Atomic transport properties of liquid iron at conditions of planetary cores

Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). Howe...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 155; no. 19; pp. 194505 - 194515
Main Authors Li, Qing, Sun, Tao, Zhang, Yi-gang, Xian, Jia-Wei, Vočadlo, Lidunka
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P–T range associated with the Earth’s outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(−0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.
AbstractList Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P-T range associated with the Earth's outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(-0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P-T range associated with the Earth's outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(-0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.
Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P–T range associated with the Earth’s outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(−0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.
Author Sun, Tao
Xian, Jia-Wei
Li, Qing
Vočadlo, Lidunka
Zhang, Yi-gang
Author_xml – sequence: 1
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Yi-gang
  surname: Zhang
  fullname: Zhang, Yi-gang
  organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Jia-Wei
  surname: Xian
  fullname: Xian, Jia-Wei
  organization: Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics
– sequence: 5
  givenname: Lidunka
  surname: Vočadlo
  fullname: Vočadlo, Lidunka
  organization: Department of Earth Sciences, University College London
BookMark eNp9kF9LwzAUxYNMcJs--A0KvqjQ7SZt0vZxDP_hwBd9DmmaQEbXdEkq-O3N3EQY6tOFe3_ncs6ZoFFnO4XQJYYZBpbN6QyAESjxCRpjKKu0YBWM0BiA4LRiwM7QxPs1AOCC5GP0vAh2Y2QSnOh8b11Iemd75YJRPrE6ac12ME1inO0SERJpu8YEY7uvY9-KTgXhPuLeKX-OTrVovbo4zCl6u797XT6mq5eHp-VilcqMQUgFqfJa5ySjFAhVREHNMBZFqTPa0DqL3jRV0DQKK4a1wDJGkLqshRBEyCabouv932h1Oygf-MZ4qdqdGzt4ThhASUhVkIheHaFrO7guuuOEVhXJCSV5pG72lHTWe6c0753ZxFwcA9_Vyik_1BrZ-RErTRC7SmKFpv1VcbtX-G_y3_d_wu_W_YC8b3T2CVZ3lww
CODEN JCPSA6
CitedBy_id crossref_primary_10_1063_5_0150871
crossref_primary_10_1088_1361_648X_accfdd
crossref_primary_10_1103_PhysRevB_109_054112
crossref_primary_10_1021_acs_jpcb_3c07184
crossref_primary_10_1016_j_physrep_2023_11_004
crossref_primary_10_1088_2632_2153_acac01
crossref_primary_10_1063_5_0199310
crossref_primary_10_1103_PhysRevB_111_094101
crossref_primary_10_1029_2021JE007015
crossref_primary_10_3390_molecules29235587
crossref_primary_10_1063_5_0230219
crossref_primary_10_1016_j_pepi_2022_106907
Cites_doi 10.1016/j.physb.2011.05.023
10.1088/0022-3719/5/13/012
10.1016/0927-0256(96)00008-0
10.1063/1.4868550
10.1103/PhysRevE.97.053209
10.1126/science.abi7730
10.1038/nature05342
10.1029/2019jb017721
10.1063/1.2149380
10.1029/93jb03158
10.1088/0953-8984/11/28/303
10.1063/1.5055064
10.1063/1.5001798
10.1029/2021GL093806
10.1016/s0031-9201(02)00011-0
10.3367/ufne.0179.200901d.0091
10.1029/2018je005844
10.1016/j.pepi.2003.08.001
10.1016/j.epsl.2019.115838
10.1111/j.1365-246x.2006.03009.x
10.1063/1.447334
10.1103/physreva.15.2545
10.1126/science.1140514
10.1002/pssb.19700390235
10.1103/physrevb.61.132
10.1103/physrevb.87.094102
10.1088/1674-1056/26/1/016102
10.1103/physrevb.87.014110
10.1111/j.1365-246x.2006.03256.x
10.1103/physrevb.65.165118
10.1103/physrevb.49.14251
10.1126/science.288.5473.2007
10.1063/1.470495
10.1103/physrevb.98.224301
10.1063/1.5080662
10.1016/j.pepi.2015.03.006
10.1103/physrevb.50.17953
10.1103/physrev.137.a1441
10.1029/2018jb016994
10.1063/1.1624057
10.1103/PhysRevE.88.062145
10.1038/s41561-019-0381-z
10.1063/1.1730566
10.1088/1361-648x/ab2855
10.1103/physrevlett.77.3865
10.1126/science.1140549
10.1029/jz057i002p00227
10.1103/physrevlett.81.5161
10.1088/0004-637x/718/2/596
10.1016/j.pepi.2015.02.006
10.1029/97jb01641
10.1038/33905
10.1016/j.icarus.2018.05.005
10.1088/0953-8984/21/39/395502
10.1103/physrevb.66.060102
10.1103/PhysRevLett.122.086601
10.1016/0031-9201(95)05078-p
10.1103/physrevb.59.1758
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0062081
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_5_0062081
jcp
GrantInformation_xml – fundername: Chinese Academy of Sciences
  grantid: XDB18000000
  funderid: https://doi.org/10.13039/501100002367
– fundername: Science and Technology Facilities Council
  grantid: ST/T000163/1
  funderid: https://doi.org/10.13039/501100000271
– fundername: National Natural Science Foundation of China
  grantid: 41972044
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c360t-a294bf42355025e2e0b611a78f35d5b3000f5e0dde1e61fa1c690cf8baaa2acd3
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 01:35:35 EDT 2025
Sun Jun 29 16:17:56 EDT 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 00:27:54 EDT 2025
Fri Jun 21 00:14:28 EDT 2024
Thu Jun 23 13:44:49 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-a294bf42355025e2e0b611a78f35d5b3000f5e0dde1e61fa1c690cf8baaa2acd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9087-4702
0000-0002-9337-5471
0000-0002-2577-0277
0000-0002-8632-297X
PQID 2599242524
PQPubID 2050685
PageCount 11
ParticipantIDs proquest_miscellaneous_2600822972
proquest_journals_2599242524
scitation_primary_10_1063_5_0062081
crossref_primary_10_1063_5_0062081
crossref_citationtrail_10_1063_5_0062081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211121
2021-11-21
PublicationDateYYYYMMDD 2021-11-21
PublicationDate_xml – month: 11
  year: 2021
  text: 20211121
  day: 21
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Greff-Lefftz, Legros (c8) 1995; 90
Alfè, Kresse, Gillan (c11) 2000; 61
Xian, Sun, Tsuchiya (c45) 2019; 124
Mound, Davies, Rost, Aurnou (c64) 2019; 12
Waseda, Suzuki (c54) 1970; 39
Assael, Kakosimos, Banish, Brillo, Egry, Brooks, Quested, Mills, Nagashima, Sato, Wakeham (c49) 2006; 35
Gaidos, Conrad, Manga, Hernlund (c7) 2010; 718
Kono, Kenney-Benson, Shibazaki, Park, Shen, Wang (c52) 2015; 241
Alfè, Gillan (c10) 1998; 81
Hakim, Rivoldini, Van Hoolst, Cottenier, Jaeken, Chust, Steinle-Neumann (c29) 2018; 313
Smylie, Brazhkin, Palmer (c61) 2009; 52
Perdew, Burke, Ernzerhof (c27) 1996; 77
Stähler, Khan, Banerdt, Lognonné, Giardini (c3) 2021; 373
Vočadlo, Alfè, Gillan, Price (c12) 2003; 140
Anderson, Ahrens (c63) 1994; 99
Bouchet, Mazevet, Morard, Guyot, Musella (c60) 2013; 87
Margot, Peale, Jurgens, Slade, Holin (c4) 2007; 316
Buffett (c5) 2000; 288
Cao, Wang, Huang, Yang, Wan, Wang (c20) 2014; 140
Kresse, Hafner (c25) 1994; 49
Rosenfeld (c17) 1977; 15
Anderson, Duba (c62) 1997; 102
Rutter, Secco, Liu, Uchida, Rivers, Sutton, Wang (c48) 2002; 66
Tarjus, Kivelson (c43) 1995; 103
Christensen, Aubert (c65) 2006; 166
Costigliola, Heyes, Schrøder, Dyre (c51) 2019; 150
Rosenfeld (c18) 1999; 11
Pozzo, Davies, Gubbins, Alfè (c14) 2013; 87
Nosé (c33) 1984; 81
Ichikawa, Tsuchiya (c15) 2015; 247
Giannozzi, Baroni, Bonini, Calandra, Car, Cavazzoni, Ceresoli, Chiarotti, Cococcioni, Dabo, Dal Corso, de Gironcoli, Fabris, Fratesi, Gebauer, Gerstmann, Gougoussis, Kokalj, Lazzeri, Martin-Samos, Marzari, Mauri, Mazzarello, Paolini, Pasquarello, Paulatto, Sbraccia, Scandolo, Sclauzero, Seitsonen, Smogunov, Umari, Wentzcovitch (c31) 2009; 21
Deng, Stixrude (c32) 2021; 48
Alfè, Price, Gillan (c30) 2002; 65
Stewart, Schmidt, van Westrenen, Liebske (c2) 2007; 316
Edgington, Vočadlo, Stixrude, Wood, Dobson, Holmström (c56) 2019; 528
Blöchl (c23) 1994; 50
Kresse, Joubert (c24) 1999; 59
Cao, Kong, Li, Wu, Liu (c22) 2011; 406
Unterborn, Panero (c16) 2019; 124
Birch (c1) 1952; 57
Christensen (c6) 2006; 444
Kresse, Furthmüller (c26) 1996; 6
Wagle, Steinle‐Neumann (c36) 2019; 124
Mermin (c34) 1965; 137
Li, Han, Luan, Li (c44) 2017; 26
Desjarlais (c59) 2013; 88
von Barth, Hedin (c57) 1972; 5
Dyre (c19) 2018; 149
Koči, Belonoshko, Ahuja (c13) 2007; 168
De Wijs, Kresse, Vočadlo, Dobson, Alfè, Gillan, Price (c42) 1998; 392
Sun, Xian, Zhang, Zhang, Zhang (c39) 2017; 147
Korell, French, Steinle-Neumann, Redmer (c55) 2019; 122
Sjostrom, Crockett (c28) 2018; 97
Lin, Blanco, Goddard (c35) 2003; 119
Dobson (c46) 2002; 130
Cohen, Turnbull (c50) 1959; 31
Sun, Brodholt, Li, Vočadlo (c21) 2018; 98
Meyer, Hennig, Kargl, Unruh (c47) 2019; 31
(2023080306472376800_c62) 1997; 102
(2023080306472376800_c8) 1995; 90
(2023080306472376800_c38) 1987
(2023080306472376800_c64) 2019; 12
(2023080306472376800_c65) 2006; 166
(2023080306472376800_c50) 1959; 31
(2023080306472376800_c42) 1998; 392
(2023080306472376800_c15) 2015; 247
(2023080306472376800_c47) 2019; 31
(2023080306472376800_c57) 1972; 5
(2023080306472376800_c49) 2006; 35
(2023080306472376800_c3) 2021; 373
(2023080306472376800_c10) 1998; 81
(2023080306472376800_c12) 2003; 140
(2023080306472376800_c30) 2002; 65
(2023080306472376800_c1) 1952; 57
(2023080306472376800_c17) 1977; 15
(2023080306472376800_c46) 2002; 130
(2023080306472376800_c40) 2013
(2023080306472376800_c2) 2007; 316
(2023080306472376800_c63) 1994; 99
(2023080306472376800_c31) 2009; 21
(2023080306472376800_c41) 2000
(2023080306472376800_c25) 1994; 49
(2023080306472376800_c59) 2013; 88
(2023080306472376800_c5) 2000; 288
(2023080306472376800_c35) 2003; 119
(2023080306472376800_c32) 2021; 48
(2023080306472376800_c37) 2021
(2023080306472376800_c61) 2009; 52
(2023080306472376800_c6) 2006; 444
(2023080306472376800_c20) 2014; 140
(2023080306472376800_c21) 2018; 98
(2023080306472376800_c39) 2017; 147
(2023080306472376800_c28) 2018; 97
(2023080306472376800_c54) 1970; 39
(2023080306472376800_c14) 2013; 87
(2023080306472376800_c60) 2013; 87
(2023080306472376800_c22) 2011; 406
(2023080306472376800_c29) 2018; 313
(2023080306472376800_c36) 2019; 124
(2023080306472376800_c19) 2018; 149
(2023080306472376800_c7) 2010; 718
(2023080306472376800_c4) 2007; 316
(2023080306472376800_c33) 1984; 81
(2023080306472376800_c53) 1998
(2023080306472376800_c51) 2019; 150
(2023080306472376800_c48) 2002; 66
(2023080306472376800_c56) 2019; 528
(2023080306472376800_c58) 2020
(2023080306472376800_c44) 2017; 26
(2023080306472376800_c34) 1965; 137
(2023080306472376800_c43) 1995; 103
(2023080306472376800_c52) 2015; 241
(2023080306472376800_c23) 1994; 50
Schubert (2023080306472376800_c9) 2015
(2023080306472376800_c18) 1999; 11
(2023080306472376800_c24) 1999; 59
(2023080306472376800_c26) 1996; 6
(2023080306472376800_c13) 2007; 168
(2023080306472376800_c16) 2019; 124
(2023080306472376800_c55) 2019; 122
(2023080306472376800_c27) 1996; 77
(2023080306472376800_c45) 2019; 124
(2023080306472376800_c11) 2000; 61
References_xml – volume: 61
  start-page: 132
  year: 2000
  ident: c11
  article-title: Structure and dynamics of liquid iron under Earth’s core conditions
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 575
  year: 2019
  ident: c64
  article-title: Regional stratification at the top of Earth’s core due to core-mantle boundary heat flux variations
  publication-title: Nat. Geosci.
– volume: 11
  start-page: 5415
  year: 1999
  ident: c18
  article-title: A quasi-universal scaling law for atomic transport in simple fluids
  publication-title: J. Phys.: Condens. Matter
– volume: 124
  start-page: 11105
  year: 2019
  ident: c45
  article-title: Viscoelasticity of liquid iron at conditions of the Earth’s outer core
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 373
  start-page: 443
  year: 2021
  ident: c3
  article-title: Seismic detection of the martian core
  publication-title: Science
– volume: 149
  start-page: 210901
  year: 2018
  ident: c19
  article-title: Perspective: Excess-entropy scaling
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 395401
  year: 2019
  ident: c47
  article-title: Iron self diffusion in liquid pure iron and iron-carbon alloys
  publication-title: J. Phys.: Condens. Matter
– volume: 140
  start-page: 114505
  year: 2014
  ident: c20
  article-title: Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures
  publication-title: J. Chem. Phys.
– volume: 87
  start-page: 014110
  year: 2013
  ident: c14
  article-title: Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions
  publication-title: Phys. Rev. B
– volume: 168
  start-page: 890
  year: 2007
  ident: c13
  article-title: Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth’s outer core
  publication-title: Geophys. J. Int.
– volume: 130
  start-page: 271
  year: 2002
  ident: c46
  article-title: Self-diffusion in liquid Fe at high pressure
  publication-title: Phys. Earth Planet. Inter.
– volume: 288
  start-page: 2007
  year: 2000
  ident: c5
  article-title: Earth’s core and the geodynamo
  publication-title: Science
– volume: 57
  start-page: 227
  year: 1952
  ident: c1
  article-title: Elasticity and constitution of the Earth’s interior
  publication-title: J. Geophys. Res.
– volume: 444
  start-page: 1056
  year: 2006
  ident: c6
  article-title: A deep dynamo generating Mercury’s magnetic field
  publication-title: Nature
– volume: 50
  start-page: 17953
  year: 1994
  ident: c23
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 97
  start-page: 053209
  year: 2018
  ident: c28
  article-title: Quantum molecular dynamics of warm dense iron and a five-phase equation of state
  publication-title: Phys. Rev. E
– volume: 31
  start-page: 1164
  year: 1959
  ident: c50
  article-title: Molecular transport in liquids and glasses
  publication-title: J. Chem. Phys.
– volume: 313
  start-page: 61
  year: 2018
  ident: c29
  article-title: A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths
  publication-title: Icarus
– volume: 103
  start-page: 3071
  year: 1995
  ident: c43
  article-title: Breakdown of the Stokes-Einstein relation in supercooled liquids
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 016102
  year: 2017
  ident: c44
  article-title: Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
  publication-title: Chin. Phys. B
– volume: 87
  start-page: 094102
  year: 2013
  ident: c60
  article-title: Ab initio equation of state of iron up to 1500 GPa
  publication-title: Phys. Rev. B
– volume: 90
  start-page: 115
  year: 1995
  ident: c8
  article-title: Core-mantle coupling and viscoelastic deformations
  publication-title: Phys. Earth Planet. Inter.
– volume: 81
  start-page: 511
  year: 1984
  ident: c33
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
– volume: 15
  start-page: 2545
  year: 1977
  ident: c17
  article-title: Relation between the transport coefficients and the internal entropy of simple systems
  publication-title: Phys. Rev. A
– volume: 122
  start-page: 086601
  year: 2019
  ident: c55
  article-title: Paramagnetic-to-diamagnetic transition in dense liquid iron and its influence on electronic transport properties
  publication-title: Phys. Rev. Lett.
– volume: 316
  start-page: 710
  year: 2007
  ident: c4
  article-title: Large longitude libration of Mercury reveals a molten core
  publication-title: Science
– volume: 59
  start-page: 1758
  year: 1999
  ident: c24
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 81
  start-page: 5161
  year: 1998
  ident: c10
  article-title: First-principles calculation of transport coefficients
  publication-title: Phys. Rev. Lett.
– volume: 88
  start-page: 062145
  year: 2013
  ident: c59
  article-title: First-principles calculation of entropy for liquid metals
  publication-title: Phys. Rev. E
– volume: 99
  start-page: 4273
  year: 1994
  ident: c63
  article-title: An equation of state for liquid iron and implications for the Earth’s core
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 52
  start-page: 79
  year: 2009
  ident: c61
  article-title: Direct observations of the viscosity of Earth’s outer core and extrapolation of measurements of the viscosity of liquid iron
  publication-title: Phys.-Usp.
– volume: 316
  start-page: 1323
  year: 2007
  ident: c2
  article-title: Mars: A new core-crystallization regime
  publication-title: Science
– volume: 124
  start-page: 3350
  year: 2019
  ident: c36
  article-title: Liquid iron equation of state to the terapascal regime from ab initio simulations
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 140
  start-page: 101
  year: 2003
  ident: c12
  article-title: The properties of iron under core conditions from first principles calculations
  publication-title: Phys. Earth Planet. Inter.
– volume: 247
  start-page: 27
  year: 2015
  ident: c15
  article-title: Atomic transport property of Fe-O liquid alloys in the Earth’s outer core P, T condition
  publication-title: Phys. Earth Planet. Inter.
– volume: 166
  start-page: 97
  year: 2006
  ident: c65
  article-title: Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields
  publication-title: Geophys. J. Int.
– volume: 124
  start-page: 1704
  year: 2019
  ident: c16
  article-title: The pressure and temperature limits of likely rocky exoplanets
  publication-title: J. Geophys. Res.: Planets
– volume: 77
  start-page: 3865
  year: 1996
  ident: c27
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 147
  start-page: 194505
  year: 2017
  ident: c39
  article-title: Two-phase thermodynamic model for computing entropies of liquids reanalyzed
  publication-title: J. Chem. Phys.
– volume: 150
  start-page: 021101
  year: 2019
  ident: c51
  article-title: Revisiting the Stokes-Einstein relation without a hydrodynamic diameter
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 1629
  year: 1972
  ident: c57
  article-title: A local exchange-correlation potential for the spin polarized case. I
  publication-title: J. Phys. C: Solid State Phys.
– volume: 6
  start-page: 15
  year: 1996
  ident: c26
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 406
  start-page: 3114
  year: 2011
  ident: c22
  article-title: Revisiting scaling laws for the diffusion coefficients in simple melts based on the structural deviation from hard-sphere-like case
  publication-title: Physica B
– volume: 66
  start-page: 060102(R)
  year: 2002
  ident: c48
  article-title: Viscosity of liquid Fe at high pressure
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 669
  year: 1970
  ident: c54
  article-title: Atomic distribution and magnetic moment in liquid iron by neutron diffraction
  publication-title: Phys. Status Solidi B
– volume: 137
  start-page: A1441
  year: 1965
  ident: c34
  article-title: Thermal properties of the inhomogeneous electron gas
  publication-title: Phys. Rev.
– volume: 392
  start-page: 805
  year: 1998
  ident: c42
  article-title: The viscosity of liquid iron at the physical conditions of the Earth’s core
  publication-title: Nature
– volume: 241
  start-page: 57
  year: 2015
  ident: c52
  article-title: High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray imaging
  publication-title: Phys. Earth Planet. Inter.
– volume: 718
  start-page: 596
  year: 2010
  ident: c7
  article-title: Thermodynamic limits on magnetodynamos in rocky exoplanets
  publication-title: Astrophys. J.
– volume: 65
  start-page: 165118
  year: 2002
  ident: c30
  article-title: Iron under earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations
  publication-title: Phys. Rev. B
– volume: 98
  start-page: 224301
  year: 2018
  ident: c21
  article-title: Melting properties from ab initio free energy calculations: Iron at the Earth’s inner-core boundary
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 14251
  year: 1994
  ident: c25
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 395502
  year: 2009
  ident: c31
  article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys.: Condens. Matter
– volume: 102
  start-page: 22659
  year: 1997
  ident: c62
  article-title: Experimental melting curve of iron revisited
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 48
  start-page: e2021GL093806
  year: 2021
  ident: c32
  article-title: Thermal conductivity of silicate liquid determined by machine learning potentials
  publication-title: Geophys. Res. Lett.
– volume: 35
  start-page: 285
  year: 2006
  ident: c49
  article-title: Reference data for the density and viscosity of liquid aluminum and liquid iron
  publication-title: J. Phys. Chem. Ref. Data
– volume: 528
  start-page: 115838
  year: 2019
  ident: c56
  article-title: The top-down crystallisation of Mercury’s core
  publication-title: Earth Planet. Sci. Lett.
– volume: 119
  start-page: 11792
  year: 2003
  ident: c35
  article-title: The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids
  publication-title: J. Chem. Phys.
– volume: 406
  start-page: 3114
  year: 2011
  ident: 2023080306472376800_c22
  article-title: Revisiting scaling laws for the diffusion coefficients in simple melts based on the structural deviation from hard-sphere-like case
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.05.023
– volume: 5
  start-page: 1629
  year: 1972
  ident: 2023080306472376800_c57
  article-title: A local exchange-correlation potential for the spin polarized case. I
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/5/13/012
– volume: 6
  start-page: 15
  year: 1996
  ident: 2023080306472376800_c26
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 140
  start-page: 114505
  year: 2014
  ident: 2023080306472376800_c20
  article-title: Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4868550
– volume: 97
  start-page: 053209
  year: 2018
  ident: 2023080306472376800_c28
  article-title: Quantum molecular dynamics of warm dense iron and a five-phase equation of state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.053209
– volume: 373
  start-page: 443
  year: 2021
  ident: 2023080306472376800_c3
  article-title: Seismic detection of the martian core
  publication-title: Science
  doi: 10.1126/science.abi7730
– volume: 444
  start-page: 1056
  year: 2006
  ident: 2023080306472376800_c6
  article-title: A deep dynamo generating Mercury’s magnetic field
  publication-title: Nature
  doi: 10.1038/nature05342
– volume: 124
  start-page: 11105
  year: 2019
  ident: 2023080306472376800_c45
  article-title: Viscoelasticity of liquid iron at conditions of the Earth’s outer core
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/2019jb017721
– volume: 35
  start-page: 285
  year: 2006
  ident: 2023080306472376800_c49
  article-title: Reference data for the density and viscosity of liquid aluminum and liquid iron
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.2149380
– volume: 99
  start-page: 4273
  year: 1994
  ident: 2023080306472376800_c63
  article-title: An equation of state for liquid iron and implications for the Earth’s core
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/93jb03158
– volume: 11
  start-page: 5415
  year: 1999
  ident: 2023080306472376800_c18
  article-title: A quasi-universal scaling law for atomic transport in simple fluids
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/11/28/303
– volume: 149
  start-page: 210901
  year: 2018
  ident: 2023080306472376800_c19
  article-title: Perspective: Excess-entropy scaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5055064
– volume: 147
  start-page: 194505
  year: 2017
  ident: 2023080306472376800_c39
  article-title: Two-phase thermodynamic model for computing entropies of liquids reanalyzed
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5001798
– volume: 48
  start-page: e2021GL093806
  year: 2021
  ident: 2023080306472376800_c32
  article-title: Thermal conductivity of silicate liquid determined by machine learning potentials
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL093806
– volume: 130
  start-page: 271
  year: 2002
  ident: 2023080306472376800_c46
  article-title: Self-diffusion in liquid Fe at high pressure
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/s0031-9201(02)00011-0
– volume: 52
  start-page: 79
  year: 2009
  ident: 2023080306472376800_c61
  article-title: Direct observations of the viscosity of Earth’s outer core and extrapolation of measurements of the viscosity of liquid iron
  publication-title: Phys.-Usp.
  doi: 10.3367/ufne.0179.200901d.0091
– volume: 124
  start-page: 1704
  year: 2019
  ident: 2023080306472376800_c16
  article-title: The pressure and temperature limits of likely rocky exoplanets
  publication-title: J. Geophys. Res.: Planets
  doi: 10.1029/2018je005844
– volume: 140
  start-page: 101
  year: 2003
  ident: 2023080306472376800_c12
  article-title: The properties of iron under core conditions from first principles calculations
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2003.08.001
– volume: 528
  start-page: 115838
  year: 2019
  ident: 2023080306472376800_c56
  article-title: The top-down crystallisation of Mercury’s core
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2019.115838
– volume-title: NIST-JANAF Thermochemical Tables
  year: 1998
  ident: 2023080306472376800_c53
– volume: 166
  start-page: 97
  year: 2006
  ident: 2023080306472376800_c65
  article-title: Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246x.2006.03009.x
– volume-title: Statistical Mechanics
  year: 2000
  ident: 2023080306472376800_c41
– volume: 81
  start-page: 511
  year: 1984
  ident: 2023080306472376800_c33
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 15
  start-page: 2545
  year: 1977
  ident: 2023080306472376800_c17
  article-title: Relation between the transport coefficients and the internal entropy of simple systems
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.15.2545
– volume: 316
  start-page: 710
  year: 2007
  ident: 2023080306472376800_c4
  article-title: Large longitude libration of Mercury reveals a molten core
  publication-title: Science
  doi: 10.1126/science.1140514
– volume: 39
  start-page: 669
  year: 1970
  ident: 2023080306472376800_c54
  article-title: Atomic distribution and magnetic moment in liquid iron by neutron diffraction
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.19700390235
– volume: 61
  start-page: 132
  year: 2000
  ident: 2023080306472376800_c11
  article-title: Structure and dynamics of liquid iron under Earth’s core conditions
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.61.132
– volume: 87
  start-page: 094102
  year: 2013
  ident: 2023080306472376800_c60
  article-title: Ab initio equation of state of iron up to 1500 GPa
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.87.094102
– volume: 26
  start-page: 016102
  year: 2017
  ident: 2023080306472376800_c44
  article-title: Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/1/016102
– volume: 87
  start-page: 014110
  year: 2013
  ident: 2023080306472376800_c14
  article-title: Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.87.014110
– volume: 168
  start-page: 890
  year: 2007
  ident: 2023080306472376800_c13
  article-title: Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth’s outer core
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246x.2006.03256.x
– volume-title: Theory of Simple Liquids
  year: 2013
  ident: 2023080306472376800_c40
– volume: 65
  start-page: 165118
  year: 2002
  ident: 2023080306472376800_c30
  article-title: Iron under earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.65.165118
– volume: 49
  start-page: 14251
  year: 1994
  ident: 2023080306472376800_c25
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.49.14251
– volume: 288
  start-page: 2007
  year: 2000
  ident: 2023080306472376800_c5
  article-title: Earth’s core and the geodynamo
  publication-title: Science
  doi: 10.1126/science.288.5473.2007
– volume: 103
  start-page: 3071
  year: 1995
  ident: 2023080306472376800_c43
  article-title: Breakdown of the Stokes-Einstein relation in supercooled liquids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470495
– volume: 98
  start-page: 224301
  year: 2018
  ident: 2023080306472376800_c21
  article-title: Melting properties from ab initio free energy calculations: Iron at the Earth’s inner-core boundary
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.98.224301
– volume: 150
  start-page: 021101
  year: 2019
  ident: 2023080306472376800_c51
  article-title: Revisiting the Stokes-Einstein relation without a hydrodynamic diameter
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5080662
– volume: 247
  start-page: 27
  year: 2015
  ident: 2023080306472376800_c15
  article-title: Atomic transport property of Fe-O liquid alloys in the Earth’s outer core P, T condition
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2015.03.006
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2023080306472376800_c23
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.50.17953
– volume: 137
  start-page: A1441
  year: 1965
  ident: 2023080306472376800_c34
  article-title: Thermal properties of the inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.137.a1441
– volume: 124
  start-page: 3350
  year: 2019
  ident: 2023080306472376800_c36
  article-title: Liquid iron equation of state to the terapascal regime from ab initio simulations
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/2018jb016994
– volume: 119
  start-page: 11792
  year: 2003
  ident: 2023080306472376800_c35
  article-title: The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1624057
– volume: 88
  start-page: 062145
  year: 2013
  ident: 2023080306472376800_c59
  article-title: First-principles calculation of entropy for liquid metals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.062145
– volume: 12
  start-page: 575
  year: 2019
  ident: 2023080306472376800_c64
  article-title: Regional stratification at the top of Earth’s core due to core-mantle boundary heat flux variations
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0381-z
– start-page: 27
  volume-title: Treatise on Geophysics
  year: 2015
  ident: 2023080306472376800_c9
  article-title: 8.02—Energetics of the core
– volume: 31
  start-page: 1164
  year: 1959
  ident: 2023080306472376800_c50
  article-title: Molecular transport in liquids and glasses
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730566
– volume: 31
  start-page: 395401
  year: 2019
  ident: 2023080306472376800_c47
  article-title: Iron self diffusion in liquid pure iron and iron-carbon alloys
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/1361-648x/ab2855
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023080306472376800_c27
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.77.3865
– volume: 316
  start-page: 1323
  year: 2007
  ident: 2023080306472376800_c2
  article-title: Mars: A new core-crystallization regime
  publication-title: Science
  doi: 10.1126/science.1140549
– volume-title: Thermal Properties of Liquid Iron at Conditions of Planetary Cores
  year: 2021
  ident: 2023080306472376800_c37
– volume: 57
  start-page: 227
  year: 1952
  ident: 2023080306472376800_c1
  article-title: Elasticity and constitution of the Earth’s interior
  publication-title: J. Geophys. Res.
  doi: 10.1029/jz057i002p00227
– volume: 81
  start-page: 5161
  year: 1998
  ident: 2023080306472376800_c10
  article-title: First-principles calculation of transport coefficients
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.81.5161
– volume-title: Computer Simulations of Liquids
  year: 1987
  ident: 2023080306472376800_c38
– volume: 718
  start-page: 596
  year: 2010
  ident: 2023080306472376800_c7
  article-title: Thermodynamic limits on magnetodynamos in rocky exoplanets
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637x/718/2/596
– volume: 241
  start-page: 57
  year: 2015
  ident: 2023080306472376800_c52
  article-title: High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray imaging
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2015.02.006
– volume: 102
  start-page: 22659
  year: 1997
  ident: 2023080306472376800_c62
  article-title: Experimental melting curve of iron revisited
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/97jb01641
– volume-title: Electronic Structure: Basic Theory and Practical Methods
  year: 2020
  ident: 2023080306472376800_c58
– volume: 392
  start-page: 805
  year: 1998
  ident: 2023080306472376800_c42
  article-title: The viscosity of liquid iron at the physical conditions of the Earth’s core
  publication-title: Nature
  doi: 10.1038/33905
– volume: 313
  start-page: 61
  year: 2018
  ident: 2023080306472376800_c29
  article-title: A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths
  publication-title: Icarus
  doi: 10.1016/j.icarus.2018.05.005
– volume: 21
  start-page: 395502
  year: 2009
  ident: 2023080306472376800_c31
  article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 66
  start-page: 060102(R)
  year: 2002
  ident: 2023080306472376800_c48
  article-title: Viscosity of liquid Fe at high pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.66.060102
– volume: 122
  start-page: 086601
  year: 2019
  ident: 2023080306472376800_c55
  article-title: Paramagnetic-to-diamagnetic transition in dense liquid iron and its influence on electronic transport properties
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.086601
– volume: 90
  start-page: 115
  year: 1995
  ident: 2023080306472376800_c8
  article-title: Core-mantle coupling and viscoelastic deformations
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(95)05078-p
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2023080306472376800_c24
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.59.1758
SSID ssj0001724
Score 2.453514
Snippet Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 194505
SubjectTerms Diffusion coefficient
Earth core
Entropy
Extrasolar planets
Invariance
Iron
Mathematical analysis
Melting points
Molecular dynamics
Physics
Planetary cores
Rescaling
Rotating generators
Scale invariance
Scaling laws
Self diffusion
Terrestrial planets
Transport properties
Viscosity
Title Atomic transport properties of liquid iron at conditions of planetary cores
URI http://dx.doi.org/10.1063/5.0062081
https://www.proquest.com/docview/2599242524
https://www.proquest.com/docview/2600822972
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_0itQX0ap4WmX9eBBkbbJJ9pLHoyqlVlFs8XwKu8lGAuXubHM--Nc7k0k2V3tI9SWEZPLBzOzOb3bnA-DFJI0j2vChsEErcSQaaYNISTSvZaaL2CnbVvv8qA9O4sNZMhvaHbXZJY19XfzamFfyP1LFayhXypL9B8n6l-IFPEf54hEljMcryXjaUE4xtXngAuUUbbWkQGmuJHta_1jV5StKZKOcRfR8y9oHvi0pyrWhmDkqZHm-DlKHdLEWqBZ9TQFeBfEg_KgNBPjc2752Z4l7HZvFpfXob7X8bgbKWc0Lr4e1kV9dvb72oEJKwuOEZp8LEErygdia8BQapJmcaG4C6udYrsXbK1O2cfJGtIQcpzUurQJu5HKxQPYfhsuHE7Yb6TrKk7x79DpsKXQb1Ai2pm8-HH3xthnhWleXm_-7rzWloz3_3YsIZXA7thGTcHjEGgI5vg23OomIKevBHbjm5juwvd937NuBG59YQHfhPWuG8JohBs0Qi0qwZgjSDGEaMWgG3fSaIVrNuAcn794e7x_Irm2GLCIdNNKoLLYVwmR0PlXilAusDkMzSasoKRMbIRuqxAVo10Knw8qEBQqrqFJrjFGmKKP7MJov5u4BCI1wzzqFsD5NY5uWmcUXZIj6ShzgRZWN4WXPqrxnDrU2Oc0viWQMzzzpkgupbCLa7fmdd-PsPEcHPSPHWMVjeOpvI2tpawsZslghjebWBRM1hudeTn_70Aaqn4uzgSJfltXDq_zzI7g5DI1dGDVnK_cYgWpjn3Ta9xth7JBd
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+transport+properties+of+liquid+iron+at+conditions+of+planetary+cores&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Li%2C+Qing&rft.au=Sun%2C+Tao&rft.au=Zhang%2C+Yi-gang&rft.au=Xian%2C+Jia-Wei&rft.date=2021-11-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=155&rft.issue=19&rft_id=info:doi/10.1063%2F5.0062081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0062081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon