Nonlinear modeling of temperature-induced bearing displacement of long-span single-pier rigid frame bridge based on DCNN-LSTM

Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation or instability, causing significant engineering accidents and immeasurable losses on society. This paper proposes a spatial-temporal nonlinea...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 53; p. 103897
Main Authors Huang, Minshui, Zhang, Jianwei, Hu, Junliang, Ye, Zhongtao, Deng, Zhihang, Wan, Neng
Format Journal Article
LanguageEnglish
Published Elsevier 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation or instability, causing significant engineering accidents and immeasurable losses on society. This paper proposes a spatial-temporal nonlinear modeling method for temperature and temperature-induced bearing displacement (TIBD) of long-span single-pier rigid frame bridge based on DCNN-LSTM network with elastic modulus fusion, relying on the monitoring data of the Second Yangtze River Bridge in Wuhan. This framework introduces a dynamic autoregressive method for model inference to improve the prediction accuracy of the model. This study addresses three major issues: Insufficient rational selection of temperature characteristic values; Inadequate research on correlation between structural temperature and TIBD for the bridges; Poor prediction accuracy of temperature-TIBD regression models. The method proposed in this study achieves prediction accuracy of up to 99.8 % for TIBD, and this model is not affected by seasonal variation.
AbstractList Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation or instability, causing significant engineering accidents and immeasurable losses on society. This paper proposes a spatial-temporal nonlinear modeling method for temperature and temperature-induced bearing displacement (TIBD) of long-span single-pier rigid frame bridge based on DCNN-LSTM network with elastic modulus fusion, relying on the monitoring data of the Second Yangtze River Bridge in Wuhan. This framework introduces a dynamic autoregressive method for model inference to improve the prediction accuracy of the model. This study addresses three major issues: Insufficient rational selection of temperature characteristic values; Inadequate research on correlation between structural temperature and TIBD for the bridges; Poor prediction accuracy of temperature-TIBD regression models. The method proposed in this study achieves prediction accuracy of up to 99.8 % for TIBD, and this model is not affected by seasonal variation.
ArticleNumber 103897
Author Deng, Zhihang
Hu, Junliang
Ye, Zhongtao
Huang, Minshui
Wan, Neng
Zhang, Jianwei
Author_xml – sequence: 1
  givenname: Minshui
  orcidid: 0000-0002-3509-3599
  surname: Huang
  fullname: Huang, Minshui
– sequence: 2
  givenname: Jianwei
  surname: Zhang
  fullname: Zhang, Jianwei
– sequence: 3
  givenname: Junliang
  surname: Hu
  fullname: Hu, Junliang
– sequence: 4
  givenname: Zhongtao
  surname: Ye
  fullname: Ye, Zhongtao
– sequence: 5
  givenname: Zhihang
  surname: Deng
  fullname: Deng, Zhihang
– sequence: 6
  givenname: Neng
  surname: Wan
  fullname: Wan, Neng
BookMark eNp9UU1r3DAUFCWBpkl-QS_6A95Kltayj2X7FdhsD02hN_EkPRkttmQk59BD_3u12RZCDjnNMPNmeDDvyEVMEQl5z9mGM959OG5sCStuWtaKqoh-UG_IVdty2fCt-nXxjL8lt6UcGWNciZ5LeUX-HFKcQkTIdE4OKx1p8nTFecEM62PGJkT3aNFRU49OtgtlmcDijHE93U4pjk1ZINJS7QmbJWCmOYzBUZ9hRmpycGMFKLUmRfppdzg0-x8P9zfk0sNU8PYfXpOfXz4_7L41--9f73Yf940VHVsb4J2QA_etciAdc8aD2QLrnIFBGFTeeFUlB9yiqm_21bJWKgDBe-OsuCZ3516X4KiXHGbIv3WCoJ-ElEcNeQ12Qu22sjXe9gy9l9yoQSijttaqznbSgqldw7nL5lRKRq9tWGENKa4ZwqQ506dZ9FE_zaJPs-jzLDUrXmT___Ja6i__rJlM
CitedBy_id crossref_primary_10_1016_j_istruc_2025_108196
crossref_primary_10_3390_buildings14051195
crossref_primary_10_1155_stc_5827324
crossref_primary_10_3390_mi16030318
crossref_primary_10_1016_j_heliyon_2024_e39537
crossref_primary_10_3390_buildings14030562
crossref_primary_10_1016_j_autcon_2024_105790
crossref_primary_10_1016_j_eswa_2024_125867
crossref_primary_10_1007_s00170_024_14322_z
crossref_primary_10_1016_j_istruc_2024_107727
crossref_primary_10_1016_j_measurement_2024_115748
crossref_primary_10_3390_buildings14092711
crossref_primary_10_32604_sdhm_2024_055265
crossref_primary_10_3390_buildings14113613
crossref_primary_10_3390_buildings14072163
crossref_primary_10_3390_buildings14040872
crossref_primary_10_1016_j_asej_2025_103301
crossref_primary_10_1016_j_compstruc_2024_107458
crossref_primary_10_1016_j_istruc_2024_108094
crossref_primary_10_1016_j_heliyon_2024_e39038
crossref_primary_10_1016_j_engstruct_2025_119693
crossref_primary_10_3390_buildings15030328
crossref_primary_10_1016_j_autcon_2024_105680
crossref_primary_10_1166_sam_2024_4702
crossref_primary_10_3390_buildings15010039
crossref_primary_10_1016_j_aei_2024_102936
crossref_primary_10_3390_rs16244748
crossref_primary_10_1016_j_measurement_2024_114528
crossref_primary_10_3390_buildings15010072
crossref_primary_10_1016_j_istruc_2024_106540
crossref_primary_10_3390_buildings15050769
crossref_primary_10_1016_j_jsv_2024_118769
crossref_primary_10_1016_j_eswa_2025_126584
crossref_primary_10_1016_j_autcon_2024_105695
crossref_primary_10_3390_buildings14082344
crossref_primary_10_1007_s12530_024_09639_9
crossref_primary_10_1177_14759217251324156
crossref_primary_10_3390_app14135454
crossref_primary_10_3390_buildings14061864
crossref_primary_10_1177_14759217241305598
crossref_primary_10_1016_j_eswa_2024_125409
crossref_primary_10_3390_buildings14082581
crossref_primary_10_3390_buildings14092650
crossref_primary_10_3390_s24216863
crossref_primary_10_1155_stc_2484661
crossref_primary_10_1177_14759217241255042
crossref_primary_10_3390_s24113587
crossref_primary_10_3390_s24072091
crossref_primary_10_1109_ACCESS_2024_3479868
Cites_doi 10.1061/(ASCE)CF.1943-5509.0000820
10.1007/s13349-021-00532-6
10.1016/j.engstruct.2010.02.026
10.1016/j.engstruct.2016.11.012
10.1007/s13349-020-00444-x
10.1002/stc.1681
10.1111/mice.12355
10.1061/(ASCE)BE.1943-5592.0001083
10.1016/j.csite.2023.102696
10.1016/j.ymssp.2023.110623
10.1007/s11709-011-0122-x
10.1016/j.measurement.2018.04.034
10.1016/j.engstruct.2017.10.074
10.1061/(ASCE)BE.1943-5592.0001775
10.1061/(ASCE)EM.1943-7889.0000273
10.1142/S0219455421501698
10.1080/15732479.2015.1117113
10.3390/buildings13061360
10.1016/j.ymssp.2019.106568
10.1061/(ASCE)ST.1943-541X.0003354
10.1016/j.engstruct.2014.12.042
10.1061/(ASCE)AS.1943-5525.0001225
10.1061/(ASCE)BE.1943-5592.0001763
10.1061/(ASCE)BE.1943-5592.0001387
10.1016/j.engstruct.2021.113619
10.1061/(ASCE)BE.1943-5592.0001716
10.1061/(ASCE)ST.1943-541X.0003325
10.1061/(ASCE)AS.1943-5525.0000829
10.1016/j.engstruct.2020.111012
10.3390/a14060180
10.1061/(ASCE)ST.1943-541X.0001270
10.1016/j.engstruct.2005.02.020
10.1016/j.measurement.2017.10.036
10.1061/(ASCE)BE.1943-5592.0001003
10.1007/s13349-022-00647-4
10.1061/(ASCE)BE.1943-5592.0001258
10.1061/(ASCE)BE.1943-5592.0000696
10.1061/(ASCE)0887-3828(2007)21:2(143)
10.1007/s13349-023-00679-4
10.1016/j.istruc.2022.09.011
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2023.103897
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_d542bfc80eff41b7937b75cc76c64cab
10_1016_j_csite_2023_103897
GroupedDBID 0R~
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
ID FETCH-LOGICAL-c360t-a163491f27da4d0dbfab5a06dba93be7fbf7fabda1ce7bea806dcc47aa318bdc3
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:29:25 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 02:28:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-a163491f27da4d0dbfab5a06dba93be7fbf7fabda1ce7bea806dcc47aa318bdc3
ORCID 0000-0002-3509-3599
OpenAccessLink https://doaj.org/article/d542bfc80eff41b7937b75cc76c64cab
ParticipantIDs doaj_primary_oai_doaj_org_article_d542bfc80eff41b7937b75cc76c64cab
crossref_citationtrail_10_1016_j_csite_2023_103897
crossref_primary_10_1016_j_csite_2023_103897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2024
Publisher Elsevier
Publisher_xml – name: Elsevier
References Wang (10.1016/j.csite.2023.103897_bib40) 2021; 26
Huang (10.1016/j.csite.2023.103897_bib33) 2022; 148
Han (10.1016/j.csite.2023.103897_bib34) 2022; 12
Tang (10.1016/j.csite.2023.103897_bib1) 2015; 20
Xia (10.1016/j.csite.2023.103897_bib11) 2017; 22
Lyu (10.1016/j.csite.2023.103897_bib13) 2017; 131
Ni (10.1016/j.csite.2023.103897_bib18) 2005; 27
Li (10.1016/j.csite.2023.103897_bib35) 2017
Han (10.1016/j.csite.2023.103897_bib5) 2021; 11
Zhou (10.1016/j.csite.2023.103897_bib24) 2020; 221
Ni (10.1016/j.csite.2023.103897_bib7) 2007; 21
Murphy (10.1016/j.csite.2023.103897_bib14) 2018; 155
Xu (10.1016/j.csite.2023.103897_bib17) 2019; 24
Kromanis (10.1016/j.csite.2023.103897_bib8) 2016; 12
Zhou (10.1016/j.csite.2023.103897_bib39) 2010; 32
Yarnold (10.1016/j.csite.2023.103897_bib16) 2015; 141
Huang (10.1016/j.csite.2023.103897_bib19) 2021; 34
Wu (10.1016/j.csite.2023.103897_bib22) 2018; 33
Huang (10.1016/j.csite.2023.103897_bib2) 2023; 86
Bao (10.1016/j.csite.2023.103897_bib21) 2015; 22
Zhu (10.1016/j.csite.2023.103897_bib32) 2022
Zhou (10.1016/j.csite.2023.103897_bib20) 2011; 137
Sun (10.1016/j.csite.2023.103897_bib42) 2023; 200
Yarnold (10.1016/j.csite.2023.103897_bib15) 2015; 86
Wang (10.1016/j.csite.2023.103897_bib41) 2016; 30
Huang (10.1016/j.csite.2023.103897_bib44) 2018; 31
Fu (10.1016/j.csite.2023.103897_bib37) 2021; 14
Huang (10.1016/j.csite.2023.103897_bib3) 2021; 21
Yue (10.1016/j.csite.2023.103897_bib23) 2022; 252
Huang (10.1016/j.csite.2023.103897_bib27) 2018; 23
Deng (10.1016/j.csite.2023.103897_bib46) 2023; 13
Yue (10.1016/j.csite.2023.103897_bib36) 2022; 45
Duan (10.1016/j.csite.2023.103897_bib4) 2011
Yang (10.1016/j.csite.2023.103897_bib28) 2018; 115
Wu (10.1016/j.csite.2023.103897_bib31) 2021; 26
Li (10.1016/j.csite.2023.103897_bib12) 2023; 13
Zhu (10.1016/j.csite.2023.103897_bib29) 2022; 148
Sun (10.1016/j.csite.2023.103897_bib43) 2023; 13
Liang (10.1016/j.csite.2023.103897_bib45) 2018; 125
Luo (10.1016/j.csite.2023.103897_bib9) 2013; 34
Yue (10.1016/j.csite.2023.103897_bib26) 2021; 26
Zhou (10.1016/j.csite.2023.103897_bib25) 2020; 139
Zhang (10.1016/j.csite.2023.103897_bib38) 2021; 7
Ding (10.1016/j.csite.2023.103897_bib6) 2011; 5
Xia (10.1016/j.csite.2023.103897_bib10) 2017; 22
Ju (10.1016/j.csite.2023.103897_bib30) 2023; 42
References_xml – volume: 86
  start-page: 715
  issue: 6
  year: 2023
  ident: 10.1016/j.csite.2023.103897_bib2
  article-title: Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy
  publication-title: Struct. Eng. Mech.
– volume: 30
  issue: 4
  year: 2016
  ident: 10.1016/j.csite.2023.103897_bib41
  article-title: Detection and location of the degraded bearings based on monitoring the longitudinal expansion performance of the main girder of the Dashengguan Yangtze Bridge
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000820
– volume: 12
  start-page: 163
  year: 2022
  ident: 10.1016/j.csite.2023.103897_bib34
  article-title: Performance assessment of railway multispan steel truss bridge bearing by thermal excitation
  publication-title: J. Civ. Struct. Health.
  doi: 10.1007/s13349-021-00532-6
– volume: 32
  start-page: 1747
  issue: 6
  year: 2010
  ident: 10.1016/j.csite.2023.103897_bib39
  article-title: Constructing input to neural networks for modeling temperature-caused modal variability: mean temperatures, effective temperatures, and principal components of temperatures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.02.026
– volume: 131
  start-page: 180
  year: 2017
  ident: 10.1016/j.csite.2023.103897_bib13
  article-title: Connection stiffness identification of historic timber buildings using temperature-based sensitivity analysis
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.11.012
– volume: 11
  start-page: 149
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib5
  article-title: Structural health monitoring research under varying temperature condition: a review
  publication-title: J. Civ. Struct. Health.
  doi: 10.1007/s13349-020-00444-x
– volume: 22
  start-page: 433
  issue: 3
  year: 2015
  ident: 10.1016/j.csite.2023.103897_bib21
  article-title: Compressive sensing-based lost data recovery of fast-moving wireless sensing for structural health monitoring
  publication-title: Struct. Control. Hlth.
  doi: 10.1002/stc.1681
– volume: 33
  start-page: 672
  issue: 8
  year: 2018
  ident: 10.1016/j.csite.2023.103897_bib22
  article-title: A rapidly convergent empirical mode decomposition method for analyzing the environmental temperature effects on stay cable force
  publication-title: Comput-Aided Civ. Inf.
  doi: 10.1111/mice.12355
– start-page: 609
  year: 2017
  ident: 10.1016/j.csite.2023.103897_bib35
  article-title: End-to-end learning of deep convolutional neural network for 3D human action recognition
– volume: 22
  issue: 7
  year: 2017
  ident: 10.1016/j.csite.2023.103897_bib11
  article-title: Experimental study of thermal effects on a long-span suspension bridge
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001083
– volume: 42
  year: 2023
  ident: 10.1016/j.csite.2023.103897_bib30
  article-title: Temperature time-lag effect elimination method of structural deformation monitoring data for cable-stayed bridges
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102696
– volume: 200
  year: 2023
  ident: 10.1016/j.csite.2023.103897_bib42
  article-title: Predicting bridge longitudinal displacement from monitored operational loads with hierarchical CNN for condition assessment
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110623
– volume: 5
  start-page: 374
  year: 2011
  ident: 10.1016/j.csite.2023.103897_bib6
  article-title: Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions
  publication-title: Front. Architect. Civ. Eng. China
  doi: 10.1007/s11709-011-0122-x
– volume: 125
  start-page: 163
  year: 2018
  ident: 10.1016/j.csite.2023.103897_bib45
  article-title: Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.034
– volume: 155
  start-page: 209
  year: 2018
  ident: 10.1016/j.csite.2023.103897_bib14
  article-title: Temperature-driven structural identification of a steel girder bridge with an integral abutment
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.10.074
– start-page: 1
  year: 2022
  ident: 10.1016/j.csite.2023.103897_bib32
  article-title: Investigation on the mapping for temperature-induced responses of a long-span steel truss arch bridge
  publication-title: Struct. Infrastruct. E.
– volume: 26
  issue: 10
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib40
  article-title: Eliminating the bridge modal variability induced by thermal effects using localized modeling method
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001775
– start-page: 6025
  year: 2011
  ident: 10.1016/j.csite.2023.103897_bib4
  article-title: Strain-temperature correlation analysis of a tied arch bridge using monitoring data
– volume: 137
  start-page: 785
  issue: 12
  year: 2011
  ident: 10.1016/j.csite.2023.103897_bib20
  article-title: Eliminating temperature effect in vibration-based structural damage detection
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000273
– volume: 21
  issue: 12
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib3
  article-title: A novel two-stage structural damage identification method based on superposition of modal flexibility curvature and whale optimization algorithm
  publication-title: Int. J. Struct. Stabil. Dynam.
  doi: 10.1142/S0219455421501698
– volume: 12
  start-page: 1342
  issue: 10
  year: 2016
  ident: 10.1016/j.csite.2023.103897_bib8
  article-title: Long-term structural health monitoring of the Cleddau bridge: evaluation of quasi-static temperature effects on bearing movements
  publication-title: Struct. Infrastruct. E.
  doi: 10.1080/15732479.2015.1117113
– volume: 13
  start-page: 1360
  issue: 6
  year: 2023
  ident: 10.1016/j.csite.2023.103897_bib46
  article-title: The current development of structural health monitoring for bridges: a review
  publication-title: Buildings
  doi: 10.3390/buildings13061360
– volume: 139
  year: 2020
  ident: 10.1016/j.csite.2023.103897_bib25
  article-title: Analytical solution to temperature-induced deformation of suspension bridges
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106568
– volume: 148
  issue: 6
  year: 2022
  ident: 10.1016/j.csite.2023.103897_bib33
  article-title: Sparse Bayesian identification of temperature-displacement model for performance assessment and early warning of bridge bearings
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003354
– volume: 86
  start-page: 157
  year: 2015
  ident: 10.1016/j.csite.2023.103897_bib15
  article-title: Temperature-based structural health monitoring baseline for long-span bridges
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.12.042
– volume: 34
  issue: 2
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib19
  article-title: Damage identification of bridge structures considering temperature variations-based SVM and MFO
  publication-title: J. Aerospace. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0001225
– volume: 26
  issue: 9
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib31
  article-title: Early warning method for bearing displacement of long-span bridges using a proposed time-varying temperature-displacement model
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001763
– volume: 24
  issue: 5
  year: 2019
  ident: 10.1016/j.csite.2023.103897_bib17
  article-title: Modeling and separation of thermal effects from cable-stayed bridge response
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001387
– volume: 252
  year: 2022
  ident: 10.1016/j.csite.2023.103897_bib23
  article-title: Mechanics-Guided optimization of an LSTM network for Real-Time modeling of Temperature-Induced deflection of a Cable-Stayed bridge
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113619
– volume: 26
  issue: 6
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib26
  article-title: Deep learning-based minute-scale digital prediction model of temperature-induced deflection of a cable-stayed bridge: case study
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001716
– volume: 148
  issue: 5
  year: 2022
  ident: 10.1016/j.csite.2023.103897_bib29
  article-title: Mapping of temperature-induced response increments for monitoring long-span steel truss arch bridges based on machine learning
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003325
– volume: 31
  issue: 3
  year: 2018
  ident: 10.1016/j.csite.2023.103897_bib44
  article-title: Vibration-based structural damage identification under varying temperature effects
  publication-title: J. Aerospace. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000829
– volume: 221
  year: 2020
  ident: 10.1016/j.csite.2023.103897_bib24
  article-title: General formulas for estimating temperature-induced mid-span vertical displacement of cable-stayed bridges
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111012
– volume: 14
  start-page: 180
  issue: 6
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib37
  article-title: Damage identification of long-span bridges using the hybrid of convolutional neural network and long short-term memory network
  publication-title: Algorithms
  doi: 10.3390/a14060180
– volume: 141
  issue: 11
  year: 2015
  ident: 10.1016/j.csite.2023.103897_bib16
  article-title: Temperature-based structural identification of long-span bridges
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001270
– volume: 27
  start-page: 1762
  year: 2005
  ident: 10.1016/j.csite.2023.103897_bib18
  article-title: Correlating modal properties with temperature using long-term monitoring data and support vector machine technique
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2005.02.020
– volume: 115
  start-page: 249
  year: 2018
  ident: 10.1016/j.csite.2023.103897_bib28
  article-title: Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.10.036
– volume: 7
  start-page: 1786
  issue: 12
  year: 2021
  ident: 10.1016/j.csite.2023.103897_bib38
  article-title: Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain
  publication-title: Eng. Plast.
– volume: 22
  issue: 3
  year: 2017
  ident: 10.1016/j.csite.2023.103897_bib10
  article-title: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001003
– volume: 13
  start-page: 387
  issue: 2–3
  year: 2023
  ident: 10.1016/j.csite.2023.103897_bib43
  article-title: Interpreting cumulative displacement in a suspension bridge with a physics-based characterisation of environment and roadway/railway loads
  publication-title: J. Civ. Struct. Health.
  doi: 10.1007/s13349-022-00647-4
– volume: 23
  issue: 7
  year: 2018
  ident: 10.1016/j.csite.2023.103897_bib27
  article-title: New representative temperature for performance alarming of bridge expansion joints through temperature-displacement relationship
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001258
– volume: 20
  start-page: B4015001
  issue: 8
  year: 2015
  ident: 10.1016/j.csite.2023.103897_bib1
  article-title: Segmental bridges in chongqing, China
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0000696
– volume: 21
  start-page: 143
  issue: 2
  year: 2007
  ident: 10.1016/j.csite.2023.103897_bib7
  article-title: Assessment of bridge expansion joints using long-term displacement and temperature measurement
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)0887-3828(2007)21:2(143)
– volume: 13
  start-page: 781
  year: 2023
  ident: 10.1016/j.csite.2023.103897_bib12
  article-title: Temperature-induced deflection separation based on bridge deflection data using the TVFEMD-PE-KLD method
  publication-title: J. Civ. Struct. Health.
  doi: 10.1007/s13349-023-00679-4
– volume: 34
  start-page: 24
  issue: 11
  year: 2013
  ident: 10.1016/j.csite.2023.103897_bib9
  article-title: Measurement and analysis of steel structure temperature and stress in National Stadium
  publication-title: J. Build. Struct.
– volume: 45
  start-page: 110
  year: 2022
  ident: 10.1016/j.csite.2023.103897_bib36
  article-title: Ultra-high precise Stack-LSTM-CNN model of temperature-induced deflection of a cable-stayed bridge for detecting bridge state driven by monitoring data
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.09.011
SSID ssj0001738144
Score 2.513748
Snippet Long-span single-pier rigid frame bridge may experience excessive bearing displacement under temperature variation, which can result in structural deformation...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 103897
SubjectTerms Autoregression
Deep convolutional neural network
Long short-term memory neural network
Long-span single-pier rigid frame bridge
Structural health monitoring
Temperature-induced bearing displacement
Title Nonlinear modeling of temperature-induced bearing displacement of long-span single-pier rigid frame bridge based on DCNN-LSTM
URI https://doaj.org/article/d542bfc80eff41b7937b75cc76c64cab
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI7QTTAgnuKtDIxEtNc8mpGnAEEXQLqtyhOBTr3TcYz8d-y0d-oEC0sHx6ksx40d1_lMyCkioghdBpaH3DIetGal1JFBqAEGVgqfa7wo_FTJu1f-MBKjXqsvrAlr4YFbxZ17wYc2ujILMfLcIpybVcI5JZ3kzljcfcHn9Q5TKbuiwBNxvoAZSgVdLv2OxXbhCRUcYZ56rqiH2J9cy-0GWe9iQnrRyrJJVkKzRdZ6SIHb5LtqIS3MjKbeNUCkk0gRWKpDRWZwuIZl8tQCEw77989UcIXpP-QdT5o3BvtHQzE9MA5sCh6RYl8sTyOWaNH28hZFx-bppKHXV1XFHp9fnnbI6-3Ny9Ud6zonMFfIbM4MRFlc53GovOE-8zYaK0wmvTW6sEFFGxWQvMldUCBWCUPOcWUMfOLWu2KXDJpJE_YIFblSFmZLLTg32lkpAi-c9NKEIndxnwwXSqxdByuO3S3G9aJ-7KNOmq9R83Wr-X1ytpw0bVE1fme_xNVZsiIkdiKAodSdodR_GcrBf7zkkKyCXLzNwRyRwXz2FY4hKpnbk2SA8LwfXf4AdHXlZw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+modeling+of+temperature-induced+bearing+displacement+of+long-span+single-pier+rigid+frame+bridge+based+on+DCNN-LSTM&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Huang%2C+Minshui&rft.au=Zhang%2C+Jianwei&rft.au=Hu%2C+Junliang&rft.au=Ye%2C+Zhongtao&rft.date=2024-01-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=53&rft.spage=103897&rft_id=info:doi/10.1016%2Fj.csite.2023.103897&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2023_103897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon