Nonlinear modeling of temperature-induced bearing displacement of long-span single-pier rigid frame bridge based on DCNN-LSTM
Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation or instability, causing significant engineering accidents and immeasurable losses on society. This paper proposes a spatial-temporal nonlinea...
Saved in:
Published in | Case studies in thermal engineering Vol. 53; p. 103897 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation or instability, causing significant engineering accidents and immeasurable losses on society. This paper proposes a spatial-temporal nonlinear modeling method for temperature and temperature-induced bearing displacement (TIBD) of long-span single-pier rigid frame bridge based on DCNN-LSTM network with elastic modulus fusion, relying on the monitoring data of the Second Yangtze River Bridge in Wuhan. This framework introduces a dynamic autoregressive method for model inference to improve the prediction accuracy of the model. This study addresses three major issues: Insufficient rational selection of temperature characteristic values; Inadequate research on correlation between structural temperature and TIBD for the bridges; Poor prediction accuracy of temperature-TIBD regression models. The method proposed in this study achieves prediction accuracy of up to 99.8 % for TIBD, and this model is not affected by seasonal variation. |
---|---|
AbstractList | Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation or instability, causing significant engineering accidents and immeasurable losses on society. This paper proposes a spatial-temporal nonlinear modeling method for temperature and temperature-induced bearing displacement (TIBD) of long-span single-pier rigid frame bridge based on DCNN-LSTM network with elastic modulus fusion, relying on the monitoring data of the Second Yangtze River Bridge in Wuhan. This framework introduces a dynamic autoregressive method for model inference to improve the prediction accuracy of the model. This study addresses three major issues: Insufficient rational selection of temperature characteristic values; Inadequate research on correlation between structural temperature and TIBD for the bridges; Poor prediction accuracy of temperature-TIBD regression models. The method proposed in this study achieves prediction accuracy of up to 99.8 % for TIBD, and this model is not affected by seasonal variation. |
ArticleNumber | 103897 |
Author | Deng, Zhihang Hu, Junliang Ye, Zhongtao Huang, Minshui Wan, Neng Zhang, Jianwei |
Author_xml | – sequence: 1 givenname: Minshui orcidid: 0000-0002-3509-3599 surname: Huang fullname: Huang, Minshui – sequence: 2 givenname: Jianwei surname: Zhang fullname: Zhang, Jianwei – sequence: 3 givenname: Junliang surname: Hu fullname: Hu, Junliang – sequence: 4 givenname: Zhongtao surname: Ye fullname: Ye, Zhongtao – sequence: 5 givenname: Zhihang surname: Deng fullname: Deng, Zhihang – sequence: 6 givenname: Neng surname: Wan fullname: Wan, Neng |
BookMark | eNp9UU1r3DAUFCWBpkl-QS_6A95Kltayj2X7FdhsD02hN_EkPRkttmQk59BD_3u12RZCDjnNMPNmeDDvyEVMEQl5z9mGM959OG5sCStuWtaKqoh-UG_IVdty2fCt-nXxjL8lt6UcGWNciZ5LeUX-HFKcQkTIdE4OKx1p8nTFecEM62PGJkT3aNFRU49OtgtlmcDijHE93U4pjk1ZINJS7QmbJWCmOYzBUZ9hRmpycGMFKLUmRfppdzg0-x8P9zfk0sNU8PYfXpOfXz4_7L41--9f73Yf940VHVsb4J2QA_etciAdc8aD2QLrnIFBGFTeeFUlB9yiqm_21bJWKgDBe-OsuCZ3516X4KiXHGbIv3WCoJ-ElEcNeQ12Qu22sjXe9gy9l9yoQSijttaqznbSgqldw7nL5lRKRq9tWGENKa4ZwqQ506dZ9FE_zaJPs-jzLDUrXmT___Ja6i__rJlM |
CitedBy_id | crossref_primary_10_1016_j_istruc_2025_108196 crossref_primary_10_3390_buildings14051195 crossref_primary_10_1155_stc_5827324 crossref_primary_10_3390_mi16030318 crossref_primary_10_1016_j_heliyon_2024_e39537 crossref_primary_10_3390_buildings14030562 crossref_primary_10_1016_j_autcon_2024_105790 crossref_primary_10_1016_j_eswa_2024_125867 crossref_primary_10_1007_s00170_024_14322_z crossref_primary_10_1016_j_istruc_2024_107727 crossref_primary_10_1016_j_measurement_2024_115748 crossref_primary_10_3390_buildings14092711 crossref_primary_10_32604_sdhm_2024_055265 crossref_primary_10_3390_buildings14113613 crossref_primary_10_3390_buildings14072163 crossref_primary_10_3390_buildings14040872 crossref_primary_10_1016_j_asej_2025_103301 crossref_primary_10_1016_j_compstruc_2024_107458 crossref_primary_10_1016_j_istruc_2024_108094 crossref_primary_10_1016_j_heliyon_2024_e39038 crossref_primary_10_1016_j_engstruct_2025_119693 crossref_primary_10_3390_buildings15030328 crossref_primary_10_1016_j_autcon_2024_105680 crossref_primary_10_1166_sam_2024_4702 crossref_primary_10_3390_buildings15010039 crossref_primary_10_1016_j_aei_2024_102936 crossref_primary_10_3390_rs16244748 crossref_primary_10_1016_j_measurement_2024_114528 crossref_primary_10_3390_buildings15010072 crossref_primary_10_1016_j_istruc_2024_106540 crossref_primary_10_3390_buildings15050769 crossref_primary_10_1016_j_jsv_2024_118769 crossref_primary_10_1016_j_eswa_2025_126584 crossref_primary_10_1016_j_autcon_2024_105695 crossref_primary_10_3390_buildings14082344 crossref_primary_10_1007_s12530_024_09639_9 crossref_primary_10_1177_14759217251324156 crossref_primary_10_3390_app14135454 crossref_primary_10_3390_buildings14061864 crossref_primary_10_1177_14759217241305598 crossref_primary_10_1016_j_eswa_2024_125409 crossref_primary_10_3390_buildings14082581 crossref_primary_10_3390_buildings14092650 crossref_primary_10_3390_s24216863 crossref_primary_10_1155_stc_2484661 crossref_primary_10_1177_14759217241255042 crossref_primary_10_3390_s24113587 crossref_primary_10_3390_s24072091 crossref_primary_10_1109_ACCESS_2024_3479868 |
Cites_doi | 10.1061/(ASCE)CF.1943-5509.0000820 10.1007/s13349-021-00532-6 10.1016/j.engstruct.2010.02.026 10.1016/j.engstruct.2016.11.012 10.1007/s13349-020-00444-x 10.1002/stc.1681 10.1111/mice.12355 10.1061/(ASCE)BE.1943-5592.0001083 10.1016/j.csite.2023.102696 10.1016/j.ymssp.2023.110623 10.1007/s11709-011-0122-x 10.1016/j.measurement.2018.04.034 10.1016/j.engstruct.2017.10.074 10.1061/(ASCE)BE.1943-5592.0001775 10.1061/(ASCE)EM.1943-7889.0000273 10.1142/S0219455421501698 10.1080/15732479.2015.1117113 10.3390/buildings13061360 10.1016/j.ymssp.2019.106568 10.1061/(ASCE)ST.1943-541X.0003354 10.1016/j.engstruct.2014.12.042 10.1061/(ASCE)AS.1943-5525.0001225 10.1061/(ASCE)BE.1943-5592.0001763 10.1061/(ASCE)BE.1943-5592.0001387 10.1016/j.engstruct.2021.113619 10.1061/(ASCE)BE.1943-5592.0001716 10.1061/(ASCE)ST.1943-541X.0003325 10.1061/(ASCE)AS.1943-5525.0000829 10.1016/j.engstruct.2020.111012 10.3390/a14060180 10.1061/(ASCE)ST.1943-541X.0001270 10.1016/j.engstruct.2005.02.020 10.1016/j.measurement.2017.10.036 10.1061/(ASCE)BE.1943-5592.0001003 10.1007/s13349-022-00647-4 10.1061/(ASCE)BE.1943-5592.0001258 10.1061/(ASCE)BE.1943-5592.0000696 10.1061/(ASCE)0887-3828(2007)21:2(143) 10.1007/s13349-023-00679-4 10.1016/j.istruc.2022.09.011 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2023.103897 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_d542bfc80eff41b7937b75cc76c64cab 10_1016_j_csite_2023_103897 |
GroupedDBID | 0R~ 457 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ |
ID | FETCH-LOGICAL-c360t-a163491f27da4d0dbfab5a06dba93be7fbf7fabda1ce7bea806dcc47aa318bdc3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:29:25 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 02:28:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-a163491f27da4d0dbfab5a06dba93be7fbf7fabda1ce7bea806dcc47aa318bdc3 |
ORCID | 0000-0002-3509-3599 |
OpenAccessLink | https://doaj.org/article/d542bfc80eff41b7937b75cc76c64cab |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d542bfc80eff41b7937b75cc76c64cab crossref_citationtrail_10_1016_j_csite_2023_103897 crossref_primary_10_1016_j_csite_2023_103897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Wang (10.1016/j.csite.2023.103897_bib40) 2021; 26 Huang (10.1016/j.csite.2023.103897_bib33) 2022; 148 Han (10.1016/j.csite.2023.103897_bib34) 2022; 12 Tang (10.1016/j.csite.2023.103897_bib1) 2015; 20 Xia (10.1016/j.csite.2023.103897_bib11) 2017; 22 Lyu (10.1016/j.csite.2023.103897_bib13) 2017; 131 Ni (10.1016/j.csite.2023.103897_bib18) 2005; 27 Li (10.1016/j.csite.2023.103897_bib35) 2017 Han (10.1016/j.csite.2023.103897_bib5) 2021; 11 Zhou (10.1016/j.csite.2023.103897_bib24) 2020; 221 Ni (10.1016/j.csite.2023.103897_bib7) 2007; 21 Murphy (10.1016/j.csite.2023.103897_bib14) 2018; 155 Xu (10.1016/j.csite.2023.103897_bib17) 2019; 24 Kromanis (10.1016/j.csite.2023.103897_bib8) 2016; 12 Zhou (10.1016/j.csite.2023.103897_bib39) 2010; 32 Yarnold (10.1016/j.csite.2023.103897_bib16) 2015; 141 Huang (10.1016/j.csite.2023.103897_bib19) 2021; 34 Wu (10.1016/j.csite.2023.103897_bib22) 2018; 33 Huang (10.1016/j.csite.2023.103897_bib2) 2023; 86 Bao (10.1016/j.csite.2023.103897_bib21) 2015; 22 Zhu (10.1016/j.csite.2023.103897_bib32) 2022 Zhou (10.1016/j.csite.2023.103897_bib20) 2011; 137 Sun (10.1016/j.csite.2023.103897_bib42) 2023; 200 Yarnold (10.1016/j.csite.2023.103897_bib15) 2015; 86 Wang (10.1016/j.csite.2023.103897_bib41) 2016; 30 Huang (10.1016/j.csite.2023.103897_bib44) 2018; 31 Fu (10.1016/j.csite.2023.103897_bib37) 2021; 14 Huang (10.1016/j.csite.2023.103897_bib3) 2021; 21 Yue (10.1016/j.csite.2023.103897_bib23) 2022; 252 Huang (10.1016/j.csite.2023.103897_bib27) 2018; 23 Deng (10.1016/j.csite.2023.103897_bib46) 2023; 13 Yue (10.1016/j.csite.2023.103897_bib36) 2022; 45 Duan (10.1016/j.csite.2023.103897_bib4) 2011 Yang (10.1016/j.csite.2023.103897_bib28) 2018; 115 Wu (10.1016/j.csite.2023.103897_bib31) 2021; 26 Li (10.1016/j.csite.2023.103897_bib12) 2023; 13 Zhu (10.1016/j.csite.2023.103897_bib29) 2022; 148 Sun (10.1016/j.csite.2023.103897_bib43) 2023; 13 Liang (10.1016/j.csite.2023.103897_bib45) 2018; 125 Luo (10.1016/j.csite.2023.103897_bib9) 2013; 34 Yue (10.1016/j.csite.2023.103897_bib26) 2021; 26 Zhou (10.1016/j.csite.2023.103897_bib25) 2020; 139 Zhang (10.1016/j.csite.2023.103897_bib38) 2021; 7 Ding (10.1016/j.csite.2023.103897_bib6) 2011; 5 Xia (10.1016/j.csite.2023.103897_bib10) 2017; 22 Ju (10.1016/j.csite.2023.103897_bib30) 2023; 42 |
References_xml | – volume: 86 start-page: 715 issue: 6 year: 2023 ident: 10.1016/j.csite.2023.103897_bib2 article-title: Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy publication-title: Struct. Eng. Mech. – volume: 30 issue: 4 year: 2016 ident: 10.1016/j.csite.2023.103897_bib41 article-title: Detection and location of the degraded bearings based on monitoring the longitudinal expansion performance of the main girder of the Dashengguan Yangtze Bridge publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000820 – volume: 12 start-page: 163 year: 2022 ident: 10.1016/j.csite.2023.103897_bib34 article-title: Performance assessment of railway multispan steel truss bridge bearing by thermal excitation publication-title: J. Civ. Struct. Health. doi: 10.1007/s13349-021-00532-6 – volume: 32 start-page: 1747 issue: 6 year: 2010 ident: 10.1016/j.csite.2023.103897_bib39 article-title: Constructing input to neural networks for modeling temperature-caused modal variability: mean temperatures, effective temperatures, and principal components of temperatures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.02.026 – volume: 131 start-page: 180 year: 2017 ident: 10.1016/j.csite.2023.103897_bib13 article-title: Connection stiffness identification of historic timber buildings using temperature-based sensitivity analysis publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.11.012 – volume: 11 start-page: 149 year: 2021 ident: 10.1016/j.csite.2023.103897_bib5 article-title: Structural health monitoring research under varying temperature condition: a review publication-title: J. Civ. Struct. Health. doi: 10.1007/s13349-020-00444-x – volume: 22 start-page: 433 issue: 3 year: 2015 ident: 10.1016/j.csite.2023.103897_bib21 article-title: Compressive sensing-based lost data recovery of fast-moving wireless sensing for structural health monitoring publication-title: Struct. Control. Hlth. doi: 10.1002/stc.1681 – volume: 33 start-page: 672 issue: 8 year: 2018 ident: 10.1016/j.csite.2023.103897_bib22 article-title: A rapidly convergent empirical mode decomposition method for analyzing the environmental temperature effects on stay cable force publication-title: Comput-Aided Civ. Inf. doi: 10.1111/mice.12355 – start-page: 609 year: 2017 ident: 10.1016/j.csite.2023.103897_bib35 article-title: End-to-end learning of deep convolutional neural network for 3D human action recognition – volume: 22 issue: 7 year: 2017 ident: 10.1016/j.csite.2023.103897_bib11 article-title: Experimental study of thermal effects on a long-span suspension bridge publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001083 – volume: 42 year: 2023 ident: 10.1016/j.csite.2023.103897_bib30 article-title: Temperature time-lag effect elimination method of structural deformation monitoring data for cable-stayed bridges publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102696 – volume: 200 year: 2023 ident: 10.1016/j.csite.2023.103897_bib42 article-title: Predicting bridge longitudinal displacement from monitored operational loads with hierarchical CNN for condition assessment publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110623 – volume: 5 start-page: 374 year: 2011 ident: 10.1016/j.csite.2023.103897_bib6 article-title: Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions publication-title: Front. Architect. Civ. Eng. China doi: 10.1007/s11709-011-0122-x – volume: 125 start-page: 163 year: 2018 ident: 10.1016/j.csite.2023.103897_bib45 article-title: Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation publication-title: Measurement doi: 10.1016/j.measurement.2018.04.034 – volume: 155 start-page: 209 year: 2018 ident: 10.1016/j.csite.2023.103897_bib14 article-title: Temperature-driven structural identification of a steel girder bridge with an integral abutment publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.10.074 – start-page: 1 year: 2022 ident: 10.1016/j.csite.2023.103897_bib32 article-title: Investigation on the mapping for temperature-induced responses of a long-span steel truss arch bridge publication-title: Struct. Infrastruct. E. – volume: 26 issue: 10 year: 2021 ident: 10.1016/j.csite.2023.103897_bib40 article-title: Eliminating the bridge modal variability induced by thermal effects using localized modeling method publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001775 – start-page: 6025 year: 2011 ident: 10.1016/j.csite.2023.103897_bib4 article-title: Strain-temperature correlation analysis of a tied arch bridge using monitoring data – volume: 137 start-page: 785 issue: 12 year: 2011 ident: 10.1016/j.csite.2023.103897_bib20 article-title: Eliminating temperature effect in vibration-based structural damage detection publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000273 – volume: 21 issue: 12 year: 2021 ident: 10.1016/j.csite.2023.103897_bib3 article-title: A novel two-stage structural damage identification method based on superposition of modal flexibility curvature and whale optimization algorithm publication-title: Int. J. Struct. Stabil. Dynam. doi: 10.1142/S0219455421501698 – volume: 12 start-page: 1342 issue: 10 year: 2016 ident: 10.1016/j.csite.2023.103897_bib8 article-title: Long-term structural health monitoring of the Cleddau bridge: evaluation of quasi-static temperature effects on bearing movements publication-title: Struct. Infrastruct. E. doi: 10.1080/15732479.2015.1117113 – volume: 13 start-page: 1360 issue: 6 year: 2023 ident: 10.1016/j.csite.2023.103897_bib46 article-title: The current development of structural health monitoring for bridges: a review publication-title: Buildings doi: 10.3390/buildings13061360 – volume: 139 year: 2020 ident: 10.1016/j.csite.2023.103897_bib25 article-title: Analytical solution to temperature-induced deformation of suspension bridges publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106568 – volume: 148 issue: 6 year: 2022 ident: 10.1016/j.csite.2023.103897_bib33 article-title: Sparse Bayesian identification of temperature-displacement model for performance assessment and early warning of bridge bearings publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003354 – volume: 86 start-page: 157 year: 2015 ident: 10.1016/j.csite.2023.103897_bib15 article-title: Temperature-based structural health monitoring baseline for long-span bridges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.12.042 – volume: 34 issue: 2 year: 2021 ident: 10.1016/j.csite.2023.103897_bib19 article-title: Damage identification of bridge structures considering temperature variations-based SVM and MFO publication-title: J. Aerospace. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0001225 – volume: 26 issue: 9 year: 2021 ident: 10.1016/j.csite.2023.103897_bib31 article-title: Early warning method for bearing displacement of long-span bridges using a proposed time-varying temperature-displacement model publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001763 – volume: 24 issue: 5 year: 2019 ident: 10.1016/j.csite.2023.103897_bib17 article-title: Modeling and separation of thermal effects from cable-stayed bridge response publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001387 – volume: 252 year: 2022 ident: 10.1016/j.csite.2023.103897_bib23 article-title: Mechanics-Guided optimization of an LSTM network for Real-Time modeling of Temperature-Induced deflection of a Cable-Stayed bridge publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.113619 – volume: 26 issue: 6 year: 2021 ident: 10.1016/j.csite.2023.103897_bib26 article-title: Deep learning-based minute-scale digital prediction model of temperature-induced deflection of a cable-stayed bridge: case study publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001716 – volume: 148 issue: 5 year: 2022 ident: 10.1016/j.csite.2023.103897_bib29 article-title: Mapping of temperature-induced response increments for monitoring long-span steel truss arch bridges based on machine learning publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003325 – volume: 31 issue: 3 year: 2018 ident: 10.1016/j.csite.2023.103897_bib44 article-title: Vibration-based structural damage identification under varying temperature effects publication-title: J. Aerospace. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0000829 – volume: 221 year: 2020 ident: 10.1016/j.csite.2023.103897_bib24 article-title: General formulas for estimating temperature-induced mid-span vertical displacement of cable-stayed bridges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111012 – volume: 14 start-page: 180 issue: 6 year: 2021 ident: 10.1016/j.csite.2023.103897_bib37 article-title: Damage identification of long-span bridges using the hybrid of convolutional neural network and long short-term memory network publication-title: Algorithms doi: 10.3390/a14060180 – volume: 141 issue: 11 year: 2015 ident: 10.1016/j.csite.2023.103897_bib16 article-title: Temperature-based structural identification of long-span bridges publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001270 – volume: 27 start-page: 1762 year: 2005 ident: 10.1016/j.csite.2023.103897_bib18 article-title: Correlating modal properties with temperature using long-term monitoring data and support vector machine technique publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2005.02.020 – volume: 115 start-page: 249 year: 2018 ident: 10.1016/j.csite.2023.103897_bib28 article-title: Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge publication-title: Measurement doi: 10.1016/j.measurement.2017.10.036 – volume: 7 start-page: 1786 issue: 12 year: 2021 ident: 10.1016/j.csite.2023.103897_bib38 article-title: Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain publication-title: Eng. Plast. – volume: 22 issue: 3 year: 2017 ident: 10.1016/j.csite.2023.103897_bib10 article-title: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001003 – volume: 13 start-page: 387 issue: 2–3 year: 2023 ident: 10.1016/j.csite.2023.103897_bib43 article-title: Interpreting cumulative displacement in a suspension bridge with a physics-based characterisation of environment and roadway/railway loads publication-title: J. Civ. Struct. Health. doi: 10.1007/s13349-022-00647-4 – volume: 23 issue: 7 year: 2018 ident: 10.1016/j.csite.2023.103897_bib27 article-title: New representative temperature for performance alarming of bridge expansion joints through temperature-displacement relationship publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001258 – volume: 20 start-page: B4015001 issue: 8 year: 2015 ident: 10.1016/j.csite.2023.103897_bib1 article-title: Segmental bridges in chongqing, China publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000696 – volume: 21 start-page: 143 issue: 2 year: 2007 ident: 10.1016/j.csite.2023.103897_bib7 article-title: Assessment of bridge expansion joints using long-term displacement and temperature measurement publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)0887-3828(2007)21:2(143) – volume: 13 start-page: 781 year: 2023 ident: 10.1016/j.csite.2023.103897_bib12 article-title: Temperature-induced deflection separation based on bridge deflection data using the TVFEMD-PE-KLD method publication-title: J. Civ. Struct. Health. doi: 10.1007/s13349-023-00679-4 – volume: 34 start-page: 24 issue: 11 year: 2013 ident: 10.1016/j.csite.2023.103897_bib9 article-title: Measurement and analysis of steel structure temperature and stress in National Stadium publication-title: J. Build. Struct. – volume: 45 start-page: 110 year: 2022 ident: 10.1016/j.csite.2023.103897_bib36 article-title: Ultra-high precise Stack-LSTM-CNN model of temperature-induced deflection of a cable-stayed bridge for detecting bridge state driven by monitoring data publication-title: Structures doi: 10.1016/j.istruc.2022.09.011 |
SSID | ssj0001738144 |
Score | 2.513748 |
Snippet | Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 103897 |
SubjectTerms | Autoregression Deep convolutional neural network Long short-term memory neural network Long-span single-pier rigid frame bridge Structural health monitoring Temperature-induced bearing displacement |
Title | Nonlinear modeling of temperature-induced bearing displacement of long-span single-pier rigid frame bridge based on DCNN-LSTM |
URI | https://doaj.org/article/d542bfc80eff41b7937b75cc76c64cab |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI7QTTAgnuKtDIxEtNc8mpGnAEEXQLqtyhOBTr3TcYz8d-y0d-oEC0sHx6ksx40d1_lMyCkioghdBpaH3DIetGal1JFBqAEGVgqfa7wo_FTJu1f-MBKjXqsvrAlr4YFbxZ17wYc2ujILMfLcIpybVcI5JZ3kzljcfcHn9Q5TKbuiwBNxvoAZSgVdLv2OxXbhCRUcYZ56rqiH2J9cy-0GWe9iQnrRyrJJVkKzRdZ6SIHb5LtqIS3MjKbeNUCkk0gRWKpDRWZwuIZl8tQCEw77989UcIXpP-QdT5o3BvtHQzE9MA5sCh6RYl8sTyOWaNH28hZFx-bppKHXV1XFHp9fnnbI6-3Ny9Ud6zonMFfIbM4MRFlc53GovOE-8zYaK0wmvTW6sEFFGxWQvMldUCBWCUPOcWUMfOLWu2KXDJpJE_YIFblSFmZLLTg32lkpAi-c9NKEIndxnwwXSqxdByuO3S3G9aJ-7KNOmq9R83Wr-X1ytpw0bVE1fme_xNVZsiIkdiKAodSdodR_GcrBf7zkkKyCXLzNwRyRwXz2FY4hKpnbk2SA8LwfXf4AdHXlZw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+modeling+of+temperature-induced+bearing+displacement+of+long-span+single-pier+rigid+frame+bridge+based+on+DCNN-LSTM&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Huang%2C+Minshui&rft.au=Zhang%2C+Jianwei&rft.au=Hu%2C+Junliang&rft.au=Ye%2C+Zhongtao&rft.date=2024-01-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=53&rft.spage=103897&rft_id=info:doi/10.1016%2Fj.csite.2023.103897&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2023_103897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |