Decentralized multi-agent federated and reinforcement learning for smart water management and disaster response

Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since mo...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 126; pp. 8 - 29
Main Authors Mancy, H., Ghannam, Naglaa E., Abozeid, Amr, Taloba, Ahmed I.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since more clients present a problem, the system's latency is high, and the system is always prone to a single-point failure. The previous approach lacks flexibility and does not synchronously guarantee the integration of several subjects in real time, especially during unpredictable disaster conditions. The proposed FL-MAPPO model surpasses current methods by facilitating decentralized, privacy-protecting decision-making minimizing latency and single-point failures. In contrast to LSTM, Bi-LSTM, and DRNN, which are based on centralized data processing, FL-MAPPO provides real-time adaptability and effective resource management. Experimental results validate that it has lower MSE, higher R² scores, and quicker response times, making it better suited for flood prediction and disaster response. To this end, this study advances a solution through a Decentralized Learning-Driven Multi-Agent Autonomous System (DL-MAAS). The new feature is a Decentralized Cooperation environment in which intelligent and self-managing agents learn utilizing Reinforcement Learning (RL) and Federated Learning (FL) algorithms for enhancing smart water management and real-time disaster relief. IoT devices are adopted for sensing and data acquisition, adaptive learning for decision-making, and optimization of energy use among the agents in the system through metaheuristic algorithms. The research methodology for implementing the proposed solution involves the design of a multi-layered architecture, including data acquisition, decentralized learning, and real-time execution. With a Mean Squared Error (MSE) of 0.112, R-squared (R²) of 0.953, and Mean Absolute Error (MAE) of 0.207, the proposed method is better than existing approaches for big, real-time flood predictive systems. Data show that decentralized systems provide orders of magnitude higher efficiency in water distribution, time of response to disasters, and energy usage compared to conventional centralized systems. These results indicate the significant opportunity for decentralized multi-agent systems in the sustainability of disaster management and water resources.
AbstractList Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since more clients present a problem, the system's latency is high, and the system is always prone to a single-point failure. The previous approach lacks flexibility and does not synchronously guarantee the integration of several subjects in real time, especially during unpredictable disaster conditions. The proposed FL-MAPPO model surpasses current methods by facilitating decentralized, privacy-protecting decision-making minimizing latency and single-point failures. In contrast to LSTM, Bi-LSTM, and DRNN, which are based on centralized data processing, FL-MAPPO provides real-time adaptability and effective resource management. Experimental results validate that it has lower MSE, higher R² scores, and quicker response times, making it better suited for flood prediction and disaster response. To this end, this study advances a solution through a Decentralized Learning-Driven Multi-Agent Autonomous System (DL-MAAS). The new feature is a Decentralized Cooperation environment in which intelligent and self-managing agents learn utilizing Reinforcement Learning (RL) and Federated Learning (FL) algorithms for enhancing smart water management and real-time disaster relief. IoT devices are adopted for sensing and data acquisition, adaptive learning for decision-making, and optimization of energy use among the agents in the system through metaheuristic algorithms. The research methodology for implementing the proposed solution involves the design of a multi-layered architecture, including data acquisition, decentralized learning, and real-time execution. With a Mean Squared Error (MSE) of 0.112, R-squared (R²) of 0.953, and Mean Absolute Error (MAE) of 0.207, the proposed method is better than existing approaches for big, real-time flood predictive systems. Data show that decentralized systems provide orders of magnitude higher efficiency in water distribution, time of response to disasters, and energy usage compared to conventional centralized systems. These results indicate the significant opportunity for decentralized multi-agent systems in the sustainability of disaster management and water resources.
Author Mancy, H.
Ghannam, Naglaa E.
Taloba, Ahmed I.
Abozeid, Amr
Author_xml – sequence: 1
  givenname: H.
  surname: Mancy
  fullname: Mancy, H.
  email: H.mancy@psau.edu.sa
  organization: Department of Computer Science, College of Engineering and Computer Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
– sequence: 2
  givenname: Naglaa E.
  orcidid: 0000-0001-7145-5617
  surname: Ghannam
  fullname: Ghannam, Naglaa E.
  email: n.said@psau.edu.sa
  organization: Department of Computer Engineering and Information, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia
– sequence: 3
  givenname: Amr
  surname: Abozeid
  fullname: Abozeid, Amr
  email: aaabozezd@ju.edu.sa
  organization: Department of Computer Science, College of Computer and Information Sciences, Jouf University, Saudi Arabia
– sequence: 4
  givenname: Ahmed I.
  surname: Taloba
  fullname: Taloba, Ahmed I.
  email: aitaloba@ju.edu.sa
  organization: Department of Computer Science, College of Computer and Information Sciences, Jouf University, Saudi Arabia
BookMark eNp9kM1OwzAQhH0oEqX0AbjlBRK8sfNjcULlrxISFzhbjr2uHKVOZQcQPD1Oizjii6Vvd0azc0EWfvRIyBXQAijU132hsC9KWlYF5QVlbEGWAEDzNGzPyTrGnqZXNYKLeknGO9Top6AG940m278Pk8vVLqHMosGgpkSVN1lA5-0YNO7n2YAqeOd3WUJZ3KswZZ9pNWR75ZP6uDOrjIsqzjxgPIw-4iU5s2qIuP79V-Tt4f5185Q_vzxuN7fPuWY1nXLFreGaY4m8UdCayuoKsLVlrZqmA2ClQFZXJQhTIXYCWqUryrCyYFpuGVuR7cnXjKqXh-BSxi85KiePYAw7mUI7PaBsqKCN6TTDjnNec2GhBjCirQVAZ5rkBScvHcYYA9o_P6ByLl32MpUu59Il5TKVnjQ3Jw2mIz8cBhm1Q6_RuIB6SincP-ofjr-Pdw
Cites_doi 10.1109/ACCESS.2024.3422211
10.2139/ssrn.4149708
10.3390/su13158596
10.3390/rs14020246
10.3390/su16167156
10.21203/rs.3.rs-4113265/v1
10.3390/ijgi12070279
10.3390/su16051779
10.1007/s13753-021-00370-6
10.5194/nhess-17-2109-2017
10.3390/jsan12030041
10.5194/hess-27-1791-2023
10.1016/j.jhydrol.2024.131279
10.3390/s23177475
10.1007/s10922-022-09667-3
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2025.04.033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 29
ExternalDocumentID oai_doaj_org_article_70907dbc3eb444649f1611d986911bd7
10_1016_j_aej_2025_04_033
S1110016825005186
GroupedDBID --K
0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-a4fd4c4e2e47a18d5fc51e8f26a77b11329e365219d5eeb918ac503e5f1d84f33
IEDL.DBID DOA
ISSN 1110-0168
IngestDate Wed Aug 27 01:27:11 EDT 2025
Thu Jul 24 02:17:32 EDT 2025
Sat Aug 16 17:01:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Decentralized multi-agent system
Federated learning
Disaster response optimization
Smart water management
Reinforcement learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-a4fd4c4e2e47a18d5fc51e8f26a77b11329e365219d5eeb918ac503e5f1d84f33
ORCID 0000-0001-7145-5617
OpenAccessLink https://doaj.org/article/70907dbc3eb444649f1611d986911bd7
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_70907dbc3eb444649f1611d986911bd7
crossref_primary_10_1016_j_aej_2025_04_033
elsevier_sciencedirect_doi_10_1016_j_aej_2025_04_033
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fu (bib9) 2024
Huan (bib29) 2024; 636
“Flood Prediction Dataset.” Accessed: Dec. 12, 2024. [Online]. Available
Louati (bib22) Feb. 2024; 16
S. Tang, R. Ye, C. Xu, X. Dong, S. Chen, and Y. Wang, “Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning,” Mar. 11, 2024, arXiv: arXiv:2403.06535. doi: 10.48550/arXiv.2403.06535.
K. Zhang, Z. Yang, and T. Başar, “Decentralized Multi-Agent Reinforcement Learning with Networked Agents: Recent Advances,” Dec. 09, 2019, arXiv: arXiv:1912.03821. doi: 10.48550/arXiv.1912.03821.
Mohamed (bib15) 2024
Kisi (bib13) Aug. 2021; 13
Ulloa, Yun, Chiang, Furuta (bib30) 2022; 14
Munsaka, Mudavanhu, Sakala, Manjeru, Matsvange (bib19) 2021; 12
Hong, Shi (bib3) 2023; 12
Jopson, Mooney (bib18) 2025
Tan, Khalili, Karl, Hecker (bib20) 2022
Xu, Seng, Ang, Smith (bib21) 2024; 12
Santos Filho, Ferreira, Mattos, Medeiros (bib26) 2022; 30
J. Jiang, K. Su, and Z. Lu, “Fully Decentralized Cooperative Multi-Agent Reinforcement Learning: A Survey,” Jan. 10, 2024, arXiv: arXiv:2401.04934. doi: 10.48550/arXiv.2401.04934.
Santos Filho et al., “Enhancing_Water_Resource_Management_through_IoT-Enabled_Smart_Water_Monitoring_Systems_A_Multi-Agent_Algorithm_Approach.pdf,” Google Docs. Accessed: Dec. 09, 2024. [Online]. Available
Giovanni Minelli, “CoMIX: A Multi-agent Reinforcement Learning Training Architecture for Efficient Decentralized Coordination and Independent Decision Making,” ar5iv. Accessed: Dec. 11, 2024. [Online]. Available
Khemlichi, Chougrad, Ali, Khamlichi (bib7) 2023; 20
Damaševičius, Bacanin, Misra (bib10) May 2023; 12
Zhou (bib31) 2023; 27
S. Al-Otaibi, I. KhanUtilizing Stacked Ensemble AI Algorithm for Comprehensive Water Quality Analysis and Health Assessment in Complex Aquatic Systems,” Mar. 21, 2024, In Review. doi: 10.21203/rs.3.rs-4113265/v1.
A. Garg and S.S. Jha, “Autonomous Flood Area Coverage using Decentralized Multi-UAV System with Directed Explorations,” 2023.
Abraham (bib24) 2021
.
Tropea, Campoverde, De Rango (bib12) 2022
Zeng, Pang, Tang (bib16) 2023; 23
Piro, Saleh, Pirouz, Turco, Palermo (bib17) 2023
Arrighi, Tarani, Vicario, Castelli (bib6) 2017; 17
OLUWATOSIN AHMED AMODU, “IEEE Xplore Full-Text PDF:” Accessed: Dec. 10, 2024. [Online]. Available
Michailidis, Michailidis, Kosmatopoulos (bib25) 2024; 17
Nayomi, Jayanth, Vinay, Rao, Vardhan (bib11) 2023
Huan (10.1016/j.aej.2025.04.033_bib29) 2024; 636
10.1016/j.aej.2025.04.033_bib8
10.1016/j.aej.2025.04.033_bib14
Mohamed (10.1016/j.aej.2025.04.033_bib15) 2024
Khemlichi (10.1016/j.aej.2025.04.033_bib7) 2023; 20
Tropea (10.1016/j.aej.2025.04.033_bib12) 2022
Louati (10.1016/j.aej.2025.04.033_bib22) 2024; 16
10.1016/j.aej.2025.04.033_bib2
10.1016/j.aej.2025.04.033_bib1
Piro (10.1016/j.aej.2025.04.033_bib17) 2023
10.1016/j.aej.2025.04.033_bib4
10.1016/j.aej.2025.04.033_bib5
Abraham (10.1016/j.aej.2025.04.033_bib24) 2021
Zhou (10.1016/j.aej.2025.04.033_bib31) 2023; 27
Damaševičius (10.1016/j.aej.2025.04.033_bib10) 2023; 12
Michailidis (10.1016/j.aej.2025.04.033_bib25) 2024; 17
Fu (10.1016/j.aej.2025.04.033_bib9) 2024
Santos Filho (10.1016/j.aej.2025.04.033_bib26) 2022; 30
Ulloa (10.1016/j.aej.2025.04.033_bib30) 2022; 14
10.1016/j.aej.2025.04.033_bib23
Jopson (10.1016/j.aej.2025.04.033_bib18) 2025
Munsaka (10.1016/j.aej.2025.04.033_bib19) 2021; 12
10.1016/j.aej.2025.04.033_bib27
Xu (10.1016/j.aej.2025.04.033_bib21) 2024; 12
10.1016/j.aej.2025.04.033_bib28
Zeng (10.1016/j.aej.2025.04.033_bib16) 2023; 23
Nayomi (10.1016/j.aej.2025.04.033_bib11) 2023
Arrighi (10.1016/j.aej.2025.04.033_bib6) 2017; 17
Kisi (10.1016/j.aej.2025.04.033_bib13) 2021; 13
Tan (10.1016/j.aej.2025.04.033_bib20) 2022
Hong (10.1016/j.aej.2025.04.033_bib3) 2023; 12
References_xml – reference: S. Tang, R. Ye, C. Xu, X. Dong, S. Chen, and Y. Wang, “Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning,” Mar. 11, 2024, arXiv: arXiv:2403.06535. doi: 10.48550/arXiv.2403.06535.
– reference: J. Jiang, K. Su, and Z. Lu, “Fully Decentralized Cooperative Multi-Agent Reinforcement Learning: A Survey,” Jan. 10, 2024, arXiv: arXiv:2401.04934. doi: 10.48550/arXiv.2401.04934.
– reference: Giovanni Minelli, “CoMIX: A Multi-agent Reinforcement Learning Training Architecture for Efficient Decentralized Coordination and Independent Decision Making,” ar5iv. Accessed: Dec. 11, 2024. [Online]. Available:
– reference: “Flood Prediction Dataset.” Accessed: Dec. 12, 2024. [Online]. Available:
– year: 2024
  ident: bib15
  article-title: Enhancing decision making and decarbonation in environmental management: a review on the role of digital technologies
  publication-title: Sustainability
– volume: 23
  start-page: 7475
  year: 2023
  ident: bib16
  article-title: Sensors on the internet of things systems for urban disaster management: a systematic literature review
  publication-title: Sensors
– volume: 12
  start-page: 689
  year: 2021
  end-page: 699
  ident: bib19
  article-title: When disaster risk management systems fail: the case of cyclone Idai in Chimanimani District, Zimbabwe
  publication-title: Int. J. Disaster Risk Sci.
– volume: 27
  start-page: 1791
  year: 2023
  end-page: 1808
  ident: bib31
  article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 148
  year: 2023
  end-page: 160
  ident: bib11
  article-title: Securing the MANET by detecting the flooding attacks using hybrid CNN-Bi-LSTM-RF Model
  publication-title: Lecture Notes in Computer Science, Mining Intelligence and Knowledge Exploration
– volume: 30
  start-page: 53
  year: 2022
  ident: bib26
  article-title: An efficient and decentralized fuzzy reinforcement learning bandwidth controller for multitenant data centers
  publication-title: J. Netw. Syst. Manag
– year: 2025
  ident: bib18
  article-title: The long lunch blamed for Spain’s flood alert failure
  publication-title: Financ. Times
– start-page: 2098
  year: 2022
  end-page: 2107
  ident: bib20
  article-title: Multi-agent distributed reinforcement learning for making decentralized offloading decisions
  publication-title: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications
– year: 2024
  ident: bib9
  article-title: The role of deep learning in urban water management: a critical review - ScienceDirect
  publication-title: Water Res.
– volume: 636
  year: 2024
  ident: bib29
  article-title: Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model
  publication-title: J. Hydrol.
– volume: 17
  start-page: 2109
  year: 2017
  end-page: 2123
  ident: bib6
  article-title: Flood impacts on a water distribution network
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 16
  start-page: 1779
  year: Feb. 2024
  ident: bib22
  article-title: Sustainable smart cities through multi-agent reinforcement learning-based cooperative autonomous vehicles
  publication-title: Sustainability
– reference: K. Zhang, Z. Yang, and T. Başar, “Decentralized Multi-Agent Reinforcement Learning with Networked Agents: Recent Advances,” Dec. 09, 2019, arXiv: arXiv:1912.03821. doi: 10.48550/arXiv.1912.03821.
– volume: 12
  start-page: 41
  year: May 2023
  ident: bib10
  article-title: From sensors to safety: internet of emergency services (IoES) for emergency response and disaster management
  publication-title: J. Sens. Actuator Netw.
– reference: A. Garg and S.S. Jha, “Autonomous Flood Area Coverage using Decentralized Multi-UAV System with Directed Explorations,” 2023.
– reference: Santos Filho et al., “Enhancing_Water_Resource_Management_through_IoT-Enabled_Smart_Water_Monitoring_Systems_A_Multi-Agent_Algorithm_Approach.pdf,” Google Docs. Accessed: Dec. 09, 2024. [Online]. Available:
– volume: 17
  year: 2024
  ident: bib25
  article-title: Review and evaluation of multi-agent control applications for energy management in buildings
  publication-title: Energ 19961073
– reference: .
– year: 2022
  ident: bib12
  article-title: Exploiting Ai in Iot smart irrigation management system: reinforcement learning vs fuzzy logic models
  publication-title: SSRN Electron. J.
– reference: S. Al-Otaibi, I. KhanUtilizing Stacked Ensemble AI Algorithm for Comprehensive Water Quality Analysis and Health Assessment in Complex Aquatic Systems,” Mar. 21, 2024, In Review. doi: 10.21203/rs.3.rs-4113265/v1.
– start-page: 1
  year: 2023
  end-page: 4
  ident: bib17
  article-title: Smart and innovative systems for urban flooding risk management
  publication-title: 2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM)
– year: 2021
  ident: bib24
  article-title: Deep reinforcement learning based approach for multi-agent control of residential electric water heaters for distribution load management
– volume: 20
  year: 2023
  ident: bib7
  article-title: Multi-agent proximal policy optimization for portfolio optimization
  publication-title: J. Theoretical Appl. Inform. Tech.
– reference: OLUWATOSIN AHMED AMODU, “IEEE Xplore Full-Text PDF:” Accessed: Dec. 10, 2024. [Online]. Available:
– volume: 13
  start-page: 8596
  year: Aug. 2021
  ident: bib13
  article-title: Machine learning with metaheuristic algorithms for sustainable water resources management
  publication-title: Sustainability
– volume: 12
  start-page: 279
  year: 2023
  ident: bib3
  article-title: Integration of heterogeneous sensor systems for disaster responses in smart cities: flooding as an Example
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 14
  start-page: 246
  year: 2022
  ident: bib30
  article-title: Sentinel-1 spatiotemporal simulation using convolutional LSTM for flood mapping
  publication-title: Remote Sens
– volume: 12
  start-page: 101016
  year: 2024
  end-page: 101052
  ident: bib21
  article-title: Decentralized and distributed learning for AIoT: a comprehensive review, emerging challenges, and opportunities
  publication-title: IEEE Access
– ident: 10.1016/j.aej.2025.04.033_bib1
– volume: 12
  start-page: 101016
  year: 2024
  ident: 10.1016/j.aej.2025.04.033_bib21
  article-title: Decentralized and distributed learning for AIoT: a comprehensive review, emerging challenges, and opportunities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3422211
– year: 2024
  ident: 10.1016/j.aej.2025.04.033_bib9
  article-title: The role of deep learning in urban water management: a critical review - ScienceDirect
  publication-title: Water Res.
– year: 2022
  ident: 10.1016/j.aej.2025.04.033_bib12
  article-title: Exploiting Ai in Iot smart irrigation management system: reinforcement learning vs fuzzy logic models
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.4149708
– volume: 13
  start-page: 8596
  issue: 15
  year: 2021
  ident: 10.1016/j.aej.2025.04.033_bib13
  article-title: Machine learning with metaheuristic algorithms for sustainable water resources management
  publication-title: Sustainability
  doi: 10.3390/su13158596
– volume: 14
  start-page: 246
  issue: 2
  year: 2022
  ident: 10.1016/j.aej.2025.04.033_bib30
  article-title: Sentinel-1 spatiotemporal simulation using convolutional LSTM for flood mapping
  publication-title: Remote Sens
  doi: 10.3390/rs14020246
– year: 2024
  ident: 10.1016/j.aej.2025.04.033_bib15
  article-title: Enhancing decision making and decarbonation in environmental management: a review on the role of digital technologies
  publication-title: Sustainability
  doi: 10.3390/su16167156
– ident: 10.1016/j.aej.2025.04.033_bib8
– ident: 10.1016/j.aej.2025.04.033_bib14
  doi: 10.21203/rs.3.rs-4113265/v1
– start-page: 1
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib17
  article-title: Smart and innovative systems for urban flooding risk management
– ident: 10.1016/j.aej.2025.04.033_bib28
– year: 2025
  ident: 10.1016/j.aej.2025.04.033_bib18
  article-title: The long lunch blamed for Spain’s flood alert failure
  publication-title: Financ. Times
– volume: 12
  start-page: 279
  issue: 7
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib3
  article-title: Integration of heterogeneous sensor systems for disaster responses in smart cities: flooding as an Example
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi12070279
– ident: 10.1016/j.aej.2025.04.033_bib4
– start-page: 148
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib11
  article-title: Securing the MANET by detecting the flooding attacks using hybrid CNN-Bi-LSTM-RF Model
– volume: 16
  start-page: 1779
  issue: 5
  year: 2024
  ident: 10.1016/j.aej.2025.04.033_bib22
  article-title: Sustainable smart cities through multi-agent reinforcement learning-based cooperative autonomous vehicles
  publication-title: Sustainability
  doi: 10.3390/su16051779
– ident: 10.1016/j.aej.2025.04.033_bib2
– volume: 12
  start-page: 689
  issue: 5
  year: 2021
  ident: 10.1016/j.aej.2025.04.033_bib19
  article-title: When disaster risk management systems fail: the case of cyclone Idai in Chimanimani District, Zimbabwe
  publication-title: Int. J. Disaster Risk Sci.
  doi: 10.1007/s13753-021-00370-6
– start-page: 2098
  year: 2022
  ident: 10.1016/j.aej.2025.04.033_bib20
  article-title: Multi-agent distributed reinforcement learning for making decentralized offloading decisions
– volume: 17
  start-page: 2109
  issue: 12
  year: 2017
  ident: 10.1016/j.aej.2025.04.033_bib6
  article-title: Flood impacts on a water distribution network
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-17-2109-2017
– year: 2021
  ident: 10.1016/j.aej.2025.04.033_bib24
– volume: 12
  start-page: 41
  issue: 3
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib10
  article-title: From sensors to safety: internet of emergency services (IoES) for emergency response and disaster management
  publication-title: J. Sens. Actuator Netw.
  doi: 10.3390/jsan12030041
– volume: 27
  start-page: 1791
  issue: 9
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib31
  article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-27-1791-2023
– ident: 10.1016/j.aej.2025.04.033_bib23
– volume: 17
  issue: 19
  year: 2024
  ident: 10.1016/j.aej.2025.04.033_bib25
  article-title: Review and evaluation of multi-agent control applications for energy management in buildings
  publication-title: Energ 19961073
– volume: 636
  year: 2024
  ident: 10.1016/j.aej.2025.04.033_bib29
  article-title: Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131279
– ident: 10.1016/j.aej.2025.04.033_bib5
– volume: 23
  start-page: 7475
  issue: 17
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib16
  article-title: Sensors on the internet of things systems for urban disaster management: a systematic literature review
  publication-title: Sensors
  doi: 10.3390/s23177475
– volume: 30
  start-page: 53
  issue: 4
  year: 2022
  ident: 10.1016/j.aej.2025.04.033_bib26
  article-title: An efficient and decentralized fuzzy reinforcement learning bandwidth controller for multitenant data centers
  publication-title: J. Netw. Syst. Manag
  doi: 10.1007/s10922-022-09667-3
– volume: 20
  year: 2023
  ident: 10.1016/j.aej.2025.04.033_bib7
  article-title: Multi-agent proximal policy optimization for portfolio optimization
  publication-title: J. Theoretical Appl. Inform. Tech.
– ident: 10.1016/j.aej.2025.04.033_bib27
SSID ssj0000579496
Score 2.3507562
Snippet Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 8
SubjectTerms Decentralized multi-agent system
Disaster response optimization
Federated learning
Reinforcement learning
Smart water management
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJz2IT1xf5OBJKNs2SZseXR-IoCeFvYWkM5EK7sruiuCvd5K2y3rw4jEh08ckncyk33zD2IWCrPaqIs-tAkiky4pEe2pamxZoXW7brLTHp-L-RT5M1GSDXfe5MAFW2dn-1qZHa931jDptjj6aZkTfYeAPKijECStLB9ptIXVM4puMV-csIdlSxjJdYXwSBPqfmxHmZfGNosRcRcJTIX5tT5HFf22XWtt57nbYducy8qv2qXbZBk732NYakeA-m91gh7JsvhF4RAkmNmRNcR_YIsihBG6nwOcYmVLreCjIu5IRr5y6-OKd3pt_0dA5f1-BYqIUNAsbCBVIPCJq8YC93N0-X98nXSmFpBZFukys9CBriTnK0mYalK9VhtrnhS1LF6vNoyhoK69AIboq07ZWqUDlM9DSC3HIBtPZFI8Y17nVZODBgyUDIME5jaS_CkonpK9hyC57DZqPljHD9FCyN0PqNkHdJpWG1D1k46Dj1cBAdh07ZvNX0822KVOK4MHVAp2k6FVWntzUDCpdkKV2UA6Z7GfI_Fo7dKnm73sf_0_shG2GVgvZPWWD5fwTz8gxWbrzuPJ-ADYW4g4
  priority: 102
  providerName: Elsevier
Title Decentralized multi-agent federated and reinforcement learning for smart water management and disaster response
URI https://dx.doi.org/10.1016/j.aej.2025.04.033
https://doaj.org/article/70907dbc3eb444649f1611d986911bd7
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFz2IT1xf5OBJKLZN0qZHn6iLHkRxbyHpTGQFV1lXBH-9k7S71IN48VJoyKN8SToz7ZdvGDtQkNVeVeS5VQCJdFmRaE-31qYFWpfb5lTazW1x-SCvB2rQSfUVOGGNPHAD3FGZUvgGrhboJIUusvLko2RQ6YK2qYN4jpxsXieYalS9aZ3F5Fy0lwPzqtDTX5qR3GXxmWLDXEWZUyF-GKWo3d-xTR17c7HClltHkR83D7jK5nC0xpY68oHr7PUMW27l8AuBR25gYsNZKe6DRgS5kcDtCPgYoz5qHT8F8jZRxBOnIv7-QhDwT6o65i8zKkxsBcN3G2QUqHnk0eIGe7g4vz-9TNoECkktinSSWOlB1hJzlKXNNChfqwy1zwtbli7mmEdRkAGvQCG6KtO2VqlA5TPQ0guxyeZHryPcYlznVtNrHTxY2vYSnNNI-FVQOiF9DT12OEXQvDU6GWZKIHs2BLcJcJtUGoK7x04CxrOKQeI6FtDEm3bizV8T32NyOkOm9RYaL4C6Gv4-9vZ_jL3DFkOXDW13l81Pxh-4R87JxO2zheP-3WN_P65Hul4NTr4Bhazj4g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeUOlDXaCtD5wqRZvEjzhHHkVLeZxA2ptlZ8YoSOyiZRESv56xk6yWQy89xvHkMXbGM8433zB2oKBogqrJc6sBMukLnZlAh87lGp0vXZeVdnmlJzfy71RNN9jxkAsTYZW97e9serLWfcu41-b4oW3H9B1G_iBNIU6cWUa_Y1vkDVSxfsPZ9Gi10RKzLWWq0xUFsigx_N1MOC-HdxQmlioxngrxZn1KNP5ry9Ta0nP6iW33PiM_7B5rh23g7DP7uMYk-IXNT7CHWbYvCDzBBDMX06Z4iHQR5FECdzPgC0xUqU3aFeR9zYhbTk388Z5enD9T1wW_X6FikhS0jy4yKpB4gtTiV3Zz-uf6eJL1tRSyRuh8mTkZQDYSS5SVKwyo0KgCTSi1qyqfys2j0LSW16AQfV0Y16hcoAoFGBmE-MY2Z_MZfmfclM6QhYcAjiyABO8Nkv5qqLyQoYER-z1o0D50lBl2wJLdWVK3jeq2ubSk7hE7ijpedYxs16lhvri1_XDbKqcQHnwj0EsKX2UdyE8toDaaTLWHasTkMEL2zeShS7X_vvfu_4n9Yu8n15cX9uLs6nyPfYhnOvzuPttcLp7wB3kpS_8zzcJXmzXlLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+multi-agent+federated+and+reinforcement+learning+for+smart+water+management+and+disaster+response&rft.jtitle=Alexandria+engineering+journal&rft.au=H.+Mancy&rft.au=Naglaa+E.+Ghannam&rft.au=Amr+Abozeid&rft.au=Ahmed+I.+Taloba&rft.date=2025-07-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=126&rft.spage=8&rft.epage=29&rft_id=info:doi/10.1016%2Fj.aej.2025.04.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70907dbc3eb444649f1611d986911bd7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon