Multi-mechanism theory of aerosol capture by fibrous filters, including fiber diameter/orientation dispersity and particle morphology effects. Preliminary tests vs. data for mobility-selected submicron particles

In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF, (derived using asymptotically valid approximations: Ref<0.4, Pef≫1, R≪1, R⋅Pef1/3 arbitrary and Stkp≤Stkpcrit), facilitates a deterministi...

Full description

Saved in:
Bibliographic Details
Published inJournal of aerosol science Vol. 164; p. 106000
Main Authors Rosner, Daniel E., Arias-Zugasti, Manuel
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2022
Subjects
Online AccessGet full text
ISSN0021-8502
1879-1964
DOI10.1016/j.jaerosci.2022.106000

Cover

Loading…
Abstract In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF, (derived using asymptotically valid approximations: Ref<0.4, Pef≫1, R≪1, R⋅Pef1/3 arbitrary and Stkp≤Stkpcrit), facilitates a deterministic-, pseudo-continuum aerosol population-balance (PB-) approach to predicting fibrous filter performance. There we explicitly considered “deep” (Lf/df,g≫1), low solidity idealized fibrous filters (FFs) challenged by polydispersed aerosols—especially single-mode log-normal (LN) ASDs of modest spread captured by a spatially uniform array of fibers of a single diameter in crossflow. However, realistic fibrous filter media often possess a LN distribution of fiber diameters, as well as a near-Gaussian orientation distribution narrowly spread about normal incidence (θ=π/2). Moreover, even if this were not so, there would be meso-scale departures from a uniform average fiber solid fraction. We show here that our tractable aerosol PBE-approach to idealized FF performance (Paper I) can be generalized to incorporate these particular structural features of commercially available fibrous filter media. But, to clarify whether these generalizations are likely to be useful, if not fully sufficient, for practical circumstances, it is also necessary to compare such methods/predictions against selected sets of well-defined experimental results. We initiate this program here, having chosen the recent experiments of Kang et al. (2019) carried out using a commercially available fiberglass filter with Lf/df,g≃300, mean solid fraction of 0.039, and df,g=2.5μm, successively challenged by mobility-selected KCl(s) particles (with diameters between ca. 20 and 600nm) at the carrier gas velocities of 15 and 10 cm/s—capture conditions dominated by the transport mechanism of Brownian diffusion and convection, with “interception” (associated with non-negligible dp/df) becoming important above ca. dp=100nm. We conclude from these data that the effective interception diameter, dp,icpt,eff, of the particles studied is systematically larger than their stated mobility diameters—a situation which will deserve further attention in future studies. Encouraged by these preliminary but instructive comparisons, we expect that, for many current and future design purposes, our present class of semi-analytic/non-stochastic/multi-mechanism methods will provide a welcome complement, if not alternative, to much more computationally-intensive simulation methods for realistic fibrous media that have been described and implemented in the recent aerosol filtration literature. The consequences of including these structural features of fibrous filters in the presence of aerosol size- and shape polydispersity will be the subject of future studies, based on the generalized Population Balance Equation developed/proposed in Section 3.3. •Advances in fibrous filter (FF-) theory exploiting asymptotic continuum methods.•Pseudo-homogeneous quasi-1D model of a FF fed by an aerosol size distribution (ASD).•Model includes realistic FF features: fiber diam, orientation and mesoscale nonuniformity.•Successful validation of theoretical model compared to recent experimental results.•Model shows eff. interception particle diam. systematically larger than mobility diam.
AbstractList In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF, (derived using asymptotically valid approximations: Ref<0.4, Pef≫1, R≪1, R⋅Pef1/3 arbitrary and Stkp≤Stkpcrit), facilitates a deterministic-, pseudo-continuum aerosol population-balance (PB-) approach to predicting fibrous filter performance. There we explicitly considered “deep” (Lf/df,g≫1), low solidity idealized fibrous filters (FFs) challenged by polydispersed aerosols—especially single-mode log-normal (LN) ASDs of modest spread captured by a spatially uniform array of fibers of a single diameter in crossflow. However, realistic fibrous filter media often possess a LN distribution of fiber diameters, as well as a near-Gaussian orientation distribution narrowly spread about normal incidence (θ=π/2). Moreover, even if this were not so, there would be meso-scale departures from a uniform average fiber solid fraction. We show here that our tractable aerosol PBE-approach to idealized FF performance (Paper I) can be generalized to incorporate these particular structural features of commercially available fibrous filter media. But, to clarify whether these generalizations are likely to be useful, if not fully sufficient, for practical circumstances, it is also necessary to compare such methods/predictions against selected sets of well-defined experimental results. We initiate this program here, having chosen the recent experiments of Kang et al. (2019) carried out using a commercially available fiberglass filter with Lf/df,g≃300, mean solid fraction of 0.039, and df,g=2.5μm, successively challenged by mobility-selected KCl(s) particles (with diameters between ca. 20 and 600nm) at the carrier gas velocities of 15 and 10 cm/s—capture conditions dominated by the transport mechanism of Brownian diffusion and convection, with “interception” (associated with non-negligible dp/df) becoming important above ca. dp=100nm. We conclude from these data that the effective interception diameter, dp,icpt,eff, of the particles studied is systematically larger than their stated mobility diameters—a situation which will deserve further attention in future studies. Encouraged by these preliminary but instructive comparisons, we expect that, for many current and future design purposes, our present class of semi-analytic/non-stochastic/multi-mechanism methods will provide a welcome complement, if not alternative, to much more computationally-intensive simulation methods for realistic fibrous media that have been described and implemented in the recent aerosol filtration literature. The consequences of including these structural features of fibrous filters in the presence of aerosol size- and shape polydispersity will be the subject of future studies, based on the generalized Population Balance Equation developed/proposed in Section 3.3. •Advances in fibrous filter (FF-) theory exploiting asymptotic continuum methods.•Pseudo-homogeneous quasi-1D model of a FF fed by an aerosol size distribution (ASD).•Model includes realistic FF features: fiber diam, orientation and mesoscale nonuniformity.•Successful validation of theoretical model compared to recent experimental results.•Model shows eff. interception particle diam. systematically larger than mobility diam.
ArticleNumber 106000
Author Arias-Zugasti, Manuel
Rosner, Daniel E.
Author_xml – sequence: 1
  givenname: Daniel E.
  surname: Rosner
  fullname: Rosner, Daniel E.
  email: daniel.rosner@yale.edu
  organization: Chemical and Environmental Engineering Dept. Yale University, Mason Laboratory, 9 Hillhouse Ave., New Haven, CT 06520-8286, USA
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0002-0408-2379
  surname: Arias-Zugasti
  fullname: Arias-Zugasti, Manuel
  email: maz@dfmf.uned.es
  organization: Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas (Madrid) 28232, Spain
BookMark eNqFUcFq3DAQFSWBbpL-QtEH1BvJ9tpr6KElNG0gpT20ZyFLo-wssmQkObDfmR_qbDe55JLTwJt5b2beu2BnIQZg7KMUaylkd71f7zWkmA2ua1HXBHZCiHdsJbf9UMmha8_YSohaVtuNqN-zi5z3NNAPcrNiTz8XX7CawOx0wDzxsoOYDjw6_l80em70XJYEfDxwh2OKS6bqC6T8iWMwfrEYHo4tSNyinoBa1zEhhKILxkBgnmkay4HrYPmsU0HjgU8xzbvo48OBg3NgSl7z3wk8Thg03VAgl8wfCbW6aO5iIsqInoSqDJ4IYHlexglNojUvuvmKnTvtM3x4rpfs7-23Pzc_qvtf3-9uvt5XpulEqQYALYZGuo02vetsa9qto9qQNV3XtMLZpgcJTW-HkdxqhdS6Ff0IHRlcj80l6066tD7nBE7NCSe6XEmhjtGovXqJRh2jUadoiPj5FdHgyauSNPq36V9OdKDnHhGSogkIBiwmMkXZiG9J_ANgLLjc
CitedBy_id crossref_primary_10_1016_j_jece_2024_112717
crossref_primary_10_1016_j_partic_2024_11_015
crossref_primary_10_1080_02726351_2024_2405838
crossref_primary_10_1016_j_mtcomm_2024_108510
crossref_primary_10_3390_atmos14040640
crossref_primary_10_3390_nano12224087
Cites_doi 10.1016/j.powtec.2010.03.020
10.1016/j.seppur.2020.117676
10.1016/0032-5910(94)02850-8
10.1007/s11051-006-9155-9
10.1007/s11051-006-9176-4
10.1016/j.compfluid.2015.04.019
10.1080/02786826.2019.1587378
10.1080/02786826.2019.1661349
10.1080/02786826.2017.1410095
10.1016/j.jaerosci.2020.105522
10.1016/j.seppur.2018.07.068
10.1080/02786829708965484
10.1080/027868201300034763
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jaerosci.2022.106000
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
EISSN 1879-1964
ExternalDocumentID 10_1016_j_jaerosci_2022_106000
S002185022200043X
GroupedDBID ---
--K
--M
-~X
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SPD
SSE
SSJ
SSZ
T5K
TN5
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c360t-9eea0931f5ac7f6d4c48ff6d307966340fd37e1e37d9b791401aa407be66002b3
IEDL.DBID .~1
ISSN 0021-8502
IngestDate Tue Jul 01 01:37:24 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Fri Feb 23 02:39:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Interception particle diam
Fiber diam orientation and mesoscale nonuniformity
Mobility particle diam
Sub-critical particle inertia effects on fibrous filter performance
Fibrous filter aerosol capture theory
Aerosol deposition (multi-mechanism) on fibers
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-9eea0931f5ac7f6d4c48ff6d307966340fd37e1e37d9b791401aa407be66002b3
ORCID 0000-0002-0408-2379
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002185022200043X
ParticipantIDs crossref_primary_10_1016_j_jaerosci_2022_106000
crossref_citationtrail_10_1016_j_jaerosci_2022_106000
elsevier_sciencedirect_doi_10_1016_j_jaerosci_2022_106000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Journal of aerosol science
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dhaniyala, Liu (b2) 2001; 34
Rosner, Tandon (b13) 2018; 52
Kang, Lee, Chan Kim, Chen, Pui (b6) 2019; 209
Rosner, Fernandez de la Mora (b12) 2023
Arias-Zugasti, Rosner, Fernandez de la Mora (b1) 2019; 53
Kim, Harrington, Pui (b7) 2007; 9
Hosseini, Vahedi Tafreshi (b5) 2010; 201
Przekop, Jackiewicz-Zagórska (b9) 2020; 142
Wang, Chen, Pui (b15) 2007; 9
Moelter, Fissan (b8) 1997; 27
Rosner, Arias-Zugasti (b10) 2021; 257
Rosner, Arias-Zugasti, Fernandez de la Mora (b11) 2023; 0
Gervais, Bourrous, Dany, Bouilloux, Ricciardi (b4) 2015; 116
Fernandez de la Mora, Rosner (b3) 2019; 53
Schweers, Löffler (b14) 1994; 80
Kang (10.1016/j.jaerosci.2022.106000_b6) 2019; 209
Schweers (10.1016/j.jaerosci.2022.106000_b14) 1994; 80
Rosner (10.1016/j.jaerosci.2022.106000_b10) 2021; 257
Fernandez de la Mora (10.1016/j.jaerosci.2022.106000_b3) 2019; 53
Gervais (10.1016/j.jaerosci.2022.106000_b4) 2015; 116
Dhaniyala (10.1016/j.jaerosci.2022.106000_b2) 2001; 34
Kim (10.1016/j.jaerosci.2022.106000_b7) 2007; 9
Wang (10.1016/j.jaerosci.2022.106000_b15) 2007; 9
Arias-Zugasti (10.1016/j.jaerosci.2022.106000_b1) 2019; 53
Rosner (10.1016/j.jaerosci.2022.106000_b11) 2023; 0
Hosseini (10.1016/j.jaerosci.2022.106000_b5) 2010; 201
Rosner (10.1016/j.jaerosci.2022.106000_b12) 2023
Rosner (10.1016/j.jaerosci.2022.106000_b13) 2018; 52
Moelter (10.1016/j.jaerosci.2022.106000_b8) 1997; 27
Przekop (10.1016/j.jaerosci.2022.106000_b9) 2020; 142
References_xml – volume: 201
  start-page: 153
  year: 2010
  end-page: 160
  ident: b5
  article-title: 3-d simulation of particle filtration in electrospun nanofibrous filters
  publication-title: Powder Technology
– volume: 9
  start-page: 109
  year: 2007
  end-page: 115
  ident: b15
  article-title: Modeling of filtration efficiency of nanoparticles in standard filter media
  publication-title: Journal of Nanoparticle Research
– volume: 257
  start-page: 1
  year: 2021
  end-page: 14
  ident: b10
  article-title: Predicting the aerosol capture characteristics of fibrous filters. I. exact- and tractable (3-moment) approximate-methods to incorporate aerosol polydispersity effects with a multi-mechanism, semi-analytic single-fiber particle capture fraction
  publication-title: Separation and Purification Technology
– volume: 53
  start-page: 647
  year: 2019
  end-page: 662
  ident: b3
  article-title: Low Reynolds number capture of small particles on cylinders by diffusion, interception, and inertia at subcritical Stokes numbers
  publication-title: Aerosol Science and Technology
– volume: 27
  start-page: 447
  year: 1997
  end-page: 461
  ident: b8
  article-title: Structure of a high efficiency glass fiber filter medium
  publication-title: Aerosol Science and Technology
– volume: 34
  start-page: 170
  year: 2001
  end-page: 178
  ident: b2
  article-title: Theoretical modeling of filtration by nonuniform fibrous filters
  publication-title: Aerosol Science and Technology
– volume: 142
  year: 2020
  ident: b9
  article-title: Effect of mesoscale inhomogeneity and fibers size distribution on the initial stage of deep-bed filtration process
  publication-title: Journal of Aerosol Science
– volume: 52
  start-page: 330
  year: 2018
  end-page: 346
  ident: b13
  article-title: Aggregation- and rarefaction-effects on particle mass deposition rates by convective-diffusion, thermophoresis or inertial impaction: Consequences of multi-spherule ‘momentum shielding’
  publication-title: Aerosol Science and Technology
– volume: 0
  start-page: 0
  year: 2023
  ident: b11
  article-title: Re-examination of the theory of nanoparticle capture by fibrous filters; inclusion of the effects of ‘thermal rebound’ and
  publication-title: Journal of Aerosol Science
– volume: 116
  start-page: 118
  year: 2015
  end-page: 128
  ident: b4
  article-title: Simulations of filter media performances from microtomography-based computational domain. experimental and analytical comparison
  publication-title: Computers & Fluids
– year: 2023
  ident: b12
  article-title: By what factor can the effective aerosol ‘interception’-diameter exceed the measured mobility-diameter? role of external particle shape and/or internal porosity
  publication-title: Aerosol Science and Technology
– volume: 209
  start-page: 461
  year: 2019
  end-page: 469
  ident: b6
  article-title: Modeling of fibrous filter media for ultrafine particle filtration
  publication-title: Separation and Purification Technology
– volume: 53
  start-page: 1367
  year: 2019
  end-page: 1380
  ident: b1
  article-title: Low Reynolds number capture of small particles on a cylinder by diffusion, interception, and inertia at subcritical Stokes numbers: Numerical calculations, correlations, and small diffusivity asymptote
  publication-title: Aerosol Science and Technology
– volume: 9
  start-page: 117
  year: 2007
  end-page: 125
  ident: b7
  article-title: Experimental study of nanoparticles penetration through commercial filter media
  publication-title: Journal of Nanoparticle Research
– volume: 80
  start-page: 191
  year: 1994
  end-page: 206
  ident: b14
  article-title: Realistic modelling of the behaviour of fibrous filters through consideration of filter structure
  publication-title: Powder Technology
– volume: 201
  start-page: 153
  year: 2010
  ident: 10.1016/j.jaerosci.2022.106000_b5
  article-title: 3-d simulation of particle filtration in electrospun nanofibrous filters
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2010.03.020
– volume: 257
  start-page: 1
  year: 2021
  ident: 10.1016/j.jaerosci.2022.106000_b10
  article-title: Predicting the aerosol capture characteristics of fibrous filters. I. exact- and tractable (3-moment) approximate-methods to incorporate aerosol polydispersity effects with a multi-mechanism, semi-analytic single-fiber particle capture fraction
  publication-title: Separation and Purification Technology
  doi: 10.1016/j.seppur.2020.117676
– year: 2023
  ident: 10.1016/j.jaerosci.2022.106000_b12
  article-title: By what factor can the effective aerosol ‘interception’-diameter exceed the measured mobility-diameter? role of external particle shape and/or internal porosity
  publication-title: Aerosol Science and Technology
– volume: 80
  start-page: 191
  year: 1994
  ident: 10.1016/j.jaerosci.2022.106000_b14
  article-title: Realistic modelling of the behaviour of fibrous filters through consideration of filter structure
  publication-title: Powder Technology
  doi: 10.1016/0032-5910(94)02850-8
– volume: 9
  start-page: 109
  year: 2007
  ident: 10.1016/j.jaerosci.2022.106000_b15
  article-title: Modeling of filtration efficiency of nanoparticles in standard filter media
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-006-9155-9
– volume: 9
  start-page: 117
  year: 2007
  ident: 10.1016/j.jaerosci.2022.106000_b7
  article-title: Experimental study of nanoparticles penetration through commercial filter media
  publication-title: Journal of Nanoparticle Research
  doi: 10.1007/s11051-006-9176-4
– volume: 116
  start-page: 118
  year: 2015
  ident: 10.1016/j.jaerosci.2022.106000_b4
  article-title: Simulations of filter media performances from microtomography-based computational domain. experimental and analytical comparison
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2015.04.019
– volume: 53
  start-page: 647
  year: 2019
  ident: 10.1016/j.jaerosci.2022.106000_b3
  article-title: Low Reynolds number capture of small particles on cylinders by diffusion, interception, and inertia at subcritical Stokes numbers
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2019.1587378
– volume: 0
  start-page: 0
  year: 2023
  ident: 10.1016/j.jaerosci.2022.106000_b11
  article-title: Re-examination of the theory of nanoparticle capture by fibrous filters; inclusion of the effects of ‘thermal rebound’ and Pe1/3=O(1)
  publication-title: Journal of Aerosol Science
– volume: 53
  start-page: 1367
  year: 2019
  ident: 10.1016/j.jaerosci.2022.106000_b1
  article-title: Low Reynolds number capture of small particles on a cylinder by diffusion, interception, and inertia at subcritical Stokes numbers: Numerical calculations, correlations, and small diffusivity asymptote
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2019.1661349
– volume: 52
  start-page: 330
  year: 2018
  ident: 10.1016/j.jaerosci.2022.106000_b13
  article-title: Aggregation- and rarefaction-effects on particle mass deposition rates by convective-diffusion, thermophoresis or inertial impaction: Consequences of multi-spherule ‘momentum shielding’
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2017.1410095
– volume: 142
  year: 2020
  ident: 10.1016/j.jaerosci.2022.106000_b9
  article-title: Effect of mesoscale inhomogeneity and fibers size distribution on the initial stage of deep-bed filtration process
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2020.105522
– volume: 209
  start-page: 461
  year: 2019
  ident: 10.1016/j.jaerosci.2022.106000_b6
  article-title: Modeling of fibrous filter media for ultrafine particle filtration
  publication-title: Separation and Purification Technology
  doi: 10.1016/j.seppur.2018.07.068
– volume: 27
  start-page: 447
  year: 1997
  ident: 10.1016/j.jaerosci.2022.106000_b8
  article-title: Structure of a high efficiency glass fiber filter medium
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786829708965484
– volume: 34
  start-page: 170
  year: 2001
  ident: 10.1016/j.jaerosci.2022.106000_b2
  article-title: Theoretical modeling of filtration by nonuniform fibrous filters
  publication-title: Aerosol Science and Technology
  doi: 10.1080/027868201300034763
SSID ssj0007915
Score 2.3897943
Snippet In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106000
SubjectTerms Aerosol deposition (multi-mechanism) on fibers
Fiber diam orientation and mesoscale nonuniformity
Fibrous filter aerosol capture theory
Interception particle diam
Mobility particle diam
Sub-critical particle inertia effects on fibrous filter performance
Title Multi-mechanism theory of aerosol capture by fibrous filters, including fiber diameter/orientation dispersity and particle morphology effects. Preliminary tests vs. data for mobility-selected submicron particles
URI https://dx.doi.org/10.1016/j.jaerosci.2022.106000
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbL9tIeSrttabbtMofSU5U4lhzFxyV0SVt26aELuRnrYXBw7GAnhVz6J_cP7Ywsb1Mo7KEnI9ljhGaYh_TNDGMfrXJSFVZybRMMUNDi8rmJIm41qkmd5FppOhq4vpktb-W3VbI6YYshF4ZglUH39zrda-swMwm7OdmWJeX4onlKKGDx91krymCXiurnj3__gXmoNHQxiKecvj7KEl6P17nzNSMxToxjnETrH_3bQB0ZnasX7HnwFuGyX9BLduLqM_bsqIbgGRtdo9vbtP50HD7BoirRB_WjV-zOp9fyjaP03rLbgE9bPEBTgF9SU4HJt3SHAPoABUbOzb7DJ92gd5-hrE21J9tGr1wLKEobQs9MmrYMKUs1TlKtcUJ2QF5b2IbNg02DHOxXFTAjY_jRusp3EcM1oIu76-AXzhJIFdB3RhKP1D3wzjfncRY6tNaEGKwf_tu9ZrdXX34uljx0ceBGzKIdT53Lo1RMiyQ3qphZaeS8wCcqFwy1hIwKK5SbOqFsqpFbGPDlOYaZ2s3ozlCLN-y0bmr3lgGdL0c2NzHKlTRCzo1VcSGFk1opYfSIJQPrMhNKnFOnjSobsGzrbGB5RizPepaP2OSBbtsX-XiUIh0kI_tLXDO0RI_Qnv8H7Tv2lEY9AvE9O921e_cBvaKdvvBif8GeXH79vry5B4RPFME
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VcgAOCAqogQJzQJxw4njX2fhYRVQBmopDK-VmeR-WHDl2ZCdIufAn-4c6s16XICH1wMny2mOtdsbz2P1mhrFPRlohcyMCZWIMUNDiBlMdhoFRqCZVnCmpaGtgcTWZ34jvy3h5xGZ9LgzBKr3u73S609Z-ZORXc7QpCsrxRfMUU8DizrOWj9hjEXNJoj38_QfnIRPfxiAaB_T6QZrwarjKrCsaiYFiFOEgmv_w3xbqwOpcvGDPvbsI592MXrIjW52wZwdFBE_YYIF-b9247XH4DLOyQCfU3b1ity6_Nlhbyu8t2jW4vMU91Dm4KdUl6GxDhwig9pBj6FzvWrzSEXr7BYpKlzsybvTINoCytCb4zKhuCp-zVOEgFRsnaAdklYGNXz1Y18jCblYeNDKEn40tXRsxnAP6uNsWfuEooVQBnWckcVDdfdC67jzWQIvmmiCD1f1329fs5uLr9Wwe-DYOgeaTcBsk1mZhwsd5nGmZT4zQYprjFbULxlpchLnh0o4tlyZRyC2M-LIM40xlJ3RoqPgbdlzVlT1lQBvMocl0hIIlNBdTbWSUC26FkpJrNWBxz7pU-xrn1GqjTHsw2yrtWZ4Sy9OO5QM2uqfbdFU-HqRIeslI_5LXFE3RA7Rv_4P2I3syv15cppffrn68Y0_pSQdHPGPH22Zn36OLtFUf3C9wB8E5Flc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-mechanism+theory+of+aerosol+capture+by+fibrous+filters%2C+including+fiber+diameter%2Forientation+dispersity+and+particle+morphology+effects.+Preliminary+tests+vs.+data+for+mobility-selected+submicron+particles&rft.jtitle=Journal+of+aerosol+science&rft.au=Rosner%2C+Daniel+E.&rft.au=Arias-Zugasti%2C+Manuel&rft.date=2022-08-01&rft.issn=0021-8502&rft.volume=164&rft.spage=106000&rft_id=info:doi/10.1016%2Fj.jaerosci.2022.106000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaerosci_2022_106000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8502&client=summon