Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei
The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic pol...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 24; p. 17202 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
06.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms242417202 |
Cover
Loading…
Abstract | The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation. |
---|---|
AbstractList | The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain.
LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of
(
CDH) in
(which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant
CDH was found to be 45 °C and the optimum pH of
CDH was observed as 4.5.
CDH has high cello-oligosaccharide k
, K
and k
/K
values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when
is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation. The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation. The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation.The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of oxidative enzymes can easily disintegrate the glycosidic bonds of cellulose. The combination of cellobiose dehydrogenase (CDH) with lytic polysaccharide monooxygenases (LPMOs) enhances cellulose degradation in many folds. CDH increases cellulose deconstruction via coupling the oxidation of cellobiose to the reductive activation of LPMOs by catalyzing the addition of oxygen to C-H bonds of the glycosidic linkages. Fungal LPMOs show different regio-selectivity (C1 or C4) and result in oxidized products through modifications at reducing as well as nonreducing ends of the respective glucan chain. T. reesei LPMOs have shown great potential for oxidative cleavage of cellobiose at C1 and C4 glucan bonds, therefore, the incorporation of heterologous CDH further increases its potential for biofuel production for industrial purposes at a reduced cost. We introduced CDH of Phanerochaete chrysosporium (PcCDH) in Trichoderma reesei (which originally lacked CDH). We purified CDH through affinity chromatography and analyzed its enzymatic activity, electron-donating ability to LPMO, and the synergistic effect of LPMO and CDH on cellulose deconstruction. The optimum temperature of the recombinant PcCDH was found to be 45 °C and the optimum pH of PcCDH was observed as 4.5. PcCDH has high cello-oligosaccharide kcat, Km, and kcat/Km values. The synergistic effect of LPMO and cellulase significantly improved the degradation efficiency of phosphoric acid swollen cellulose (PASC) when CDH was used as the electron donor. We also found that LPMO undergoes auto-oxidative inactivation, and when PcCDH is used an electron donor has the function of a C1-type LPMO electron donor without additional substrate increments. This work provides novel insights into finding stable electron donors for LPMOs and paves the way forward in discovering efficient CDHs for enhanced cellulose degradation. |
Author | Liu, Gang Xie, Yanping Adnan, Muhammad Waheed, Abdul Ma, Xuekun |
Author_xml | – sequence: 1 givenname: Muhammad surname: Adnan fullname: Adnan, Muhammad – sequence: 2 givenname: Xuekun surname: Ma fullname: Ma, Xuekun – sequence: 3 givenname: Yanping surname: Xie fullname: Xie, Yanping – sequence: 4 givenname: Abdul surname: Waheed fullname: Waheed, Abdul – sequence: 5 givenname: Gang surname: Liu fullname: Liu, Gang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38139031$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1vEzEQhi1URD_gyBVZ4sJlYWzvR_dYpYEiBcGhnFeOPU4cee1ge6XuP-rPxCGpBBUnjzXP-85o3kty5oNHQt4y-ChED5_sbky85jXrOPAX5ILVnFcAbXf2V31OLlPaAXDBm_4VORfXrGgFuyCPd5gxBhc2YUpupsuHfcSUUNMFOhfWNiSkt7iddQwb9LL8blROVCa6NMYqiz7TpUOVY_DVbfAh0mDoas5W0R_BzUkqtZXRaqTfSjc8zCcbU8jDjMkdR2yi1DLb4Kn19D5atQ0a4yhpRExoX5OXRrqEb07vFfn5eXm_uKtW3798XdysKiVayJWUDTRaCtP3GkCqrhZKAlt3qsEOTdNozlkvmKg1SHEtQPK2LTjnnSnStbgiH46--xh-TZjyMNqkyp7SYznRwHtommLR9gV9_wzdhSn6st2BqtsWeAuFeneipvWIethHO8o4D08ZFEAcARVDShHNoGz-c4kcpXUDg-GQ9PBP0kVVPVM9Gf-f_w39Iq1V |
CitedBy_id | crossref_primary_10_1007_s43538_024_00373_z |
Cites_doi | 10.1021/acscatal.3c02116 10.1126/science.abj1342 10.3389/fbioe.2021.815990 10.1016/j.enzmictec.2022.110171 10.1186/s13068-020-01673-4 10.1021/acs.biomac.0c01393 10.1016/S0167-4838(97)00180-5 10.1111/j.1742-4658.2005.04707.x 10.1016/0378-1119(87)90164-8 10.1021/acs.jafc.0c05979 10.1271/bbb.50692 10.1186/s13068-018-1156-2 10.1186/1475-2859-11-84 10.1016/j.biortech.2017.12.061 10.1002/elsc.201800039 10.1016/j.nbt.2010.10.001 10.1021/acssuschemeng.2c02255 10.1021/acs.langmuir.3c00343 10.1007/s00253-009-2062-0 10.1186/s12934-020-01492-0 10.3389/fmicb.2018.01080 10.1074/jbc.RA119.008196 10.1111/1462-2920.14826 10.1046/j.1432-1327.1998.2530101.x 10.1073/pnas.1105776108 10.1016/j.jobab.2021.02.001 10.1016/j.fuel.2021.122757 10.1021/acssuschemeng.0c02564 10.1128/AEM.67.4.1766-1774.2001 10.1021/acs.biochem.8b01178 10.1039/C5TB00671F 10.1016/j.bbagen.2018.01.016 10.3891/acta.chem.scand.29b-0419 10.1371/journal.pone.0235642 10.1186/s13068-016-0608-9 10.1016/j.rser.2017.08.074 10.1038/nchembio.2470 10.1016/j.micres.2022.127011 10.1186/s13068-022-02112-2 10.1111/febs.15067 10.3389/fmicb.2016.00620 10.1126/science.1192231 10.1021/cb200351y 10.1038/ncomms11134 10.1073/pnas.1602566113 10.1038/ncomms8542 10.1016/j.sbi.2019.02.015 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 |
DOI | 10.3390/ijms242417202 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | 38139031 10_3390_ijms242417202 |
Genre | Journal Article |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M NPM PJZUB PPXIY 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 ESTFP PUEGO |
ID | FETCH-LOGICAL-c360t-aa505da3f99d00ac743ca01b7c5e7ef55d22193134d0a3830a266a3f227fa50b3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Fri Sep 05 09:35:31 EDT 2025 Sat Jul 26 00:25:27 EDT 2025 Mon Jul 21 05:31:03 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Tue Jul 01 02:23:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | LPMO Trichoderma reesei CDH Phanerochaete chrysosporium cellulase electron donor |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-aa505da3f99d00ac743ca01b7c5e7ef55d22193134d0a3830a266a3f227fa50b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2904660260?pq-origsite=%requestingapplication% |
PMID | 38139031 |
PQID | 2904660260 |
PQPubID | 2032341 |
ParticipantIDs | proquest_miscellaneous_2905521969 proquest_journals_2904660260 pubmed_primary_38139031 crossref_citationtrail_10_3390_ijms242417202 crossref_primary_10_3390_ijms242417202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec-06 |
PublicationDateYYYYMMDD | 2023-12-06 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_13) 2023; 13 Hu (ref_3) 2020; 22 Xu (ref_22) 2023; 39 Zanchetta (ref_34) 2018; 252 ref_11 Henriksson (ref_37) 1998; 1383 Cannella (ref_47) 2016; 7 ref_18 Laurent (ref_24) 2019; 58 ref_15 Bissaro (ref_26) 2017; 13 Smuts (ref_14) 2023; 164 Lipovsky (ref_30) 2015; 3 Pricelius (ref_31) 2009; 85 ref_20 Wohlschlager (ref_6) 2021; 20 Forsberg (ref_19) 2019; 59 Long (ref_40) 2020; 8 ref_28 Phillips (ref_8) 2011; 6 Srivastava (ref_4) 2018; 82 Sabbadin (ref_16) 2021; 373 Igarashi (ref_12) 2005; 272 Nakagame (ref_35) 2006; 70 Varnai (ref_39) 2019; 294 Manikandan (ref_1) 2022; 314 Chorozian (ref_9) 2022; 10 ref_33 Chen (ref_49) 2018; 11 Baminger (ref_48) 2001; 67 Andlar (ref_17) 2018; 18 ref_38 Cheng (ref_42) 2020; 68 Quinlan (ref_32) 2011; 108 Tan (ref_25) 2015; 6 Westereng (ref_21) 2010; 330 Kracher (ref_29) 2020; 287 Igarashi (ref_44) 1998; 253 Punt (ref_46) 1987; 56 ref_43 Westermark (ref_36) 1975; 29 Courtade (ref_23) 2016; 113 Farinas (ref_41) 2010; 27 Califano (ref_27) 2020; 21 Li (ref_45) 2012; 11 ref_5 Bodenheimer (ref_10) 2018; 1862 ref_7 Patel (ref_2) 2021; 6 |
References_xml | – volume: 13 start-page: 8195 year: 2023 ident: ref_13 article-title: Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer publication-title: ACS Catal. doi: 10.1021/acscatal.3c02116 – volume: 373 start-page: 774 year: 2021 ident: ref_16 article-title: Secreted Pectin Monooxygenases Drive Plant Infection by Pathogenic Oomycetes publication-title: Science doi: 10.1126/science.abj1342 – ident: ref_18 doi: 10.3389/fbioe.2021.815990 – volume: 164 start-page: 110171 year: 2023 ident: ref_14 article-title: Supplementation of Recombinant Cellulases with LPMOs and CDHs Improves Consolidated Bioprocessing of Cellulose publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2022.110171 – ident: ref_28 doi: 10.1186/s13068-020-01673-4 – volume: 21 start-page: 5315 year: 2020 ident: ref_27 article-title: Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c01393 – volume: 1383 start-page: 48 year: 1998 ident: ref_37 article-title: Substrate Specificity of Cellobiose Dehydrogenase from Phanerochaete chrysosporium publication-title: Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(97)00180-5 – volume: 272 start-page: 2869 year: 2005 ident: ref_12 article-title: Electron Transfer Chain Reaction of the Extracellular Flavocytochrome Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium publication-title: FEBS J. doi: 10.1111/j.1742-4658.2005.04707.x – volume: 56 start-page: 117 year: 1987 ident: ref_46 article-title: Transformation of Aspergillus Based on the Hygromycin B Resistance Marker from Escherichia coli publication-title: Gene doi: 10.1016/0378-1119(87)90164-8 – volume: 68 start-page: 15257 year: 2020 ident: ref_42 article-title: Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c05979 – volume: 70 start-page: 1629 year: 2006 ident: ref_35 article-title: Purification and Characterization of Cellobiose Dehydrogenase from White-Rot Basidiomycete Trametes hirsuta publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.50692 – volume: 11 start-page: 1 year: 2018 ident: ref_49 article-title: Regioselectivity of Oxidation by a Polysaccharide Monooxygenase from Chaetomium thermophilum publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-018-1156-2 – volume: 11 start-page: 84 year: 2012 ident: ref_45 article-title: Achieving Efficient Protein Expression in Trichoderma reesei by Using Strong Constitutive Promoters publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-11-84 – volume: 252 start-page: 143 year: 2018 ident: ref_34 article-title: Temperature Dependent Cellulase Adsorption on Lignin from Sugarcane Bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.061 – volume: 18 start-page: 768 year: 2018 ident: ref_17 article-title: Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation publication-title: Eng. Life Sci. doi: 10.1002/elsc.201800039 – volume: 27 start-page: 810 year: 2010 ident: ref_41 article-title: Finding Stable Cellulase and Xylanase: Evaluation of the Synergistic Effect of pH and Temperature publication-title: New Biotechnol. doi: 10.1016/j.nbt.2010.10.001 – volume: 10 start-page: 8919 year: 2022 ident: ref_9 article-title: Characterization of a Dual Cellulolytic/Xylanolytic AA9 Lytic Polysaccharide Monooxygenase from Thermothelomyces thermophilus and Its Utilization toward Nanocellulose Production in a Multi-Step Bioprocess publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c02255 – volume: 39 start-page: 5880 year: 2023 ident: ref_22 article-title: Molecular Insights of Cellobiose Dehydrogenase Adsorption on Self-Assembled Monolayers publication-title: Langmuir doi: 10.1021/acs.langmuir.3c00343 – volume: 85 start-page: 75 year: 2009 ident: ref_31 article-title: Substrate Specificity of Myriococcum thermophilum Cellobiose Dehydrogenase on Mono-, Oligo-, and Polysaccharides Related to in Situ Production of H2O2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2062-0 – volume: 20 start-page: 2 year: 2021 ident: ref_6 article-title: Heterologous Expression of Phanerochaete chrysosporium Cellobiose Dehydrogenase in Trichoderma reesei publication-title: Microb. Cell Factories doi: 10.1186/s12934-020-01492-0 – ident: ref_20 doi: 10.3389/fmicb.2018.01080 – volume: 294 start-page: 15068 year: 2019 ident: ref_39 article-title: Comparison of Three Seemingly Similar Lytic Polysaccharide Monooxygenases from Neurospora crassa Suggests Different Roles in Plant Biomass Degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.008196 – volume: 22 start-page: 107 year: 2020 ident: ref_3 article-title: In Ganoderma lucidum, Glsnf1 Regulates Cellulose Degradation by Inhibiting GlCreA during the Utilization of Cellulose publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14826 – volume: 253 start-page: 101 year: 1998 ident: ref_44 article-title: Cellobiose Dehydrogenase Enhances Phanerochaete chrysosporium Cellobiohydrolase I Activity by Relieving Product Inhibition publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2530101.x – volume: 108 start-page: 15079 year: 2011 ident: ref_32 article-title: Insights into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1105776108 – volume: 6 start-page: 108 year: 2021 ident: ref_2 article-title: Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products publication-title: J. Bioresour. Bioprod. doi: 10.1016/j.jobab.2021.02.001 – ident: ref_11 – volume: 314 start-page: 122757 year: 2022 ident: ref_1 article-title: Recent Development Patterns, Utilization and Prospective of Biofuel Production: Emerging Nanotechnological Intervention for Environmental Sustainability–A Review publication-title: Fuel doi: 10.1016/j.fuel.2021.122757 – volume: 8 start-page: 11986 year: 2020 ident: ref_40 article-title: Synergism of Recombinant Podospora anserina Pa AA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02564 – volume: 67 start-page: 1766 year: 2001 ident: ref_48 article-title: Purification and Characterization of Cellobiose Dehydrogenase from the Plant Pathogen Sclerotium (Athelia) rolfsii publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.4.1766-1774.2001 – volume: 58 start-page: 1226 year: 2019 ident: ref_24 article-title: Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase publication-title: Biochemistry doi: 10.1021/acs.biochem.8b01178 – volume: 3 start-page: 7014 year: 2015 ident: ref_30 article-title: Ultrasound Coating of Polydimethylsiloxanes with Antimicrobial Enzymes publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00671F – volume: 1862 start-page: 1031 year: 2018 ident: ref_10 article-title: Structural Investigation of Cellobiose Dehydrogenase IIA: Insights from Small Angle Scattering into Intra-and Intermolecular Electron Transfer Mechanisms publication-title: Biochim. Biophys. Acta (BBA)-Gen. Subj. doi: 10.1016/j.bbagen.2018.01.016 – volume: 29 start-page: 419 year: 1975 ident: ref_36 article-title: Purification and Properties of Cellobiose: Quinone Oxidoreductase from Sporotrichum pulverulentum publication-title: Acta Chem. Scand. Ser. B Org. Chem. Biochem. doi: 10.3891/acta.chem.scand.29b-0419 – ident: ref_15 doi: 10.1371/journal.pone.0235642 – ident: ref_5 doi: 10.1186/s13068-016-0608-9 – volume: 82 start-page: 2379 year: 2018 ident: ref_4 article-title: Applications of Fungal Cellulases in Biofuel Production: Advances and Limitations publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.074 – volume: 13 start-page: 1123 year: 2017 ident: ref_26 article-title: Oxidative Cleavage of Polysaccharides by Monocopper Enzymes Depends on H2O2 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2470 – ident: ref_7 doi: 10.1016/j.micres.2022.127011 – ident: ref_38 doi: 10.1186/s13068-022-02112-2 – volume: 287 start-page: 897 year: 2020 ident: ref_29 article-title: Polysaccharide Oxidation by Lytic Polysaccharide Monooxygenase Is Enhanced by Engineered Cellobiose Dehydrogenase publication-title: FEBS J. doi: 10.1111/febs.15067 – ident: ref_33 – ident: ref_43 doi: 10.3389/fmicb.2016.00620 – volume: 330 start-page: 219 year: 2010 ident: ref_21 article-title: An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides publication-title: Science doi: 10.1126/science.1192231 – volume: 6 start-page: 1399 year: 2011 ident: ref_8 article-title: Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa publication-title: ACS Chem. Biol. doi: 10.1021/cb200351y – volume: 7 start-page: 11134 year: 2016 ident: ref_47 article-title: Light-Driven Oxidation of Polysaccharides by Photosynthetic Pigments and a Metalloenzyme publication-title: Nat. Commun. doi: 10.1038/ncomms11134 – volume: 113 start-page: 5922 year: 2016 ident: ref_23 article-title: Interactions of a Fungal Lytic Polysaccharide Monooxygenase with β-Glucan Substrates and Cellobiose Dehydrogenase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602566113 – volume: 6 start-page: 7542 year: 2015 ident: ref_25 article-title: Structural Basis for Cellobiose Dehydrogenase Action during Oxidative Cellulose Degradation publication-title: Nat. Commun. doi: 10.1038/ncomms8542 – volume: 59 start-page: 54 year: 2019 ident: ref_19 article-title: Polysaccharide Degradation by Lytic Polysaccharide Monooxygenases publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.02.015 |
SSID | ssj0023259 |
Score | 2.4004142 |
Snippet | The conversion of lignocellulosic biomass to second-generation biofuels through enzymes is achieved at a high cost. Filamentous fungi through a combination of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 17202 |
SubjectTerms | Biodiesel fuels Biofuels Cellulase Cellulose Cytochrome Dehydrogenases Enzymes Fungi Lignocellulose Oxidation Proteins Spectrum analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbookq9oAJ9LIXKlSpOWCRxnGxOFY-gVVUhhEDiFo1jp6RaYkgWifwjfmbHjjcVB3qMMslEGXvmG3s8HyHfXZ0FiJDJuJrZptoVm4U6ZqnQKUShlFK7AtnzZH4d_7wRN37BrfNllSuf6By1MqVdIz-MMszkLF9S8OP-gVnWKLu76ik03pB1dMEzMSHrx_n5xeWYcvHI0aWFGIVYIrJk6LLJMdE_rP_cdfZsBEZwv6YyRqVXoKYLOWfvyYbHivRoMO4mWdPNFnk7sEf22-R5bktZ7AVm74ue5k-uqFUremJ3VGRtOk1P9W2vWoPDBMMVPSqXHYWO5q5xBMYbmnsaHHZqGtNSU9FfPaqjF2bRd1DaQ1m10hSnvjFPvX8NAl2n43ExqPjdwkDNROuGXqFnvbUMa3dAW607XX8g12f51cmceeIFVvIkWDIAxEUKeJVlKgigRJRRQhDKtEQL6koIFaGj4yGPVQCY4gaAYR7Foyit8FHJP5JJYxr9mVARcCljS2Vd8TiOFMhUpKBhlkEV6zSbkoPVjy9K35XckmMsCsxOrJ2KF3aakv1R_H5ox_Ga4O7KioWflV3xbwxNybfxNs4nu0kCjUZrWRmBkCZL8NM-DdYfNSG6QUU83Pn_y7-Qd5aU3hW9JLtksmwf9R5Cl6X86sfnXxqu8EU priority: 102 providerName: ProQuest |
Title | Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Trichoderma reesei |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38139031 https://www.proquest.com/docview/2904660260 https://www.proquest.com/docview/2905521969 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEA56h-CL-NvVc4kgPllN26TdPoicd10X0eOQW9i3MmlTr9JrtN2D7X_kn-lM2l059MCX0tKkEzJJ5ptmMh9jL12cBSjf07KcUVLt0pv5RnqxMjEEvtbauADZk2ixlJ9WavUnpdDYgd0_XTvik1q29ZvNz_49Tvh35HGiy_62-n7R0SkHtMWUVnIf7yIa4F_kbkMBcYPjTaM_Hh6t0EO6zb-rXzVP12BOZ3vmd9mdETTyw0HL99gN09xntwYayf4B-7WgmBZ6QDe-7nm6cdGtpuBHtLWiK9sZfmzO-6K1OF7QbvHDfN1x6HjqMkig4eHpyIfjHdvGttyW_HOP4viprfsOcjqdVRWG4xpg7aYfP4OI18m4rAcR31oYOJp41fAzXGLPiWrtAnhrTGeqh2w5T8-OFt7IwODlYSTWHgACpALCMkkKISBHuJGD8HWcoypNqVQR4IoX-qEsBKCvKwDtPRYPgrjEqjp8xPYa25gnjCsRai2J07oMpQwK0LGKwcAsgVKaOJmw19uOz_IxPTmxZNQZuimkp-yKnibs1a74jyEvx3UFD7ZazLajKwsSISMi3xIT9mL3GicW7ZZAY1BbVEYhtkkibNrjQfs7SQhzUFDoP_3fVjxjt4mn3sXBRAdsb91emueIZtZ6ym7Gqxivs_nHKdv_kJ6cfp2SfVFTN4J_A0-2-O0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkWChgJOBHVsZ1kc0Co6u6ypUvFYSv1FuzEoUHbuCS7ovlHnPiNzDgPxKHceowy8ViZ8Tzs8XyEvHZ1FirwPS3zMTbVzr2xb6QXBSZS3NdaG1cgexzOT-Sn0-B0i_zu78JgWWVvE52hzmyKe-R7PIZMDvGS2IeLHx6iRuHpag-h0arFkWl-QspWvz-cgHzfcD6bLg_mXocq4KUiZGtPKXD6mRJ5HGeMqRRcaKqYr6MUpmfyIMg4rGLhC5kxBfkbU-DDgJzzKIdPtYBxb5CbUogYe_WPZx-HBE9wB87mg8_zwiAO256eQMj2iu_nNd7EgHih28EZfOAVga1zcLN75G4XmdL9VpXuky1TPiC3WqzK5iH5NcfCGXywm3rV0OmlK6E1GT3A8xtd2NrQiTlrssqCUoJzpPvpuqaqplPXpgK8G512oDvexJa2ojaniwbY0S921dQqxStgRWYoGBprL5tuGAirHY_NqmXxrVItEBQtSroEO36GeG7nilbG1KZ4RE6uRSCPyXZpS_OE0IAJrSUCZ-dCSp4pHQWRMmocq1yaKB6Rd_2PT9KuBzpCcawSyIVQTsk_chqRtwP5Rdv84yrC3V6KSWcD6uSvxo7Iq-E1rF48klGlAWkhTQABVBzC1HZa6Q-cIJYCRsJ_-v_BX5Lb8-XnRbI4PD56Ru7AbIQrtwl3yfa62pjnEDSt9QunqZR8ve6l8QdxWStA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcqvIq2xYwEnAi2sTOY3OoUOlmtaXVaoVaqbdgxw4N2sZtsiuaf8Rv4NcxzgtxKLceozgeK_O2x_MBvKvrLLjnWMJNx6apdmqNHeVagacCTh0hhKoLZOf-7Nz9cuFdbMDv7i6MKavsbGJtqKVOzB75iIaYyRm8JHuUtmURi8n00_WNZRCkzElrB6fRiMiJqn5i-lYeHE-Q1-8pnUZnRzOrRRiwEubbK4tzDAAkZ2kYStvmCbrThNuOCBJcqko9T1LUaOYwV9occzmboz_D4ZQGKX4qGM77ADYD9IrjAWx-juaLr326x2gN1eagB7R8L_SbDp-MhfYo-3FVmnsZGD20-zm9R7wjzK3d3XQbtto4lRw2gvUENlT-FB42yJXVM_g1M2U05kGvy2VFotu6oFZJcmROc0SmS0Um6rKShUYRRVdJDpNVSXhJorppBfo6ErUQPNZE57ogOiWnFZIjC72sSp6YC2GZVATNjta3VTsNBtk1jfWyIfG94A0sFMlycoZW_dKgu11xUihVquw5nN8LS17AINe5egnEs5kQroHRTpnrUslF4AVc8XHIU1cF4RA-dj8-TtqO6AaYYxljZmT4FP_DpyF86IdfN61A7hq433Exbi1CGf-V3yG87V-jLpsDGp4r5JYZ42E4Ffq4tJ2G-z0ljKyQEHN2_z_5G3iEahGfHs9P9uAxLobVtTf-PgxWxVq9wghqJV63okrg231rxx9GPTDb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterologously+Expressed+Cellobiose+Dehydrogenase+Acts+as+Efficient+Electron-Donor+of+Lytic+Polysaccharide+Monooxygenase+for+Cellulose+Degradation+in+Trichoderma+reesei&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Adnan%2C+Muhammad&rft.au=Ma%2C+Xuekun&rft.au=Xie%2C+Yanping&rft.au=Waheed%2C+Abdul&rft.date=2023-12-06&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=24&rft.issue=24&rft.spage=17202&rft_id=info:doi/10.3390%2Fijms242417202&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms242417202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |