Atomic transport properties of liquid iron at conditions of planetary cores
Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). Howe...
Saved in:
Published in | The Journal of chemical physics Vol. 155; no. 19; pp. 194505 - 194515 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P–T range associated with the Earth’s outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(−0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes. |
---|---|
AbstractList | Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P-T range associated with the Earth's outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(-0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes.Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P-T range associated with the Earth's outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(-0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes. Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on the sizes of planets and their thermal histories, planetary cores may be subject to quite different pressures (P) and temperatures (T). However, previous studies on the topic mainly focus on the P–T range associated with the Earth’s outer core; a systematic study covering conditions from small planets to massive exoplanets is lacking. Here, we calculate the self-diffusion coefficient D and viscosity η of liquid iron via ab initio molecular dynamics from 7.0 to 25 g/cm3 and 1800 to 25 000 K. We find that D and η are intimately related and can be fitted together using a generalized free volume model. The resulting expressions are simpler than those from previous studies where D and η were treated separately. Moreover, the new expressions are in accordance with the quasi-universal atomic excess entropy (Sex) scaling law for strongly coupled liquids, with normalized diffusivity D⋆ = 0.621 exp(0.842Sex) and viscosity η⋆ = 0.171 exp(−0.843Sex). We determine D and η along two thermal profiles of great geophysical importance: the iron melting curve and the isentropic line anchored at the ambient melting point. The variations of D and η along these thermal profiles can be explained by the atomic excess entropy scaling law, demonstrating the dynamic invariance of the system under uniform time and space rescaling. Accordingly, scale invariance may serve as an underlying mechanism to unify planetary dynamos of different sizes. |
Author | Sun, Tao Xian, Jia-Wei Li, Qing Vočadlo, Lidunka Zhang, Yi-gang |
Author_xml | – sequence: 1 givenname: Qing surname: Li fullname: Li, Qing organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Tao surname: Sun fullname: Sun, Tao organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Yi-gang surname: Zhang fullname: Zhang, Yi-gang organization: Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Jia-Wei surname: Xian fullname: Xian, Jia-Wei organization: Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics – sequence: 5 givenname: Lidunka surname: Vočadlo fullname: Vočadlo, Lidunka organization: Department of Earth Sciences, University College London |
BookMark | eNp9kF9LwzAUxYNMcJs--A0KvqjQ7SZt0vZxDP_hwBd9DmmaQEbXdEkq-O3N3EQY6tOFe3_ncs6ZoFFnO4XQJYYZBpbN6QyAESjxCRpjKKu0YBWM0BiA4LRiwM7QxPs1AOCC5GP0vAh2Y2QSnOh8b11Iemd75YJRPrE6ac12ME1inO0SERJpu8YEY7uvY9-KTgXhPuLeKX-OTrVovbo4zCl6u797XT6mq5eHp-VilcqMQUgFqfJa5ySjFAhVREHNMBZFqTPa0DqL3jRV0DQKK4a1wDJGkLqshRBEyCabouv932h1Oygf-MZ4qdqdGzt4ThhASUhVkIheHaFrO7guuuOEVhXJCSV5pG72lHTWe6c0753ZxFwcA9_Vyik_1BrZ-RErTRC7SmKFpv1VcbtX-G_y3_d_wu_W_YC8b3T2CVZ3lww |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1063_5_0150871 crossref_primary_10_1088_1361_648X_accfdd crossref_primary_10_1103_PhysRevB_109_054112 crossref_primary_10_1021_acs_jpcb_3c07184 crossref_primary_10_1016_j_physrep_2023_11_004 crossref_primary_10_1088_2632_2153_acac01 crossref_primary_10_1063_5_0199310 crossref_primary_10_1103_PhysRevB_111_094101 crossref_primary_10_1029_2021JE007015 crossref_primary_10_3390_molecules29235587 crossref_primary_10_1063_5_0230219 crossref_primary_10_1016_j_pepi_2022_106907 |
Cites_doi | 10.1016/j.physb.2011.05.023 10.1088/0022-3719/5/13/012 10.1016/0927-0256(96)00008-0 10.1063/1.4868550 10.1103/PhysRevE.97.053209 10.1126/science.abi7730 10.1038/nature05342 10.1029/2019jb017721 10.1063/1.2149380 10.1029/93jb03158 10.1088/0953-8984/11/28/303 10.1063/1.5055064 10.1063/1.5001798 10.1029/2021GL093806 10.1016/s0031-9201(02)00011-0 10.3367/ufne.0179.200901d.0091 10.1029/2018je005844 10.1016/j.pepi.2003.08.001 10.1016/j.epsl.2019.115838 10.1111/j.1365-246x.2006.03009.x 10.1063/1.447334 10.1103/physreva.15.2545 10.1126/science.1140514 10.1002/pssb.19700390235 10.1103/physrevb.61.132 10.1103/physrevb.87.094102 10.1088/1674-1056/26/1/016102 10.1103/physrevb.87.014110 10.1111/j.1365-246x.2006.03256.x 10.1103/physrevb.65.165118 10.1103/physrevb.49.14251 10.1126/science.288.5473.2007 10.1063/1.470495 10.1103/physrevb.98.224301 10.1063/1.5080662 10.1016/j.pepi.2015.03.006 10.1103/physrevb.50.17953 10.1103/physrev.137.a1441 10.1029/2018jb016994 10.1063/1.1624057 10.1103/PhysRevE.88.062145 10.1038/s41561-019-0381-z 10.1063/1.1730566 10.1088/1361-648x/ab2855 10.1103/physrevlett.77.3865 10.1126/science.1140549 10.1029/jz057i002p00227 10.1103/physrevlett.81.5161 10.1088/0004-637x/718/2/596 10.1016/j.pepi.2015.02.006 10.1029/97jb01641 10.1038/33905 10.1016/j.icarus.2018.05.005 10.1088/0953-8984/21/39/395502 10.1103/physrevb.66.060102 10.1103/PhysRevLett.122.086601 10.1016/0031-9201(95)05078-p 10.1103/physrevb.59.1758 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0062081 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10_1063_5_0062081 jcp |
GrantInformation_xml | – fundername: Chinese Academy of Sciences grantid: XDB18000000 funderid: https://doi.org/10.13039/501100002367 – fundername: Science and Technology Facilities Council grantid: ST/T000163/1 funderid: https://doi.org/10.13039/501100000271 – fundername: National Natural Science Foundation of China grantid: 41972044 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c360t-a294bf42355025e2e0b611a78f35d5b3000f5e0dde1e61fa1c690cf8baaa2acd3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 01:35:35 EDT 2025 Sun Jun 29 16:17:56 EDT 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 00:27:54 EDT 2025 Fri Jun 21 00:14:28 EDT 2024 Thu Jun 23 13:44:49 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c360t-a294bf42355025e2e0b611a78f35d5b3000f5e0dde1e61fa1c690cf8baaa2acd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9087-4702 0000-0002-9337-5471 0000-0002-2577-0277 0000-0002-8632-297X |
PQID | 2599242524 |
PQPubID | 2050685 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2600822972 proquest_journals_2599242524 scitation_primary_10_1063_5_0062081 crossref_primary_10_1063_5_0062081 crossref_citationtrail_10_1063_5_0062081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211121 2021-11-21 |
PublicationDateYYYYMMDD | 2021-11-21 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211121 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Greff-Lefftz, Legros (c8) 1995; 90 Alfè, Kresse, Gillan (c11) 2000; 61 Xian, Sun, Tsuchiya (c45) 2019; 124 Mound, Davies, Rost, Aurnou (c64) 2019; 12 Waseda, Suzuki (c54) 1970; 39 Assael, Kakosimos, Banish, Brillo, Egry, Brooks, Quested, Mills, Nagashima, Sato, Wakeham (c49) 2006; 35 Gaidos, Conrad, Manga, Hernlund (c7) 2010; 718 Kono, Kenney-Benson, Shibazaki, Park, Shen, Wang (c52) 2015; 241 Alfè, Gillan (c10) 1998; 81 Hakim, Rivoldini, Van Hoolst, Cottenier, Jaeken, Chust, Steinle-Neumann (c29) 2018; 313 Smylie, Brazhkin, Palmer (c61) 2009; 52 Perdew, Burke, Ernzerhof (c27) 1996; 77 Stähler, Khan, Banerdt, Lognonné, Giardini (c3) 2021; 373 Vočadlo, Alfè, Gillan, Price (c12) 2003; 140 Anderson, Ahrens (c63) 1994; 99 Bouchet, Mazevet, Morard, Guyot, Musella (c60) 2013; 87 Margot, Peale, Jurgens, Slade, Holin (c4) 2007; 316 Buffett (c5) 2000; 288 Cao, Wang, Huang, Yang, Wan, Wang (c20) 2014; 140 Kresse, Hafner (c25) 1994; 49 Rosenfeld (c17) 1977; 15 Anderson, Duba (c62) 1997; 102 Rutter, Secco, Liu, Uchida, Rivers, Sutton, Wang (c48) 2002; 66 Tarjus, Kivelson (c43) 1995; 103 Christensen, Aubert (c65) 2006; 166 Costigliola, Heyes, Schrøder, Dyre (c51) 2019; 150 Rosenfeld (c18) 1999; 11 Pozzo, Davies, Gubbins, Alfè (c14) 2013; 87 Nosé (c33) 1984; 81 Ichikawa, Tsuchiya (c15) 2015; 247 Giannozzi, Baroni, Bonini, Calandra, Car, Cavazzoni, Ceresoli, Chiarotti, Cococcioni, Dabo, Dal Corso, de Gironcoli, Fabris, Fratesi, Gebauer, Gerstmann, Gougoussis, Kokalj, Lazzeri, Martin-Samos, Marzari, Mauri, Mazzarello, Paolini, Pasquarello, Paulatto, Sbraccia, Scandolo, Sclauzero, Seitsonen, Smogunov, Umari, Wentzcovitch (c31) 2009; 21 Deng, Stixrude (c32) 2021; 48 Alfè, Price, Gillan (c30) 2002; 65 Stewart, Schmidt, van Westrenen, Liebske (c2) 2007; 316 Edgington, Vočadlo, Stixrude, Wood, Dobson, Holmström (c56) 2019; 528 Blöchl (c23) 1994; 50 Kresse, Joubert (c24) 1999; 59 Cao, Kong, Li, Wu, Liu (c22) 2011; 406 Unterborn, Panero (c16) 2019; 124 Birch (c1) 1952; 57 Christensen (c6) 2006; 444 Kresse, Furthmüller (c26) 1996; 6 Wagle, Steinle‐Neumann (c36) 2019; 124 Mermin (c34) 1965; 137 Li, Han, Luan, Li (c44) 2017; 26 Desjarlais (c59) 2013; 88 von Barth, Hedin (c57) 1972; 5 Dyre (c19) 2018; 149 Koči, Belonoshko, Ahuja (c13) 2007; 168 De Wijs, Kresse, Vočadlo, Dobson, Alfè, Gillan, Price (c42) 1998; 392 Sun, Xian, Zhang, Zhang, Zhang (c39) 2017; 147 Korell, French, Steinle-Neumann, Redmer (c55) 2019; 122 Sjostrom, Crockett (c28) 2018; 97 Lin, Blanco, Goddard (c35) 2003; 119 Dobson (c46) 2002; 130 Cohen, Turnbull (c50) 1959; 31 Sun, Brodholt, Li, Vočadlo (c21) 2018; 98 Meyer, Hennig, Kargl, Unruh (c47) 2019; 31 (2023080306472376800_c62) 1997; 102 (2023080306472376800_c8) 1995; 90 (2023080306472376800_c38) 1987 (2023080306472376800_c64) 2019; 12 (2023080306472376800_c65) 2006; 166 (2023080306472376800_c50) 1959; 31 (2023080306472376800_c42) 1998; 392 (2023080306472376800_c15) 2015; 247 (2023080306472376800_c47) 2019; 31 (2023080306472376800_c57) 1972; 5 (2023080306472376800_c49) 2006; 35 (2023080306472376800_c3) 2021; 373 (2023080306472376800_c10) 1998; 81 (2023080306472376800_c12) 2003; 140 (2023080306472376800_c30) 2002; 65 (2023080306472376800_c1) 1952; 57 (2023080306472376800_c17) 1977; 15 (2023080306472376800_c46) 2002; 130 (2023080306472376800_c40) 2013 (2023080306472376800_c2) 2007; 316 (2023080306472376800_c63) 1994; 99 (2023080306472376800_c31) 2009; 21 (2023080306472376800_c41) 2000 (2023080306472376800_c25) 1994; 49 (2023080306472376800_c59) 2013; 88 (2023080306472376800_c5) 2000; 288 (2023080306472376800_c35) 2003; 119 (2023080306472376800_c32) 2021; 48 (2023080306472376800_c37) 2021 (2023080306472376800_c61) 2009; 52 (2023080306472376800_c6) 2006; 444 (2023080306472376800_c20) 2014; 140 (2023080306472376800_c21) 2018; 98 (2023080306472376800_c39) 2017; 147 (2023080306472376800_c28) 2018; 97 (2023080306472376800_c54) 1970; 39 (2023080306472376800_c14) 2013; 87 (2023080306472376800_c60) 2013; 87 (2023080306472376800_c22) 2011; 406 (2023080306472376800_c29) 2018; 313 (2023080306472376800_c36) 2019; 124 (2023080306472376800_c19) 2018; 149 (2023080306472376800_c7) 2010; 718 (2023080306472376800_c4) 2007; 316 (2023080306472376800_c33) 1984; 81 (2023080306472376800_c53) 1998 (2023080306472376800_c51) 2019; 150 (2023080306472376800_c48) 2002; 66 (2023080306472376800_c56) 2019; 528 (2023080306472376800_c58) 2020 (2023080306472376800_c44) 2017; 26 (2023080306472376800_c34) 1965; 137 (2023080306472376800_c43) 1995; 103 (2023080306472376800_c52) 2015; 241 (2023080306472376800_c23) 1994; 50 Schubert (2023080306472376800_c9) 2015 (2023080306472376800_c18) 1999; 11 (2023080306472376800_c24) 1999; 59 (2023080306472376800_c26) 1996; 6 (2023080306472376800_c13) 2007; 168 (2023080306472376800_c16) 2019; 124 (2023080306472376800_c55) 2019; 122 (2023080306472376800_c27) 1996; 77 (2023080306472376800_c45) 2019; 124 (2023080306472376800_c11) 2000; 61 |
References_xml | – volume: 61 start-page: 132 year: 2000 ident: c11 article-title: Structure and dynamics of liquid iron under Earth’s core conditions publication-title: Phys. Rev. B – volume: 12 start-page: 575 year: 2019 ident: c64 article-title: Regional stratification at the top of Earth’s core due to core-mantle boundary heat flux variations publication-title: Nat. Geosci. – volume: 11 start-page: 5415 year: 1999 ident: c18 article-title: A quasi-universal scaling law for atomic transport in simple fluids publication-title: J. Phys.: Condens. Matter – volume: 124 start-page: 11105 year: 2019 ident: c45 article-title: Viscoelasticity of liquid iron at conditions of the Earth’s outer core publication-title: J. Geophys. Res.: Solid Earth – volume: 373 start-page: 443 year: 2021 ident: c3 article-title: Seismic detection of the martian core publication-title: Science – volume: 149 start-page: 210901 year: 2018 ident: c19 article-title: Perspective: Excess-entropy scaling publication-title: J. Chem. Phys. – volume: 31 start-page: 395401 year: 2019 ident: c47 article-title: Iron self diffusion in liquid pure iron and iron-carbon alloys publication-title: J. Phys.: Condens. Matter – volume: 140 start-page: 114505 year: 2014 ident: c20 article-title: Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures publication-title: J. Chem. Phys. – volume: 87 start-page: 014110 year: 2013 ident: c14 article-title: Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions publication-title: Phys. Rev. B – volume: 168 start-page: 890 year: 2007 ident: c13 article-title: Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth’s outer core publication-title: Geophys. J. Int. – volume: 130 start-page: 271 year: 2002 ident: c46 article-title: Self-diffusion in liquid Fe at high pressure publication-title: Phys. Earth Planet. Inter. – volume: 288 start-page: 2007 year: 2000 ident: c5 article-title: Earth’s core and the geodynamo publication-title: Science – volume: 57 start-page: 227 year: 1952 ident: c1 article-title: Elasticity and constitution of the Earth’s interior publication-title: J. Geophys. Res. – volume: 444 start-page: 1056 year: 2006 ident: c6 article-title: A deep dynamo generating Mercury’s magnetic field publication-title: Nature – volume: 50 start-page: 17953 year: 1994 ident: c23 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 97 start-page: 053209 year: 2018 ident: c28 article-title: Quantum molecular dynamics of warm dense iron and a five-phase equation of state publication-title: Phys. Rev. E – volume: 31 start-page: 1164 year: 1959 ident: c50 article-title: Molecular transport in liquids and glasses publication-title: J. Chem. Phys. – volume: 313 start-page: 61 year: 2018 ident: c29 article-title: A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths publication-title: Icarus – volume: 103 start-page: 3071 year: 1995 ident: c43 article-title: Breakdown of the Stokes-Einstein relation in supercooled liquids publication-title: J. Chem. Phys. – volume: 26 start-page: 016102 year: 2017 ident: c44 article-title: Abnormal breakdown of Stokes-Einstein relation in liquid aluminium publication-title: Chin. Phys. B – volume: 87 start-page: 094102 year: 2013 ident: c60 article-title: Ab initio equation of state of iron up to 1500 GPa publication-title: Phys. Rev. B – volume: 90 start-page: 115 year: 1995 ident: c8 article-title: Core-mantle coupling and viscoelastic deformations publication-title: Phys. Earth Planet. Inter. – volume: 81 start-page: 511 year: 1984 ident: c33 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. – volume: 15 start-page: 2545 year: 1977 ident: c17 article-title: Relation between the transport coefficients and the internal entropy of simple systems publication-title: Phys. Rev. A – volume: 122 start-page: 086601 year: 2019 ident: c55 article-title: Paramagnetic-to-diamagnetic transition in dense liquid iron and its influence on electronic transport properties publication-title: Phys. Rev. Lett. – volume: 316 start-page: 710 year: 2007 ident: c4 article-title: Large longitude libration of Mercury reveals a molten core publication-title: Science – volume: 59 start-page: 1758 year: 1999 ident: c24 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 81 start-page: 5161 year: 1998 ident: c10 article-title: First-principles calculation of transport coefficients publication-title: Phys. Rev. Lett. – volume: 88 start-page: 062145 year: 2013 ident: c59 article-title: First-principles calculation of entropy for liquid metals publication-title: Phys. Rev. E – volume: 99 start-page: 4273 year: 1994 ident: c63 article-title: An equation of state for liquid iron and implications for the Earth’s core publication-title: J. Geophys. Res.: Solid Earth – volume: 52 start-page: 79 year: 2009 ident: c61 article-title: Direct observations of the viscosity of Earth’s outer core and extrapolation of measurements of the viscosity of liquid iron publication-title: Phys.-Usp. – volume: 316 start-page: 1323 year: 2007 ident: c2 article-title: Mars: A new core-crystallization regime publication-title: Science – volume: 124 start-page: 3350 year: 2019 ident: c36 article-title: Liquid iron equation of state to the terapascal regime from ab initio simulations publication-title: J. Geophys. Res.: Solid Earth – volume: 140 start-page: 101 year: 2003 ident: c12 article-title: The properties of iron under core conditions from first principles calculations publication-title: Phys. Earth Planet. Inter. – volume: 247 start-page: 27 year: 2015 ident: c15 article-title: Atomic transport property of Fe-O liquid alloys in the Earth’s outer core P, T condition publication-title: Phys. Earth Planet. Inter. – volume: 166 start-page: 97 year: 2006 ident: c65 article-title: Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields publication-title: Geophys. J. Int. – volume: 124 start-page: 1704 year: 2019 ident: c16 article-title: The pressure and temperature limits of likely rocky exoplanets publication-title: J. Geophys. Res.: Planets – volume: 77 start-page: 3865 year: 1996 ident: c27 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 147 start-page: 194505 year: 2017 ident: c39 article-title: Two-phase thermodynamic model for computing entropies of liquids reanalyzed publication-title: J. Chem. Phys. – volume: 150 start-page: 021101 year: 2019 ident: c51 article-title: Revisiting the Stokes-Einstein relation without a hydrodynamic diameter publication-title: J. Chem. Phys. – volume: 5 start-page: 1629 year: 1972 ident: c57 article-title: A local exchange-correlation potential for the spin polarized case. I publication-title: J. Phys. C: Solid State Phys. – volume: 6 start-page: 15 year: 1996 ident: c26 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 406 start-page: 3114 year: 2011 ident: c22 article-title: Revisiting scaling laws for the diffusion coefficients in simple melts based on the structural deviation from hard-sphere-like case publication-title: Physica B – volume: 66 start-page: 060102(R) year: 2002 ident: c48 article-title: Viscosity of liquid Fe at high pressure publication-title: Phys. Rev. B – volume: 39 start-page: 669 year: 1970 ident: c54 article-title: Atomic distribution and magnetic moment in liquid iron by neutron diffraction publication-title: Phys. Status Solidi B – volume: 137 start-page: A1441 year: 1965 ident: c34 article-title: Thermal properties of the inhomogeneous electron gas publication-title: Phys. Rev. – volume: 392 start-page: 805 year: 1998 ident: c42 article-title: The viscosity of liquid iron at the physical conditions of the Earth’s core publication-title: Nature – volume: 241 start-page: 57 year: 2015 ident: c52 article-title: High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray imaging publication-title: Phys. Earth Planet. Inter. – volume: 718 start-page: 596 year: 2010 ident: c7 article-title: Thermodynamic limits on magnetodynamos in rocky exoplanets publication-title: Astrophys. J. – volume: 65 start-page: 165118 year: 2002 ident: c30 article-title: Iron under earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations publication-title: Phys. Rev. B – volume: 98 start-page: 224301 year: 2018 ident: c21 article-title: Melting properties from ab initio free energy calculations: Iron at the Earth’s inner-core boundary publication-title: Phys. Rev. B – volume: 49 start-page: 14251 year: 1994 ident: c25 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B – volume: 21 start-page: 395502 year: 2009 ident: c31 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys.: Condens. Matter – volume: 102 start-page: 22659 year: 1997 ident: c62 article-title: Experimental melting curve of iron revisited publication-title: J. Geophys. Res.: Solid Earth – volume: 48 start-page: e2021GL093806 year: 2021 ident: c32 article-title: Thermal conductivity of silicate liquid determined by machine learning potentials publication-title: Geophys. Res. Lett. – volume: 35 start-page: 285 year: 2006 ident: c49 article-title: Reference data for the density and viscosity of liquid aluminum and liquid iron publication-title: J. Phys. Chem. Ref. Data – volume: 528 start-page: 115838 year: 2019 ident: c56 article-title: The top-down crystallisation of Mercury’s core publication-title: Earth Planet. Sci. Lett. – volume: 119 start-page: 11792 year: 2003 ident: c35 article-title: The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids publication-title: J. Chem. Phys. – volume: 406 start-page: 3114 year: 2011 ident: 2023080306472376800_c22 article-title: Revisiting scaling laws for the diffusion coefficients in simple melts based on the structural deviation from hard-sphere-like case publication-title: Physica B doi: 10.1016/j.physb.2011.05.023 – volume: 5 start-page: 1629 year: 1972 ident: 2023080306472376800_c57 article-title: A local exchange-correlation potential for the spin polarized case. I publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/5/13/012 – volume: 6 start-page: 15 year: 1996 ident: 2023080306472376800_c26 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 140 start-page: 114505 year: 2014 ident: 2023080306472376800_c20 article-title: Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures publication-title: J. Chem. Phys. doi: 10.1063/1.4868550 – volume: 97 start-page: 053209 year: 2018 ident: 2023080306472376800_c28 article-title: Quantum molecular dynamics of warm dense iron and a five-phase equation of state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.053209 – volume: 373 start-page: 443 year: 2021 ident: 2023080306472376800_c3 article-title: Seismic detection of the martian core publication-title: Science doi: 10.1126/science.abi7730 – volume: 444 start-page: 1056 year: 2006 ident: 2023080306472376800_c6 article-title: A deep dynamo generating Mercury’s magnetic field publication-title: Nature doi: 10.1038/nature05342 – volume: 124 start-page: 11105 year: 2019 ident: 2023080306472376800_c45 article-title: Viscoelasticity of liquid iron at conditions of the Earth’s outer core publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/2019jb017721 – volume: 35 start-page: 285 year: 2006 ident: 2023080306472376800_c49 article-title: Reference data for the density and viscosity of liquid aluminum and liquid iron publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.2149380 – volume: 99 start-page: 4273 year: 1994 ident: 2023080306472376800_c63 article-title: An equation of state for liquid iron and implications for the Earth’s core publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/93jb03158 – volume: 11 start-page: 5415 year: 1999 ident: 2023080306472376800_c18 article-title: A quasi-universal scaling law for atomic transport in simple fluids publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/11/28/303 – volume: 149 start-page: 210901 year: 2018 ident: 2023080306472376800_c19 article-title: Perspective: Excess-entropy scaling publication-title: J. Chem. Phys. doi: 10.1063/1.5055064 – volume: 147 start-page: 194505 year: 2017 ident: 2023080306472376800_c39 article-title: Two-phase thermodynamic model for computing entropies of liquids reanalyzed publication-title: J. Chem. Phys. doi: 10.1063/1.5001798 – volume: 48 start-page: e2021GL093806 year: 2021 ident: 2023080306472376800_c32 article-title: Thermal conductivity of silicate liquid determined by machine learning potentials publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL093806 – volume: 130 start-page: 271 year: 2002 ident: 2023080306472376800_c46 article-title: Self-diffusion in liquid Fe at high pressure publication-title: Phys. Earth Planet. Inter. doi: 10.1016/s0031-9201(02)00011-0 – volume: 52 start-page: 79 year: 2009 ident: 2023080306472376800_c61 article-title: Direct observations of the viscosity of Earth’s outer core and extrapolation of measurements of the viscosity of liquid iron publication-title: Phys.-Usp. doi: 10.3367/ufne.0179.200901d.0091 – volume: 124 start-page: 1704 year: 2019 ident: 2023080306472376800_c16 article-title: The pressure and temperature limits of likely rocky exoplanets publication-title: J. Geophys. Res.: Planets doi: 10.1029/2018je005844 – volume: 140 start-page: 101 year: 2003 ident: 2023080306472376800_c12 article-title: The properties of iron under core conditions from first principles calculations publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2003.08.001 – volume: 528 start-page: 115838 year: 2019 ident: 2023080306472376800_c56 article-title: The top-down crystallisation of Mercury’s core publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2019.115838 – volume-title: NIST-JANAF Thermochemical Tables year: 1998 ident: 2023080306472376800_c53 – volume: 166 start-page: 97 year: 2006 ident: 2023080306472376800_c65 article-title: Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246x.2006.03009.x – volume-title: Statistical Mechanics year: 2000 ident: 2023080306472376800_c41 – volume: 81 start-page: 511 year: 1984 ident: 2023080306472376800_c33 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 15 start-page: 2545 year: 1977 ident: 2023080306472376800_c17 article-title: Relation between the transport coefficients and the internal entropy of simple systems publication-title: Phys. Rev. A doi: 10.1103/physreva.15.2545 – volume: 316 start-page: 710 year: 2007 ident: 2023080306472376800_c4 article-title: Large longitude libration of Mercury reveals a molten core publication-title: Science doi: 10.1126/science.1140514 – volume: 39 start-page: 669 year: 1970 ident: 2023080306472376800_c54 article-title: Atomic distribution and magnetic moment in liquid iron by neutron diffraction publication-title: Phys. Status Solidi B doi: 10.1002/pssb.19700390235 – volume: 61 start-page: 132 year: 2000 ident: 2023080306472376800_c11 article-title: Structure and dynamics of liquid iron under Earth’s core conditions publication-title: Phys. Rev. B doi: 10.1103/physrevb.61.132 – volume: 87 start-page: 094102 year: 2013 ident: 2023080306472376800_c60 article-title: Ab initio equation of state of iron up to 1500 GPa publication-title: Phys. Rev. B doi: 10.1103/physrevb.87.094102 – volume: 26 start-page: 016102 year: 2017 ident: 2023080306472376800_c44 article-title: Abnormal breakdown of Stokes-Einstein relation in liquid aluminium publication-title: Chin. Phys. B doi: 10.1088/1674-1056/26/1/016102 – volume: 87 start-page: 014110 year: 2013 ident: 2023080306472376800_c14 article-title: Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions publication-title: Phys. Rev. B doi: 10.1103/physrevb.87.014110 – volume: 168 start-page: 890 year: 2007 ident: 2023080306472376800_c13 article-title: Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth’s outer core publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246x.2006.03256.x – volume-title: Theory of Simple Liquids year: 2013 ident: 2023080306472376800_c40 – volume: 65 start-page: 165118 year: 2002 ident: 2023080306472376800_c30 article-title: Iron under earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations publication-title: Phys. Rev. B doi: 10.1103/physrevb.65.165118 – volume: 49 start-page: 14251 year: 1994 ident: 2023080306472376800_c25 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B doi: 10.1103/physrevb.49.14251 – volume: 288 start-page: 2007 year: 2000 ident: 2023080306472376800_c5 article-title: Earth’s core and the geodynamo publication-title: Science doi: 10.1126/science.288.5473.2007 – volume: 103 start-page: 3071 year: 1995 ident: 2023080306472376800_c43 article-title: Breakdown of the Stokes-Einstein relation in supercooled liquids publication-title: J. Chem. Phys. doi: 10.1063/1.470495 – volume: 98 start-page: 224301 year: 2018 ident: 2023080306472376800_c21 article-title: Melting properties from ab initio free energy calculations: Iron at the Earth’s inner-core boundary publication-title: Phys. Rev. B doi: 10.1103/physrevb.98.224301 – volume: 150 start-page: 021101 year: 2019 ident: 2023080306472376800_c51 article-title: Revisiting the Stokes-Einstein relation without a hydrodynamic diameter publication-title: J. Chem. Phys. doi: 10.1063/1.5080662 – volume: 247 start-page: 27 year: 2015 ident: 2023080306472376800_c15 article-title: Atomic transport property of Fe-O liquid alloys in the Earth’s outer core P, T condition publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2015.03.006 – volume: 50 start-page: 17953 year: 1994 ident: 2023080306472376800_c23 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/physrevb.50.17953 – volume: 137 start-page: A1441 year: 1965 ident: 2023080306472376800_c34 article-title: Thermal properties of the inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/physrev.137.a1441 – volume: 124 start-page: 3350 year: 2019 ident: 2023080306472376800_c36 article-title: Liquid iron equation of state to the terapascal regime from ab initio simulations publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/2018jb016994 – volume: 119 start-page: 11792 year: 2003 ident: 2023080306472376800_c35 article-title: The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids publication-title: J. Chem. Phys. doi: 10.1063/1.1624057 – volume: 88 start-page: 062145 year: 2013 ident: 2023080306472376800_c59 article-title: First-principles calculation of entropy for liquid metals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.062145 – volume: 12 start-page: 575 year: 2019 ident: 2023080306472376800_c64 article-title: Regional stratification at the top of Earth’s core due to core-mantle boundary heat flux variations publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0381-z – start-page: 27 volume-title: Treatise on Geophysics year: 2015 ident: 2023080306472376800_c9 article-title: 8.02—Energetics of the core – volume: 31 start-page: 1164 year: 1959 ident: 2023080306472376800_c50 article-title: Molecular transport in liquids and glasses publication-title: J. Chem. Phys. doi: 10.1063/1.1730566 – volume: 31 start-page: 395401 year: 2019 ident: 2023080306472376800_c47 article-title: Iron self diffusion in liquid pure iron and iron-carbon alloys publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648x/ab2855 – volume: 77 start-page: 3865 year: 1996 ident: 2023080306472376800_c27 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.77.3865 – volume: 316 start-page: 1323 year: 2007 ident: 2023080306472376800_c2 article-title: Mars: A new core-crystallization regime publication-title: Science doi: 10.1126/science.1140549 – volume-title: Thermal Properties of Liquid Iron at Conditions of Planetary Cores year: 2021 ident: 2023080306472376800_c37 – volume: 57 start-page: 227 year: 1952 ident: 2023080306472376800_c1 article-title: Elasticity and constitution of the Earth’s interior publication-title: J. Geophys. Res. doi: 10.1029/jz057i002p00227 – volume: 81 start-page: 5161 year: 1998 ident: 2023080306472376800_c10 article-title: First-principles calculation of transport coefficients publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.81.5161 – volume-title: Computer Simulations of Liquids year: 1987 ident: 2023080306472376800_c38 – volume: 718 start-page: 596 year: 2010 ident: 2023080306472376800_c7 article-title: Thermodynamic limits on magnetodynamos in rocky exoplanets publication-title: Astrophys. J. doi: 10.1088/0004-637x/718/2/596 – volume: 241 start-page: 57 year: 2015 ident: 2023080306472376800_c52 article-title: High-pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X-ray imaging publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2015.02.006 – volume: 102 start-page: 22659 year: 1997 ident: 2023080306472376800_c62 article-title: Experimental melting curve of iron revisited publication-title: J. Geophys. Res.: Solid Earth doi: 10.1029/97jb01641 – volume-title: Electronic Structure: Basic Theory and Practical Methods year: 2020 ident: 2023080306472376800_c58 – volume: 392 start-page: 805 year: 1998 ident: 2023080306472376800_c42 article-title: The viscosity of liquid iron at the physical conditions of the Earth’s core publication-title: Nature doi: 10.1038/33905 – volume: 313 start-page: 61 year: 2018 ident: 2023080306472376800_c29 article-title: A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths publication-title: Icarus doi: 10.1016/j.icarus.2018.05.005 – volume: 21 start-page: 395502 year: 2009 ident: 2023080306472376800_c31 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 66 start-page: 060102(R) year: 2002 ident: 2023080306472376800_c48 article-title: Viscosity of liquid Fe at high pressure publication-title: Phys. Rev. B doi: 10.1103/physrevb.66.060102 – volume: 122 start-page: 086601 year: 2019 ident: 2023080306472376800_c55 article-title: Paramagnetic-to-diamagnetic transition in dense liquid iron and its influence on electronic transport properties publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.086601 – volume: 90 start-page: 115 year: 1995 ident: 2023080306472376800_c8 article-title: Core-mantle coupling and viscoelastic deformations publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(95)05078-p – volume: 59 start-page: 1758 year: 1999 ident: 2023080306472376800_c24 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/physrevb.59.1758 |
SSID | ssj0001724 |
Score | 2.453514 |
Snippet | Atomic transport properties of liquid iron are important for understanding the core dynamics and magnetic field generation of terrestrial planets. Depending on... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 194505 |
SubjectTerms | Diffusion coefficient Earth core Entropy Extrasolar planets Invariance Iron Mathematical analysis Melting points Molecular dynamics Physics Planetary cores Rescaling Rotating generators Scale invariance Scaling laws Self diffusion Terrestrial planets Transport properties Viscosity |
Title | Atomic transport properties of liquid iron at conditions of planetary cores |
URI | http://dx.doi.org/10.1063/5.0062081 https://www.proquest.com/docview/2599242524 https://www.proquest.com/docview/2600822972 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_0itQX0ap4WmX9eBBkbbJJ9pLHoyqlVlFs8XwKu8lGAuXubHM--Nc7k0k2V3tI9SWEZPLBzOzOb3bnA-DFJI0j2vChsEErcSQaaYNISTSvZaaL2CnbVvv8qA9O4sNZMhvaHbXZJY19XfzamFfyP1LFayhXypL9B8n6l-IFPEf54hEljMcryXjaUE4xtXngAuUUbbWkQGmuJHta_1jV5StKZKOcRfR8y9oHvi0pyrWhmDkqZHm-DlKHdLEWqBZ9TQFeBfEg_KgNBPjc2752Z4l7HZvFpfXob7X8bgbKWc0Lr4e1kV9dvb72oEJKwuOEZp8LEErygdia8BQapJmcaG4C6udYrsXbK1O2cfJGtIQcpzUurQJu5HKxQPYfhsuHE7Yb6TrKk7x79DpsKXQb1Ai2pm8-HH3xthnhWleXm_-7rzWloz3_3YsIZXA7thGTcHjEGgI5vg23OomIKevBHbjm5juwvd937NuBG59YQHfhPWuG8JohBs0Qi0qwZgjSDGEaMWgG3fSaIVrNuAcn794e7x_Irm2GLCIdNNKoLLYVwmR0PlXilAusDkMzSasoKRMbIRuqxAVo10Knw8qEBQqrqFJrjFGmKKP7MJov5u4BCI1wzzqFsD5NY5uWmcUXZIj6ShzgRZWN4WXPqrxnDrU2Oc0viWQMzzzpkgupbCLa7fmdd-PsPEcHPSPHWMVjeOpvI2tpawsZslghjebWBRM1hudeTn_70Aaqn4uzgSJfltXDq_zzI7g5DI1dGDVnK_cYgWpjn3Ta9xth7JBd |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+transport+properties+of+liquid+iron+at+conditions+of+planetary+cores&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Li%2C+Qing&rft.au=Sun%2C+Tao&rft.au=Zhang%2C+Yi-gang&rft.au=Xian%2C+Jia-Wei&rft.date=2021-11-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=155&rft.issue=19&rft_id=info:doi/10.1063%2F5.0062081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0062081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |