Decentralized multi-agent federated and reinforcement learning for smart water management and disaster response
Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since mo...
Saved in:
Published in | Alexandria engineering journal Vol. 126; pp. 8 - 29 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since more clients present a problem, the system's latency is high, and the system is always prone to a single-point failure. The previous approach lacks flexibility and does not synchronously guarantee the integration of several subjects in real time, especially during unpredictable disaster conditions. The proposed FL-MAPPO model surpasses current methods by facilitating decentralized, privacy-protecting decision-making minimizing latency and single-point failures. In contrast to LSTM, Bi-LSTM, and DRNN, which are based on centralized data processing, FL-MAPPO provides real-time adaptability and effective resource management. Experimental results validate that it has lower MSE, higher R² scores, and quicker response times, making it better suited for flood prediction and disaster response. To this end, this study advances a solution through a Decentralized Learning-Driven Multi-Agent Autonomous System (DL-MAAS). The new feature is a Decentralized Cooperation environment in which intelligent and self-managing agents learn utilizing Reinforcement Learning (RL) and Federated Learning (FL) algorithms for enhancing smart water management and real-time disaster relief. IoT devices are adopted for sensing and data acquisition, adaptive learning for decision-making, and optimization of energy use among the agents in the system through metaheuristic algorithms. The research methodology for implementing the proposed solution involves the design of a multi-layered architecture, including data acquisition, decentralized learning, and real-time execution. With a Mean Squared Error (MSE) of 0.112, R-squared (R²) of 0.953, and Mean Absolute Error (MAE) of 0.207, the proposed method is better than existing approaches for big, real-time flood predictive systems. Data show that decentralized systems provide orders of magnitude higher efficiency in water distribution, time of response to disasters, and energy usage compared to conventional centralized systems. These results indicate the significant opportunity for decentralized multi-agent systems in the sustainability of disaster management and water resources. |
---|---|
AbstractList | Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since more clients present a problem, the system's latency is high, and the system is always prone to a single-point failure. The previous approach lacks flexibility and does not synchronously guarantee the integration of several subjects in real time, especially during unpredictable disaster conditions. The proposed FL-MAPPO model surpasses current methods by facilitating decentralized, privacy-protecting decision-making minimizing latency and single-point failures. In contrast to LSTM, Bi-LSTM, and DRNN, which are based on centralized data processing, FL-MAPPO provides real-time adaptability and effective resource management. Experimental results validate that it has lower MSE, higher R² scores, and quicker response times, making it better suited for flood prediction and disaster response. To this end, this study advances a solution through a Decentralized Learning-Driven Multi-Agent Autonomous System (DL-MAAS). The new feature is a Decentralized Cooperation environment in which intelligent and self-managing agents learn utilizing Reinforcement Learning (RL) and Federated Learning (FL) algorithms for enhancing smart water management and real-time disaster relief. IoT devices are adopted for sensing and data acquisition, adaptive learning for decision-making, and optimization of energy use among the agents in the system through metaheuristic algorithms. The research methodology for implementing the proposed solution involves the design of a multi-layered architecture, including data acquisition, decentralized learning, and real-time execution. With a Mean Squared Error (MSE) of 0.112, R-squared (R²) of 0.953, and Mean Absolute Error (MAE) of 0.207, the proposed method is better than existing approaches for big, real-time flood predictive systems. Data show that decentralized systems provide orders of magnitude higher efficiency in water distribution, time of response to disasters, and energy usage compared to conventional centralized systems. These results indicate the significant opportunity for decentralized multi-agent systems in the sustainability of disaster management and water resources. |
Author | Mancy, H. Ghannam, Naglaa E. Taloba, Ahmed I. Abozeid, Amr |
Author_xml | – sequence: 1 givenname: H. surname: Mancy fullname: Mancy, H. email: H.mancy@psau.edu.sa organization: Department of Computer Science, College of Engineering and Computer Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia – sequence: 2 givenname: Naglaa E. orcidid: 0000-0001-7145-5617 surname: Ghannam fullname: Ghannam, Naglaa E. email: n.said@psau.edu.sa organization: Department of Computer Engineering and Information, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia – sequence: 3 givenname: Amr surname: Abozeid fullname: Abozeid, Amr email: aaabozezd@ju.edu.sa organization: Department of Computer Science, College of Computer and Information Sciences, Jouf University, Saudi Arabia – sequence: 4 givenname: Ahmed I. surname: Taloba fullname: Taloba, Ahmed I. email: aitaloba@ju.edu.sa organization: Department of Computer Science, College of Computer and Information Sciences, Jouf University, Saudi Arabia |
BookMark | eNp9kM1OwzAQhH0oEqX0AbjlBRK8sfNjcULlrxISFzhbjr2uHKVOZQcQPD1Oizjii6Vvd0azc0EWfvRIyBXQAijU132hsC9KWlYF5QVlbEGWAEDzNGzPyTrGnqZXNYKLeknGO9Top6AG940m278Pk8vVLqHMosGgpkSVN1lA5-0YNO7n2YAqeOd3WUJZ3KswZZ9pNWR75ZP6uDOrjIsqzjxgPIw-4iU5s2qIuP79V-Tt4f5185Q_vzxuN7fPuWY1nXLFreGaY4m8UdCayuoKsLVlrZqmA2ClQFZXJQhTIXYCWqUryrCyYFpuGVuR7cnXjKqXh-BSxi85KiePYAw7mUI7PaBsqKCN6TTDjnNec2GhBjCirQVAZ5rkBScvHcYYA9o_P6ByLl32MpUu59Il5TKVnjQ3Jw2mIz8cBhm1Q6_RuIB6SincP-ofjr-Pdw |
Cites_doi | 10.1109/ACCESS.2024.3422211 10.2139/ssrn.4149708 10.3390/su13158596 10.3390/rs14020246 10.3390/su16167156 10.21203/rs.3.rs-4113265/v1 10.3390/ijgi12070279 10.3390/su16051779 10.1007/s13753-021-00370-6 10.5194/nhess-17-2109-2017 10.3390/jsan12030041 10.5194/hess-27-1791-2023 10.1016/j.jhydrol.2024.131279 10.3390/s23177475 10.1007/s10922-022-09667-3 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aej.2025.04.033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 29 |
ExternalDocumentID | oai_doaj_org_article_70907dbc3eb444649f1611d986911bd7 10_1016_j_aej_2025_04_033 S1110016825005186 |
GroupedDBID | --K 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYXX CITATION |
ID | FETCH-LOGICAL-c360t-a4fd4c4e2e47a18d5fc51e8f26a77b11329e365219d5eeb918ac503e5f1d84f33 |
IEDL.DBID | DOA |
ISSN | 1110-0168 |
IngestDate | Wed Aug 27 01:27:11 EDT 2025 Thu Jul 24 02:17:32 EDT 2025 Sat Aug 16 17:01:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Decentralized multi-agent system Federated learning Disaster response optimization Smart water management Reinforcement learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-a4fd4c4e2e47a18d5fc51e8f26a77b11329e365219d5eeb918ac503e5f1d84f33 |
ORCID | 0000-0001-7145-5617 |
OpenAccessLink | https://doaj.org/article/70907dbc3eb444649f1611d986911bd7 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70907dbc3eb444649f1611d986911bd7 crossref_primary_10_1016_j_aej_2025_04_033 elsevier_sciencedirect_doi_10_1016_j_aej_2025_04_033 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Alexandria engineering journal |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fu (bib9) 2024 Huan (bib29) 2024; 636 “Flood Prediction Dataset.” Accessed: Dec. 12, 2024. [Online]. Available Louati (bib22) Feb. 2024; 16 S. Tang, R. Ye, C. Xu, X. Dong, S. Chen, and Y. Wang, “Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning,” Mar. 11, 2024, arXiv: arXiv:2403.06535. doi: 10.48550/arXiv.2403.06535. K. Zhang, Z. Yang, and T. Başar, “Decentralized Multi-Agent Reinforcement Learning with Networked Agents: Recent Advances,” Dec. 09, 2019, arXiv: arXiv:1912.03821. doi: 10.48550/arXiv.1912.03821. Mohamed (bib15) 2024 Kisi (bib13) Aug. 2021; 13 Ulloa, Yun, Chiang, Furuta (bib30) 2022; 14 Munsaka, Mudavanhu, Sakala, Manjeru, Matsvange (bib19) 2021; 12 Hong, Shi (bib3) 2023; 12 Jopson, Mooney (bib18) 2025 Tan, Khalili, Karl, Hecker (bib20) 2022 Xu, Seng, Ang, Smith (bib21) 2024; 12 Santos Filho, Ferreira, Mattos, Medeiros (bib26) 2022; 30 J. Jiang, K. Su, and Z. Lu, “Fully Decentralized Cooperative Multi-Agent Reinforcement Learning: A Survey,” Jan. 10, 2024, arXiv: arXiv:2401.04934. doi: 10.48550/arXiv.2401.04934. Santos Filho et al., “Enhancing_Water_Resource_Management_through_IoT-Enabled_Smart_Water_Monitoring_Systems_A_Multi-Agent_Algorithm_Approach.pdf,” Google Docs. Accessed: Dec. 09, 2024. [Online]. Available Giovanni Minelli, “CoMIX: A Multi-agent Reinforcement Learning Training Architecture for Efficient Decentralized Coordination and Independent Decision Making,” ar5iv. Accessed: Dec. 11, 2024. [Online]. Available Khemlichi, Chougrad, Ali, Khamlichi (bib7) 2023; 20 Damaševičius, Bacanin, Misra (bib10) May 2023; 12 Zhou (bib31) 2023; 27 S. Al-Otaibi, I. KhanUtilizing Stacked Ensemble AI Algorithm for Comprehensive Water Quality Analysis and Health Assessment in Complex Aquatic Systems,” Mar. 21, 2024, In Review. doi: 10.21203/rs.3.rs-4113265/v1. A. Garg and S.S. Jha, “Autonomous Flood Area Coverage using Decentralized Multi-UAV System with Directed Explorations,” 2023. Abraham (bib24) 2021 . Tropea, Campoverde, De Rango (bib12) 2022 Zeng, Pang, Tang (bib16) 2023; 23 Piro, Saleh, Pirouz, Turco, Palermo (bib17) 2023 Arrighi, Tarani, Vicario, Castelli (bib6) 2017; 17 OLUWATOSIN AHMED AMODU, “IEEE Xplore Full-Text PDF:” Accessed: Dec. 10, 2024. [Online]. Available Michailidis, Michailidis, Kosmatopoulos (bib25) 2024; 17 Nayomi, Jayanth, Vinay, Rao, Vardhan (bib11) 2023 Huan (10.1016/j.aej.2025.04.033_bib29) 2024; 636 10.1016/j.aej.2025.04.033_bib8 10.1016/j.aej.2025.04.033_bib14 Mohamed (10.1016/j.aej.2025.04.033_bib15) 2024 Khemlichi (10.1016/j.aej.2025.04.033_bib7) 2023; 20 Tropea (10.1016/j.aej.2025.04.033_bib12) 2022 Louati (10.1016/j.aej.2025.04.033_bib22) 2024; 16 10.1016/j.aej.2025.04.033_bib2 10.1016/j.aej.2025.04.033_bib1 Piro (10.1016/j.aej.2025.04.033_bib17) 2023 10.1016/j.aej.2025.04.033_bib4 10.1016/j.aej.2025.04.033_bib5 Abraham (10.1016/j.aej.2025.04.033_bib24) 2021 Zhou (10.1016/j.aej.2025.04.033_bib31) 2023; 27 Damaševičius (10.1016/j.aej.2025.04.033_bib10) 2023; 12 Michailidis (10.1016/j.aej.2025.04.033_bib25) 2024; 17 Fu (10.1016/j.aej.2025.04.033_bib9) 2024 Santos Filho (10.1016/j.aej.2025.04.033_bib26) 2022; 30 Ulloa (10.1016/j.aej.2025.04.033_bib30) 2022; 14 10.1016/j.aej.2025.04.033_bib23 Jopson (10.1016/j.aej.2025.04.033_bib18) 2025 Munsaka (10.1016/j.aej.2025.04.033_bib19) 2021; 12 10.1016/j.aej.2025.04.033_bib27 Xu (10.1016/j.aej.2025.04.033_bib21) 2024; 12 10.1016/j.aej.2025.04.033_bib28 Zeng (10.1016/j.aej.2025.04.033_bib16) 2023; 23 Nayomi (10.1016/j.aej.2025.04.033_bib11) 2023 Arrighi (10.1016/j.aej.2025.04.033_bib6) 2017; 17 Kisi (10.1016/j.aej.2025.04.033_bib13) 2021; 13 Tan (10.1016/j.aej.2025.04.033_bib20) 2022 Hong (10.1016/j.aej.2025.04.033_bib3) 2023; 12 |
References_xml | – reference: S. Tang, R. Ye, C. Xu, X. Dong, S. Chen, and Y. Wang, “Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning,” Mar. 11, 2024, arXiv: arXiv:2403.06535. doi: 10.48550/arXiv.2403.06535. – reference: J. Jiang, K. Su, and Z. Lu, “Fully Decentralized Cooperative Multi-Agent Reinforcement Learning: A Survey,” Jan. 10, 2024, arXiv: arXiv:2401.04934. doi: 10.48550/arXiv.2401.04934. – reference: Giovanni Minelli, “CoMIX: A Multi-agent Reinforcement Learning Training Architecture for Efficient Decentralized Coordination and Independent Decision Making,” ar5iv. Accessed: Dec. 11, 2024. [Online]. Available: – reference: “Flood Prediction Dataset.” Accessed: Dec. 12, 2024. [Online]. Available: – year: 2024 ident: bib15 article-title: Enhancing decision making and decarbonation in environmental management: a review on the role of digital technologies publication-title: Sustainability – volume: 23 start-page: 7475 year: 2023 ident: bib16 article-title: Sensors on the internet of things systems for urban disaster management: a systematic literature review publication-title: Sensors – volume: 12 start-page: 689 year: 2021 end-page: 699 ident: bib19 article-title: When disaster risk management systems fail: the case of cyclone Idai in Chimanimani District, Zimbabwe publication-title: Int. J. Disaster Risk Sci. – volume: 27 start-page: 1791 year: 2023 end-page: 1808 ident: bib31 article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions publication-title: Hydrol. Earth Syst. Sci. – start-page: 148 year: 2023 end-page: 160 ident: bib11 article-title: Securing the MANET by detecting the flooding attacks using hybrid CNN-Bi-LSTM-RF Model publication-title: Lecture Notes in Computer Science, Mining Intelligence and Knowledge Exploration – volume: 30 start-page: 53 year: 2022 ident: bib26 article-title: An efficient and decentralized fuzzy reinforcement learning bandwidth controller for multitenant data centers publication-title: J. Netw. Syst. Manag – year: 2025 ident: bib18 article-title: The long lunch blamed for Spain’s flood alert failure publication-title: Financ. Times – start-page: 2098 year: 2022 end-page: 2107 ident: bib20 article-title: Multi-agent distributed reinforcement learning for making decentralized offloading decisions publication-title: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications – year: 2024 ident: bib9 article-title: The role of deep learning in urban water management: a critical review - ScienceDirect publication-title: Water Res. – volume: 636 year: 2024 ident: bib29 article-title: Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model publication-title: J. Hydrol. – volume: 17 start-page: 2109 year: 2017 end-page: 2123 ident: bib6 article-title: Flood impacts on a water distribution network publication-title: Nat. Hazards Earth Syst. Sci. – volume: 16 start-page: 1779 year: Feb. 2024 ident: bib22 article-title: Sustainable smart cities through multi-agent reinforcement learning-based cooperative autonomous vehicles publication-title: Sustainability – reference: K. Zhang, Z. Yang, and T. Başar, “Decentralized Multi-Agent Reinforcement Learning with Networked Agents: Recent Advances,” Dec. 09, 2019, arXiv: arXiv:1912.03821. doi: 10.48550/arXiv.1912.03821. – volume: 12 start-page: 41 year: May 2023 ident: bib10 article-title: From sensors to safety: internet of emergency services (IoES) for emergency response and disaster management publication-title: J. Sens. Actuator Netw. – reference: A. Garg and S.S. Jha, “Autonomous Flood Area Coverage using Decentralized Multi-UAV System with Directed Explorations,” 2023. – reference: Santos Filho et al., “Enhancing_Water_Resource_Management_through_IoT-Enabled_Smart_Water_Monitoring_Systems_A_Multi-Agent_Algorithm_Approach.pdf,” Google Docs. Accessed: Dec. 09, 2024. [Online]. Available: – volume: 17 year: 2024 ident: bib25 article-title: Review and evaluation of multi-agent control applications for energy management in buildings publication-title: Energ 19961073 – reference: . – year: 2022 ident: bib12 article-title: Exploiting Ai in Iot smart irrigation management system: reinforcement learning vs fuzzy logic models publication-title: SSRN Electron. J. – reference: S. Al-Otaibi, I. KhanUtilizing Stacked Ensemble AI Algorithm for Comprehensive Water Quality Analysis and Health Assessment in Complex Aquatic Systems,” Mar. 21, 2024, In Review. doi: 10.21203/rs.3.rs-4113265/v1. – start-page: 1 year: 2023 end-page: 4 ident: bib17 article-title: Smart and innovative systems for urban flooding risk management publication-title: 2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) – year: 2021 ident: bib24 article-title: Deep reinforcement learning based approach for multi-agent control of residential electric water heaters for distribution load management – volume: 20 year: 2023 ident: bib7 article-title: Multi-agent proximal policy optimization for portfolio optimization publication-title: J. Theoretical Appl. Inform. Tech. – reference: OLUWATOSIN AHMED AMODU, “IEEE Xplore Full-Text PDF:” Accessed: Dec. 10, 2024. [Online]. Available: – volume: 13 start-page: 8596 year: Aug. 2021 ident: bib13 article-title: Machine learning with metaheuristic algorithms for sustainable water resources management publication-title: Sustainability – volume: 12 start-page: 279 year: 2023 ident: bib3 article-title: Integration of heterogeneous sensor systems for disaster responses in smart cities: flooding as an Example publication-title: ISPRS Int. J. Geo Inf. – volume: 14 start-page: 246 year: 2022 ident: bib30 article-title: Sentinel-1 spatiotemporal simulation using convolutional LSTM for flood mapping publication-title: Remote Sens – volume: 12 start-page: 101016 year: 2024 end-page: 101052 ident: bib21 article-title: Decentralized and distributed learning for AIoT: a comprehensive review, emerging challenges, and opportunities publication-title: IEEE Access – ident: 10.1016/j.aej.2025.04.033_bib1 – volume: 12 start-page: 101016 year: 2024 ident: 10.1016/j.aej.2025.04.033_bib21 article-title: Decentralized and distributed learning for AIoT: a comprehensive review, emerging challenges, and opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3422211 – year: 2024 ident: 10.1016/j.aej.2025.04.033_bib9 article-title: The role of deep learning in urban water management: a critical review - ScienceDirect publication-title: Water Res. – year: 2022 ident: 10.1016/j.aej.2025.04.033_bib12 article-title: Exploiting Ai in Iot smart irrigation management system: reinforcement learning vs fuzzy logic models publication-title: SSRN Electron. J. doi: 10.2139/ssrn.4149708 – volume: 13 start-page: 8596 issue: 15 year: 2021 ident: 10.1016/j.aej.2025.04.033_bib13 article-title: Machine learning with metaheuristic algorithms for sustainable water resources management publication-title: Sustainability doi: 10.3390/su13158596 – volume: 14 start-page: 246 issue: 2 year: 2022 ident: 10.1016/j.aej.2025.04.033_bib30 article-title: Sentinel-1 spatiotemporal simulation using convolutional LSTM for flood mapping publication-title: Remote Sens doi: 10.3390/rs14020246 – year: 2024 ident: 10.1016/j.aej.2025.04.033_bib15 article-title: Enhancing decision making and decarbonation in environmental management: a review on the role of digital technologies publication-title: Sustainability doi: 10.3390/su16167156 – ident: 10.1016/j.aej.2025.04.033_bib8 – ident: 10.1016/j.aej.2025.04.033_bib14 doi: 10.21203/rs.3.rs-4113265/v1 – start-page: 1 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib17 article-title: Smart and innovative systems for urban flooding risk management – ident: 10.1016/j.aej.2025.04.033_bib28 – year: 2025 ident: 10.1016/j.aej.2025.04.033_bib18 article-title: The long lunch blamed for Spain’s flood alert failure publication-title: Financ. Times – volume: 12 start-page: 279 issue: 7 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib3 article-title: Integration of heterogeneous sensor systems for disaster responses in smart cities: flooding as an Example publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi12070279 – ident: 10.1016/j.aej.2025.04.033_bib4 – start-page: 148 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib11 article-title: Securing the MANET by detecting the flooding attacks using hybrid CNN-Bi-LSTM-RF Model – volume: 16 start-page: 1779 issue: 5 year: 2024 ident: 10.1016/j.aej.2025.04.033_bib22 article-title: Sustainable smart cities through multi-agent reinforcement learning-based cooperative autonomous vehicles publication-title: Sustainability doi: 10.3390/su16051779 – ident: 10.1016/j.aej.2025.04.033_bib2 – volume: 12 start-page: 689 issue: 5 year: 2021 ident: 10.1016/j.aej.2025.04.033_bib19 article-title: When disaster risk management systems fail: the case of cyclone Idai in Chimanimani District, Zimbabwe publication-title: Int. J. Disaster Risk Sci. doi: 10.1007/s13753-021-00370-6 – start-page: 2098 year: 2022 ident: 10.1016/j.aej.2025.04.033_bib20 article-title: Multi-agent distributed reinforcement learning for making decentralized offloading decisions – volume: 17 start-page: 2109 issue: 12 year: 2017 ident: 10.1016/j.aej.2025.04.033_bib6 article-title: Flood impacts on a water distribution network publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-17-2109-2017 – year: 2021 ident: 10.1016/j.aej.2025.04.033_bib24 – volume: 12 start-page: 41 issue: 3 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib10 article-title: From sensors to safety: internet of emergency services (IoES) for emergency response and disaster management publication-title: J. Sens. Actuator Netw. doi: 10.3390/jsan12030041 – volume: 27 start-page: 1791 issue: 9 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib31 article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-27-1791-2023 – ident: 10.1016/j.aej.2025.04.033_bib23 – volume: 17 issue: 19 year: 2024 ident: 10.1016/j.aej.2025.04.033_bib25 article-title: Review and evaluation of multi-agent control applications for energy management in buildings publication-title: Energ 19961073 – volume: 636 year: 2024 ident: 10.1016/j.aej.2025.04.033_bib29 article-title: Geographic heterogeneity of activation functions in urban real-time flood forecasting: Based on seasonal trend decomposition using Loess-Temporal Convolutional Network-Gated Recurrent Unit model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.131279 – ident: 10.1016/j.aej.2025.04.033_bib5 – volume: 23 start-page: 7475 issue: 17 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib16 article-title: Sensors on the internet of things systems for urban disaster management: a systematic literature review publication-title: Sensors doi: 10.3390/s23177475 – volume: 30 start-page: 53 issue: 4 year: 2022 ident: 10.1016/j.aej.2025.04.033_bib26 article-title: An efficient and decentralized fuzzy reinforcement learning bandwidth controller for multitenant data centers publication-title: J. Netw. Syst. Manag doi: 10.1007/s10922-022-09667-3 – volume: 20 year: 2023 ident: 10.1016/j.aej.2025.04.033_bib7 article-title: Multi-agent proximal policy optimization for portfolio optimization publication-title: J. Theoretical Appl. Inform. Tech. – ident: 10.1016/j.aej.2025.04.033_bib27 |
SSID | ssj0000579496 |
Score | 2.3507562 |
Snippet | Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 8 |
SubjectTerms | Decentralized multi-agent system Disaster response optimization Federated learning Reinforcement learning Smart water management |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJz2IT1xf5OBJKNs2SZseXR-IoCeFvYWkM5EK7sruiuCvd5K2y3rw4jEh08ckncyk33zD2IWCrPaqIs-tAkiky4pEe2pamxZoXW7brLTHp-L-RT5M1GSDXfe5MAFW2dn-1qZHa931jDptjj6aZkTfYeAPKijECStLB9ptIXVM4puMV-csIdlSxjJdYXwSBPqfmxHmZfGNosRcRcJTIX5tT5HFf22XWtt57nbYducy8qv2qXbZBk732NYakeA-m91gh7JsvhF4RAkmNmRNcR_YIsihBG6nwOcYmVLreCjIu5IRr5y6-OKd3pt_0dA5f1-BYqIUNAsbCBVIPCJq8YC93N0-X98nXSmFpBZFukys9CBriTnK0mYalK9VhtrnhS1LF6vNoyhoK69AIboq07ZWqUDlM9DSC3HIBtPZFI8Y17nVZODBgyUDIME5jaS_CkonpK9hyC57DZqPljHD9FCyN0PqNkHdJpWG1D1k46Dj1cBAdh07ZvNX0822KVOK4MHVAp2k6FVWntzUDCpdkKV2UA6Z7GfI_Fo7dKnm73sf_0_shG2GVgvZPWWD5fwTz8gxWbrzuPJ-ADYW4g4 priority: 102 providerName: Elsevier |
Title | Decentralized multi-agent federated and reinforcement learning for smart water management and disaster response |
URI | https://dx.doi.org/10.1016/j.aej.2025.04.033 https://doaj.org/article/70907dbc3eb444649f1611d986911bd7 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFz2IT1xf5OBJKLZN0qZHn6iLHkRxbyHpTGQFV1lXBH-9k7S71IN48VJoyKN8SToz7ZdvGDtQkNVeVeS5VQCJdFmRaE-31qYFWpfb5lTazW1x-SCvB2rQSfUVOGGNPHAD3FGZUvgGrhboJIUusvLko2RQ6YK2qYN4jpxsXieYalS9aZ3F5Fy0lwPzqtDTX5qR3GXxmWLDXEWZUyF-GKWo3d-xTR17c7HClltHkR83D7jK5nC0xpY68oHr7PUMW27l8AuBR25gYsNZKe6DRgS5kcDtCPgYoz5qHT8F8jZRxBOnIv7-QhDwT6o65i8zKkxsBcN3G2QUqHnk0eIGe7g4vz-9TNoECkktinSSWOlB1hJzlKXNNChfqwy1zwtbli7mmEdRkAGvQCG6KtO2VqlA5TPQ0guxyeZHryPcYlznVtNrHTxY2vYSnNNI-FVQOiF9DT12OEXQvDU6GWZKIHs2BLcJcJtUGoK7x04CxrOKQeI6FtDEm3bizV8T32NyOkOm9RYaL4C6Gv4-9vZ_jL3DFkOXDW13l81Pxh-4R87JxO2zheP-3WN_P65Hul4NTr4Bhazj4g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoeUOlDXaCtD5wqRZvEjzhHHkVLeZxA2ptlZ8YoSOyiZRESv56xk6yWQy89xvHkMXbGM8433zB2oKBogqrJc6sBMukLnZlAh87lGp0vXZeVdnmlJzfy71RNN9jxkAsTYZW97e9serLWfcu41-b4oW3H9B1G_iBNIU6cWUa_Y1vkDVSxfsPZ9Gi10RKzLWWq0xUFsigx_N1MOC-HdxQmlioxngrxZn1KNP5ry9Ta0nP6iW33PiM_7B5rh23g7DP7uMYk-IXNT7CHWbYvCDzBBDMX06Z4iHQR5FECdzPgC0xUqU3aFeR9zYhbTk388Z5enD9T1wW_X6FikhS0jy4yKpB4gtTiV3Zz-uf6eJL1tRSyRuh8mTkZQDYSS5SVKwyo0KgCTSi1qyqfys2j0LSW16AQfV0Y16hcoAoFGBmE-MY2Z_MZfmfclM6QhYcAjiyABO8Nkv5qqLyQoYER-z1o0D50lBl2wJLdWVK3jeq2ubSk7hE7ijpedYxs16lhvri1_XDbKqcQHnwj0EsKX2UdyE8toDaaTLWHasTkMEL2zeShS7X_vvfu_4n9Yu8n15cX9uLs6nyPfYhnOvzuPttcLp7wB3kpS_8zzcJXmzXlLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+multi-agent+federated+and+reinforcement+learning+for+smart+water+management+and+disaster+response&rft.jtitle=Alexandria+engineering+journal&rft.au=H.+Mancy&rft.au=Naglaa+E.+Ghannam&rft.au=Amr+Abozeid&rft.au=Ahmed+I.+Taloba&rft.date=2025-07-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=126&rft.spage=8&rft.epage=29&rft_id=info:doi/10.1016%2Fj.aej.2025.04.033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70907dbc3eb444649f1611d986911bd7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |