-, Oligo-, and Polysaccharides Related to in Situ Production of H2O2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2062-0
– volume: 20
  start-page: 2
  year: 2021
  ident: ref_6
  article-title: Heterologous Expression of Phanerochaete chrysosporium Cellobiose Dehydrogenase in Trichoderma reesei
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-020-01492-0
– ident: ref_20
  doi: 10.3389/fmicb.2018.01080
– volume: 294
  start-page: 15068
  year: 2019
  ident: ref_39
  article-title: Comparison of Three Seemingly Similar Lytic Polysaccharide Monooxygenases from Neurospora crassa Suggests Different Roles in Plant Biomass Degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.008196
– volume: 22
  start-page: 107
  year: 2020
  ident: ref_3
  article-title: In Ganoderma lucidum, Glsnf1 Regulates Cellulose Degradation by Inhibiting GlCreA during the Utilization of Cellulose
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14826
– volume: 253
  start-page: 101
  year: 1998
  ident: ref_44
  article-title: Cellobiose Dehydrogenase Enhances Phanerochaete chrysosporium Cellobiohydrolase I Activity by Relieving Product Inhibition
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1998.2530101.x
– volume: 108
  start-page: 15079
  year: 2011
  ident: ref_32
  article-title: Insights into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1105776108
– volume: 6
  start-page: 108
  year: 2021
  ident: ref_2
  article-title: Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products
  publication-title: J. Bioresour. Bioprod.
  doi: 10.1016/j.jobab.2021.02.001
– ident: ref_11
– volume: 314
  start-page: 122757
  year: 2022
  ident: ref_1
  article-title: Recent Development Patterns, Utilization and Prospective of Biofuel Production: Emerging Nanotechnological Intervention for Environmental Sustainability–A Review
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122757
– volume: 8
  start-page: 11986
  year: 2020
  ident: ref_40
  article-title: Synergism of Recombinant Podospora anserina Pa AA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02564
– volume: 67
  start-page: 1766
  year: 2001
  ident: ref_48
  article-title: Purification and Characterization of Cellobiose Dehydrogenase from the Plant Pathogen Sclerotium (Athelia) rolfsii
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.4.1766-1774.2001
– volume: 58
  start-page: 1226
  year: 2019
  ident: ref_24
  article-title: Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b01178
– volume: 3
  start-page: 7014
  year: 2015
  ident: ref_30
  article-title: Ultrasound Coating of Polydimethylsiloxanes with Antimicrobial Enzymes
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00671F
– volume: 1862
  start-page: 1031
  year: 2018
  ident: ref_10
  article-title: Structural Investigation of Cellobiose Dehydrogenase IIA: Insights from Small Angle Scattering into Intra-and Intermolecular Electron Transfer Mechanisms
  publication-title: Biochim. Biophys. Acta (BBA)-Gen. Subj.
  doi: 10.1016/j.bbagen.2018.01.016
– volume: 29
  start-page: 419
  year: 1975
  ident: ref_36
  article-title: Purification and Properties of Cellobiose: Quinone Oxidoreductase from Sporotrichum pulverulentum
  publication-title: Acta Chem. Scand. Ser. B Org. Chem. Biochem.
  doi: 10.3891/acta.chem.scand.29b-0419
– ident: ref_15
  doi: 10.1371/journal.pone.0235642
– ident: ref_5
  doi: 10.1186/s13068-016-0608-9
– volume: 82
  start-page: 2379
  year: 2018
  ident: ref_4
  article-title: Applications of Fungal Cellulases in Biofuel Production: Advances and Limitations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.074
– volume: 13
  start-page: 1123
  year: 2017
  ident: ref_26
  article-title: Oxidative Cleavage of Polysaccharides by Monocopper Enzymes Depends on H2O2
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2470
– ident: ref_7
  doi: 10.1016/j.micres.2022.127011
– ident: ref_38
  doi: 10.1186/s13068-022-02112-2
– volume: 287
  start-page: 897
  year: 2020
  ident: ref_29
  article-title: Polysaccharide Oxidation by Lytic Polysaccharide Monooxygenase Is Enhanced by Engineered Cellobiose Dehydrogenase
  publication-title: FEBS J.
  doi: 10.1111/febs.15067
– ident: ref_33
– ident: ref_43
  doi: 10.3389/fmicb.2016.00620
– volume: 330
  start-page: 219
  year: 2010
  ident: ref_21
  article-title: An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides
  publication-title: Science
  doi: 10.1126/science.1192231
– volume: 6
  start-page: 1399
  year: 2011
  ident: ref_8
  article-title: Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb200351y
– volume: 7
  start-page: 11134
  year: 2016
  ident: ref_47
  article-title: Light-Driven Oxidation of Polysaccharides by Photosynthetic Pigments and a Metalloenzyme
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11134
– volume: 113
  start-page: 5922
  year: 2016
  ident: ref_23
  article-title: Interactions of a Fungal Lytic Polysaccharide Monooxygenase with β-Glucan Substrates and Cellobiose Dehydrogenase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602566113
– volume: 6
  start-page: 7542
  year: 2015
  ident: ref_25
  article-title: Structural Basis for Cellobiose Dehydrogenase Action during Oxidative Cellulose Degradation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8542
– volume: 59
  start-page: 54
  year: 2019
  ident: ref_19
  article-title: Polysaccharide Degradation by Lytic Polysaccharide Monooxygenases
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.02.015
SSID ssj0023259
Score 2.4004142
Snippet The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 17202
SubjectTerms Biodiesel fuels
Biofuels
Cellulase
Cellulose
Cytochrome
Dehydrogenases
Enzymes
Fungi
Lignocellulose
Oxidation
Proteins
Spectrum analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbookq9oAJ9LIXKlSpOWCRxnGxOFY-gVVUhhEDiFo1jp6RaYkgWifwjfmbHjjcVB3qMMslEGXvmG3s8HyHfXZ0FiJDJuJrZptoVm4U6ZqnQKUShlFK7AtnzZH4d_7wRN37BrfNllSuf6By1MqVdIz-MMszkLF9S8OP-gVnWKLu76ik03pB1dMEzMSHrx_n5xeWYcvHI0aWFGIVYIrJk6LLJMdE_rP_cdfZsBEZwv6YyRqVXoKYLOWfvyYbHivRoMO4mWdPNFnk7sEf22-R5bktZ7AVm74ue5k-uqFUremJ3VGRtOk1P9W2vWoPDBMMVPSqXHYWO5q5xBMYbmnsaHHZqGtNSU9FfPaqjF2bRd1DaQ1m10hSnvjFPvX8NAl2n43ExqPjdwkDNROuGXqFnvbUMa3dAW607XX8g12f51cmceeIFVvIkWDIAxEUKeJVlKgigRJRRQhDKtEQL6koIFaGj4yGPVQCY4gaAYR7Foyit8FHJP5JJYxr9mVARcCljS2Vd8TiOFMhUpKBhlkEV6zSbkoPVjy9K35XckmMsCsxOrJ2KF3aakv1R_H5ox_Ga4O7KioWflV3xbwxNybfxNs4nu0kCjUZrWRmBkCZL8NM-DdYfNSG6QUU83Pn_y7-Qd5aU3hW9JLtksmwf9R5Cl6X86sfnXxqu8EU
  priority: 102
  providerName: ProQuest
Title Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei
URI https://www.ncbi.nlm.nih.gov/pubmed/38139031
https://www.proquest.com/docview/2904660260
https://www.proquest.com/docview/2905521969
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEA56h-CL-NvVc4kgPllN26TdPoicd10X0eOQW9i3MmlTr9JrtN2D7X_kn-lM2l059MCX0tKkEzJJ5ptmMh9jL12cBSjf07KcUVLt0pv5RnqxMjEEvtbauADZk2ixlJ9WavUnpdDYgd0_XTvik1q29ZvNz_49Tvh35HGiy_62-n7R0SkHtMWUVnIf7yIa4F_kbkMBcYPjTaM_Hh6t0EO6zb-rXzVP12BOZ3vmd9mdETTyw0HL99gN09xntwYayf4B-7WgmBZ6QDe-7nm6cdGtpuBHtLWiK9sZfmzO-6K1OF7QbvHDfN1x6HjqMkig4eHpyIfjHdvGttyW_HOP4viprfsOcjqdVRWG4xpg7aYfP4OI18m4rAcR31oYOJp41fAzXGLPiWrtAnhrTGeqh2w5T8-OFt7IwODlYSTWHgACpALCMkkKISBHuJGD8HWcoypNqVQR4IoX-qEsBKCvKwDtPRYPgrjEqjp8xPYa25gnjCsRai2J07oMpQwK0LGKwcAsgVKaOJmw19uOz_IxPTmxZNQZuimkp-yKnibs1a74jyEvx3UFD7ZazLajKwsSISMi3xIT9mL3GicW7ZZAY1BbVEYhtkkibNrjQfs7SQhzUFDoP_3fVjxjt4mn3sXBRAdsb91emueIZtZ6ym7Gqxivs_nHKdv_kJ6cfp2SfVFTN4J_A0-2-O0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkWChgJOBHVsZ1kc0Co6u6ypUvFYSv1FuzEoUHbuCS7ovlHnPiNzDgPxKHceowy8ViZ8Tzs8XyEvHZ1FirwPS3zMTbVzr2xb6QXBSZS3NdaG1cgexzOT-Sn0-B0i_zu78JgWWVvE52hzmyKe-R7PIZMDvGS2IeLHx6iRuHpag-h0arFkWl-QspWvz-cgHzfcD6bLg_mXocq4KUiZGtPKXD6mRJ5HGeMqRRcaKqYr6MUpmfyIMg4rGLhC5kxBfkbU-DDgJzzKIdPtYBxb5CbUogYe_WPZx-HBE9wB87mg8_zwiAO256eQMj2iu_nNd7EgHih28EZfOAVga1zcLN75G4XmdL9VpXuky1TPiC3WqzK5iH5NcfCGXywm3rV0OmlK6E1GT3A8xtd2NrQiTlrssqCUoJzpPvpuqaqplPXpgK8G512oDvexJa2ojaniwbY0S921dQqxStgRWYoGBprL5tuGAirHY_NqmXxrVItEBQtSroEO36GeG7nilbG1KZ4RE6uRSCPyXZpS_OE0IAJrSUCZ-dCSp4pHQWRMmocq1yaKB6Rd_2PT9KuBzpCcawSyIVQTsk_chqRtwP5Rdv84yrC3V6KSWcD6uSvxo7Iq-E1rF48klGlAWkhTQABVBzC1HZa6Q-cIJYCRsJ_-v_BX5Lb8-XnRbI4PD56Ru7AbIQrtwl3yfa62pjnEDSt9QunqZR8ve6l8QdxWStA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcqvIq2xYwEnAi2sTOY3OoUOlmtaXVaoVaqbdgxw4N2sZtsiuaf8Rv4NcxzgtxKLceozgeK_O2x_MBvKvrLLjnWMJNx6apdmqNHeVagacCTh0hhKoLZOf-7Nz9cuFdbMDv7i6MKavsbGJtqKVOzB75iIaYyRm8JHuUtmURi8n00_WNZRCkzElrB6fRiMiJqn5i-lYeHE-Q1-8pnUZnRzOrRRiwEubbK4tzDAAkZ2kYStvmCbrThNuOCBJcqko9T1LUaOYwV9occzmboz_D4ZQGKX4qGM77ADYD9IrjAWx-juaLr326x2gN1eagB7R8L_SbDp-MhfYo-3FVmnsZGD20-zm9R7wjzK3d3XQbtto4lRw2gvUENlT-FB42yJXVM_g1M2U05kGvy2VFotu6oFZJcmROc0SmS0Um6rKShUYRRVdJDpNVSXhJorppBfo6ErUQPNZE57ogOiWnFZIjC72sSp6YC2GZVATNjta3VTsNBtk1jfWyIfG94A0sFMlycoZW_dKgu11xUihVquw5nN8LS17AINe5egnEs5kQroHRTpnrUslF4AVc8XHIU1cF4RA-dj8-TtqO6AaYYxljZmT4FP_DpyF86IdfN61A7hq433Exbi1CGf-V3yG87V-jLpsDGp4r5JYZ42E4Ffq4tJ2G-z0ljKyQEHN2_z_5G3iEahGfHs9P9uAxLobVtTf-PgxWxVq9wghqJV63okrg231rxx9GPTDb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterologously+Expressed+Cellobiose+Dehydrogenase+Acts+as+Efficient+Electron-Donor+of+Lytic+Polysaccharide+Monooxygenase+for+Cellulose+Degradation+in+Trichoderma+reesei&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Adnan%2C+Muhammad&rft.au=Ma%2C+Xuekun&rft.au=Xie%2C+Yanping&rft.au=Waheed%2C+Abdul&rft.date=2023-12-06&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=24&rft.issue=24&rft.spage=17202&rft_id=info:doi/10.3390%2Fijms242417202&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms242417202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon