Multi-mechanism theory of aerosol capture by fibrous filters, including fiber diameter/orientation dispersity and particle morphology effects. Preliminary tests vs. data for mobility-selected submicron particles
In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF, (derived using asymptotically valid approximations: Ref<0.4, Pef≫1, R≪1, R⋅Pef1/3 arbitrary and Stkp≤Stkpcrit), facilitates a deterministi...
Saved in:
Published in | Journal of aerosol science Vol. 164; p. 106000 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8502 1879-1964 |
DOI | 10.1016/j.jaerosci.2022.106000 |
Cover
Loading…
Abstract | In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF, (derived using asymptotically valid approximations: Ref<0.4, Pef≫1, R≪1, R⋅Pef1/3 arbitrary and Stkp≤Stkpcrit), facilitates a deterministic-, pseudo-continuum aerosol population-balance (PB-) approach to predicting fibrous filter performance. There we explicitly considered “deep” (Lf/df,g≫1), low solidity idealized fibrous filters (FFs) challenged by polydispersed aerosols—especially single-mode log-normal (LN) ASDs of modest spread captured by a spatially uniform array of fibers of a single diameter in crossflow. However, realistic fibrous filter media often possess a LN distribution of fiber diameters, as well as a near-Gaussian orientation distribution narrowly spread about normal incidence (θ=π/2). Moreover, even if this were not so, there would be meso-scale departures from a uniform average fiber solid fraction. We show here that our tractable aerosol PBE-approach to idealized FF performance (Paper I) can be generalized to incorporate these particular structural features of commercially available fibrous filter media. But, to clarify whether these generalizations are likely to be useful, if not fully sufficient, for practical circumstances, it is also necessary to compare such methods/predictions against selected sets of well-defined experimental results. We initiate this program here, having chosen the recent experiments of Kang et al. (2019) carried out using a commercially available fiberglass filter with Lf/df,g≃300, mean solid fraction of 0.039, and df,g=2.5μm, successively challenged by mobility-selected KCl(s) particles (with diameters between ca. 20 and 600nm) at the carrier gas velocities of 15 and 10 cm/s—capture conditions dominated by the transport mechanism of Brownian diffusion and convection, with “interception” (associated with non-negligible dp/df) becoming important above ca. dp=100nm. We conclude from these data that the effective interception diameter, dp,icpt,eff, of the particles studied is systematically larger than their stated mobility diameters—a situation which will deserve further attention in future studies. Encouraged by these preliminary but instructive comparisons, we expect that, for many current and future design purposes, our present class of semi-analytic/non-stochastic/multi-mechanism methods will provide a welcome complement, if not alternative, to much more computationally-intensive simulation methods for realistic fibrous media that have been described and implemented in the recent aerosol filtration literature. The consequences of including these structural features of fibrous filters in the presence of aerosol size- and shape polydispersity will be the subject of future studies, based on the generalized Population Balance Equation developed/proposed in Section 3.3.
•Advances in fibrous filter (FF-) theory exploiting asymptotic continuum methods.•Pseudo-homogeneous quasi-1D model of a FF fed by an aerosol size distribution (ASD).•Model includes realistic FF features: fiber diam, orientation and mesoscale nonuniformity.•Successful validation of theoretical model compared to recent experimental results.•Model shows eff. interception particle diam. systematically larger than mobility diam. |
---|---|
AbstractList | In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF, (derived using asymptotically valid approximations: Ref<0.4, Pef≫1, R≪1, R⋅Pef1/3 arbitrary and Stkp≤Stkpcrit), facilitates a deterministic-, pseudo-continuum aerosol population-balance (PB-) approach to predicting fibrous filter performance. There we explicitly considered “deep” (Lf/df,g≫1), low solidity idealized fibrous filters (FFs) challenged by polydispersed aerosols—especially single-mode log-normal (LN) ASDs of modest spread captured by a spatially uniform array of fibers of a single diameter in crossflow. However, realistic fibrous filter media often possess a LN distribution of fiber diameters, as well as a near-Gaussian orientation distribution narrowly spread about normal incidence (θ=π/2). Moreover, even if this were not so, there would be meso-scale departures from a uniform average fiber solid fraction. We show here that our tractable aerosol PBE-approach to idealized FF performance (Paper I) can be generalized to incorporate these particular structural features of commercially available fibrous filter media. But, to clarify whether these generalizations are likely to be useful, if not fully sufficient, for practical circumstances, it is also necessary to compare such methods/predictions against selected sets of well-defined experimental results. We initiate this program here, having chosen the recent experiments of Kang et al. (2019) carried out using a commercially available fiberglass filter with Lf/df,g≃300, mean solid fraction of 0.039, and df,g=2.5μm, successively challenged by mobility-selected KCl(s) particles (with diameters between ca. 20 and 600nm) at the carrier gas velocities of 15 and 10 cm/s—capture conditions dominated by the transport mechanism of Brownian diffusion and convection, with “interception” (associated with non-negligible dp/df) becoming important above ca. dp=100nm. We conclude from these data that the effective interception diameter, dp,icpt,eff, of the particles studied is systematically larger than their stated mobility diameters—a situation which will deserve further attention in future studies. Encouraged by these preliminary but instructive comparisons, we expect that, for many current and future design purposes, our present class of semi-analytic/non-stochastic/multi-mechanism methods will provide a welcome complement, if not alternative, to much more computationally-intensive simulation methods for realistic fibrous media that have been described and implemented in the recent aerosol filtration literature. The consequences of including these structural features of fibrous filters in the presence of aerosol size- and shape polydispersity will be the subject of future studies, based on the generalized Population Balance Equation developed/proposed in Section 3.3.
•Advances in fibrous filter (FF-) theory exploiting asymptotic continuum methods.•Pseudo-homogeneous quasi-1D model of a FF fed by an aerosol size distribution (ASD).•Model includes realistic FF features: fiber diam, orientation and mesoscale nonuniformity.•Successful validation of theoretical model compared to recent experimental results.•Model shows eff. interception particle diam. systematically larger than mobility diam. |
ArticleNumber | 106000 |
Author | Arias-Zugasti, Manuel Rosner, Daniel E. |
Author_xml | – sequence: 1 givenname: Daniel E. surname: Rosner fullname: Rosner, Daniel E. email: daniel.rosner@yale.edu organization: Chemical and Environmental Engineering Dept. Yale University, Mason Laboratory, 9 Hillhouse Ave., New Haven, CT 06520-8286, USA – sequence: 2 givenname: Manuel orcidid: 0000-0002-0408-2379 surname: Arias-Zugasti fullname: Arias-Zugasti, Manuel email: maz@dfmf.uned.es organization: Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas (Madrid) 28232, Spain |
BookMark | eNqFUcFq3DAQFSWBbpL-QtEH1BvJ9tpr6KElNG0gpT20ZyFLo-wssmQkObDfmR_qbDe55JLTwJt5b2beu2BnIQZg7KMUaylkd71f7zWkmA2ua1HXBHZCiHdsJbf9UMmha8_YSohaVtuNqN-zi5z3NNAPcrNiTz8XX7CawOx0wDzxsoOYDjw6_l80em70XJYEfDxwh2OKS6bqC6T8iWMwfrEYHo4tSNyinoBa1zEhhKILxkBgnmkay4HrYPmsU0HjgU8xzbvo48OBg3NgSl7z3wk8Thg03VAgl8wfCbW6aO5iIsqInoSqDJ4IYHlexglNojUvuvmKnTvtM3x4rpfs7-23Pzc_qvtf3-9uvt5XpulEqQYALYZGuo02vetsa9qto9qQNV3XtMLZpgcJTW-HkdxqhdS6Ff0IHRlcj80l6066tD7nBE7NCSe6XEmhjtGovXqJRh2jUadoiPj5FdHgyauSNPq36V9OdKDnHhGSogkIBiwmMkXZiG9J_ANgLLjc |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_112717 crossref_primary_10_1016_j_partic_2024_11_015 crossref_primary_10_1080_02726351_2024_2405838 crossref_primary_10_1016_j_mtcomm_2024_108510 crossref_primary_10_3390_atmos14040640 crossref_primary_10_3390_nano12224087 |
Cites_doi | 10.1016/j.powtec.2010.03.020 10.1016/j.seppur.2020.117676 10.1016/0032-5910(94)02850-8 10.1007/s11051-006-9155-9 10.1007/s11051-006-9176-4 10.1016/j.compfluid.2015.04.019 10.1080/02786826.2019.1587378 10.1080/02786826.2019.1661349 10.1080/02786826.2017.1410095 10.1016/j.jaerosci.2020.105522 10.1016/j.seppur.2018.07.068 10.1080/02786829708965484 10.1080/027868201300034763 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jaerosci.2022.106000 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Engineering |
EISSN | 1879-1964 |
ExternalDocumentID | 10_1016_j_jaerosci_2022_106000 S002185022200043X |
GroupedDBID | --- --K --M -~X .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SEP SES SEW SPC SPCBC SPD SSE SSJ SSZ T5K TN5 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c360t-9eea0931f5ac7f6d4c48ff6d307966340fd37e1e37d9b791401aa407be66002b3 |
IEDL.DBID | .~1 |
ISSN | 0021-8502 |
IngestDate | Tue Jul 01 01:37:24 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Feb 23 02:39:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interception particle diam Fiber diam orientation and mesoscale nonuniformity Mobility particle diam Sub-critical particle inertia effects on fibrous filter performance Fibrous filter aerosol capture theory Aerosol deposition (multi-mechanism) on fibers |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-9eea0931f5ac7f6d4c48ff6d307966340fd37e1e37d9b791401aa407be66002b3 |
ORCID | 0000-0002-0408-2379 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S002185022200043X |
ParticipantIDs | crossref_primary_10_1016_j_jaerosci_2022_106000 crossref_citationtrail_10_1016_j_jaerosci_2022_106000 elsevier_sciencedirect_doi_10_1016_j_jaerosci_2022_106000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of aerosol science |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dhaniyala, Liu (b2) 2001; 34 Rosner, Tandon (b13) 2018; 52 Kang, Lee, Chan Kim, Chen, Pui (b6) 2019; 209 Rosner, Fernandez de la Mora (b12) 2023 Arias-Zugasti, Rosner, Fernandez de la Mora (b1) 2019; 53 Kim, Harrington, Pui (b7) 2007; 9 Hosseini, Vahedi Tafreshi (b5) 2010; 201 Przekop, Jackiewicz-Zagórska (b9) 2020; 142 Wang, Chen, Pui (b15) 2007; 9 Moelter, Fissan (b8) 1997; 27 Rosner, Arias-Zugasti (b10) 2021; 257 Rosner, Arias-Zugasti, Fernandez de la Mora (b11) 2023; 0 Gervais, Bourrous, Dany, Bouilloux, Ricciardi (b4) 2015; 116 Fernandez de la Mora, Rosner (b3) 2019; 53 Schweers, Löffler (b14) 1994; 80 Kang (10.1016/j.jaerosci.2022.106000_b6) 2019; 209 Schweers (10.1016/j.jaerosci.2022.106000_b14) 1994; 80 Rosner (10.1016/j.jaerosci.2022.106000_b10) 2021; 257 Fernandez de la Mora (10.1016/j.jaerosci.2022.106000_b3) 2019; 53 Gervais (10.1016/j.jaerosci.2022.106000_b4) 2015; 116 Dhaniyala (10.1016/j.jaerosci.2022.106000_b2) 2001; 34 Kim (10.1016/j.jaerosci.2022.106000_b7) 2007; 9 Wang (10.1016/j.jaerosci.2022.106000_b15) 2007; 9 Arias-Zugasti (10.1016/j.jaerosci.2022.106000_b1) 2019; 53 Rosner (10.1016/j.jaerosci.2022.106000_b11) 2023; 0 Hosseini (10.1016/j.jaerosci.2022.106000_b5) 2010; 201 Rosner (10.1016/j.jaerosci.2022.106000_b12) 2023 Rosner (10.1016/j.jaerosci.2022.106000_b13) 2018; 52 Moelter (10.1016/j.jaerosci.2022.106000_b8) 1997; 27 Przekop (10.1016/j.jaerosci.2022.106000_b9) 2020; 142 |
References_xml | – volume: 201 start-page: 153 year: 2010 end-page: 160 ident: b5 article-title: 3-d simulation of particle filtration in electrospun nanofibrous filters publication-title: Powder Technology – volume: 9 start-page: 109 year: 2007 end-page: 115 ident: b15 article-title: Modeling of filtration efficiency of nanoparticles in standard filter media publication-title: Journal of Nanoparticle Research – volume: 257 start-page: 1 year: 2021 end-page: 14 ident: b10 article-title: Predicting the aerosol capture characteristics of fibrous filters. I. exact- and tractable (3-moment) approximate-methods to incorporate aerosol polydispersity effects with a multi-mechanism, semi-analytic single-fiber particle capture fraction publication-title: Separation and Purification Technology – volume: 53 start-page: 647 year: 2019 end-page: 662 ident: b3 article-title: Low Reynolds number capture of small particles on cylinders by diffusion, interception, and inertia at subcritical Stokes numbers publication-title: Aerosol Science and Technology – volume: 27 start-page: 447 year: 1997 end-page: 461 ident: b8 article-title: Structure of a high efficiency glass fiber filter medium publication-title: Aerosol Science and Technology – volume: 34 start-page: 170 year: 2001 end-page: 178 ident: b2 article-title: Theoretical modeling of filtration by nonuniform fibrous filters publication-title: Aerosol Science and Technology – volume: 142 year: 2020 ident: b9 article-title: Effect of mesoscale inhomogeneity and fibers size distribution on the initial stage of deep-bed filtration process publication-title: Journal of Aerosol Science – volume: 52 start-page: 330 year: 2018 end-page: 346 ident: b13 article-title: Aggregation- and rarefaction-effects on particle mass deposition rates by convective-diffusion, thermophoresis or inertial impaction: Consequences of multi-spherule ‘momentum shielding’ publication-title: Aerosol Science and Technology – volume: 0 start-page: 0 year: 2023 ident: b11 article-title: Re-examination of the theory of nanoparticle capture by fibrous filters; inclusion of the effects of ‘thermal rebound’ and publication-title: Journal of Aerosol Science – volume: 116 start-page: 118 year: 2015 end-page: 128 ident: b4 article-title: Simulations of filter media performances from microtomography-based computational domain. experimental and analytical comparison publication-title: Computers & Fluids – year: 2023 ident: b12 article-title: By what factor can the effective aerosol ‘interception’-diameter exceed the measured mobility-diameter? role of external particle shape and/or internal porosity publication-title: Aerosol Science and Technology – volume: 209 start-page: 461 year: 2019 end-page: 469 ident: b6 article-title: Modeling of fibrous filter media for ultrafine particle filtration publication-title: Separation and Purification Technology – volume: 53 start-page: 1367 year: 2019 end-page: 1380 ident: b1 article-title: Low Reynolds number capture of small particles on a cylinder by diffusion, interception, and inertia at subcritical Stokes numbers: Numerical calculations, correlations, and small diffusivity asymptote publication-title: Aerosol Science and Technology – volume: 9 start-page: 117 year: 2007 end-page: 125 ident: b7 article-title: Experimental study of nanoparticles penetration through commercial filter media publication-title: Journal of Nanoparticle Research – volume: 80 start-page: 191 year: 1994 end-page: 206 ident: b14 article-title: Realistic modelling of the behaviour of fibrous filters through consideration of filter structure publication-title: Powder Technology – volume: 201 start-page: 153 year: 2010 ident: 10.1016/j.jaerosci.2022.106000_b5 article-title: 3-d simulation of particle filtration in electrospun nanofibrous filters publication-title: Powder Technology doi: 10.1016/j.powtec.2010.03.020 – volume: 257 start-page: 1 year: 2021 ident: 10.1016/j.jaerosci.2022.106000_b10 article-title: Predicting the aerosol capture characteristics of fibrous filters. I. exact- and tractable (3-moment) approximate-methods to incorporate aerosol polydispersity effects with a multi-mechanism, semi-analytic single-fiber particle capture fraction publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2020.117676 – year: 2023 ident: 10.1016/j.jaerosci.2022.106000_b12 article-title: By what factor can the effective aerosol ‘interception’-diameter exceed the measured mobility-diameter? role of external particle shape and/or internal porosity publication-title: Aerosol Science and Technology – volume: 80 start-page: 191 year: 1994 ident: 10.1016/j.jaerosci.2022.106000_b14 article-title: Realistic modelling of the behaviour of fibrous filters through consideration of filter structure publication-title: Powder Technology doi: 10.1016/0032-5910(94)02850-8 – volume: 9 start-page: 109 year: 2007 ident: 10.1016/j.jaerosci.2022.106000_b15 article-title: Modeling of filtration efficiency of nanoparticles in standard filter media publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-006-9155-9 – volume: 9 start-page: 117 year: 2007 ident: 10.1016/j.jaerosci.2022.106000_b7 article-title: Experimental study of nanoparticles penetration through commercial filter media publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-006-9176-4 – volume: 116 start-page: 118 year: 2015 ident: 10.1016/j.jaerosci.2022.106000_b4 article-title: Simulations of filter media performances from microtomography-based computational domain. experimental and analytical comparison publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2015.04.019 – volume: 53 start-page: 647 year: 2019 ident: 10.1016/j.jaerosci.2022.106000_b3 article-title: Low Reynolds number capture of small particles on cylinders by diffusion, interception, and inertia at subcritical Stokes numbers publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2019.1587378 – volume: 0 start-page: 0 year: 2023 ident: 10.1016/j.jaerosci.2022.106000_b11 article-title: Re-examination of the theory of nanoparticle capture by fibrous filters; inclusion of the effects of ‘thermal rebound’ and Pe1/3=O(1) publication-title: Journal of Aerosol Science – volume: 53 start-page: 1367 year: 2019 ident: 10.1016/j.jaerosci.2022.106000_b1 article-title: Low Reynolds number capture of small particles on a cylinder by diffusion, interception, and inertia at subcritical Stokes numbers: Numerical calculations, correlations, and small diffusivity asymptote publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2019.1661349 – volume: 52 start-page: 330 year: 2018 ident: 10.1016/j.jaerosci.2022.106000_b13 article-title: Aggregation- and rarefaction-effects on particle mass deposition rates by convective-diffusion, thermophoresis or inertial impaction: Consequences of multi-spherule ‘momentum shielding’ publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2017.1410095 – volume: 142 year: 2020 ident: 10.1016/j.jaerosci.2022.106000_b9 article-title: Effect of mesoscale inhomogeneity and fibers size distribution on the initial stage of deep-bed filtration process publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2020.105522 – volume: 209 start-page: 461 year: 2019 ident: 10.1016/j.jaerosci.2022.106000_b6 article-title: Modeling of fibrous filter media for ultrafine particle filtration publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2018.07.068 – volume: 27 start-page: 447 year: 1997 ident: 10.1016/j.jaerosci.2022.106000_b8 article-title: Structure of a high efficiency glass fiber filter medium publication-title: Aerosol Science and Technology doi: 10.1080/02786829708965484 – volume: 34 start-page: 170 year: 2001 ident: 10.1016/j.jaerosci.2022.106000_b2 article-title: Theoretical modeling of filtration by nonuniform fibrous filters publication-title: Aerosol Science and Technology doi: 10.1080/027868201300034763 |
SSID | ssj0007915 |
Score | 2.3897943 |
Snippet | In Paper I (Sep. Purif. Technol. 257 (2021) 117676) we showed that a semi-analytic, multi-mechanism expression for the single-fiber capture fraction, ηcap,SF,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106000 |
SubjectTerms | Aerosol deposition (multi-mechanism) on fibers Fiber diam orientation and mesoscale nonuniformity Fibrous filter aerosol capture theory Interception particle diam Mobility particle diam Sub-critical particle inertia effects on fibrous filter performance |
Title | Multi-mechanism theory of aerosol capture by fibrous filters, including fiber diameter/orientation dispersity and particle morphology effects. Preliminary tests vs. data for mobility-selected submicron particles |
URI | https://dx.doi.org/10.1016/j.jaerosci.2022.106000 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbL9tIeSrttabbtMofSU5U4lhzFxyV0SVt26aELuRnrYXBw7GAnhVz6J_cP7Ywsb1Mo7KEnI9ljhGaYh_TNDGMfrXJSFVZybRMMUNDi8rmJIm41qkmd5FppOhq4vpktb-W3VbI6YYshF4ZglUH39zrda-swMwm7OdmWJeX4onlKKGDx91krymCXiurnj3__gXmoNHQxiKecvj7KEl6P17nzNSMxToxjnETrH_3bQB0ZnasX7HnwFuGyX9BLduLqM_bsqIbgGRtdo9vbtP50HD7BoirRB_WjV-zOp9fyjaP03rLbgE9bPEBTgF9SU4HJt3SHAPoABUbOzb7DJ92gd5-hrE21J9tGr1wLKEobQs9MmrYMKUs1TlKtcUJ2QF5b2IbNg02DHOxXFTAjY_jRusp3EcM1oIu76-AXzhJIFdB3RhKP1D3wzjfncRY6tNaEGKwf_tu9ZrdXX34uljx0ceBGzKIdT53Lo1RMiyQ3qphZaeS8wCcqFwy1hIwKK5SbOqFsqpFbGPDlOYaZ2s3ozlCLN-y0bmr3lgGdL0c2NzHKlTRCzo1VcSGFk1opYfSIJQPrMhNKnFOnjSobsGzrbGB5RizPepaP2OSBbtsX-XiUIh0kI_tLXDO0RI_Qnv8H7Tv2lEY9AvE9O921e_cBvaKdvvBif8GeXH79vry5B4RPFME |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VcgAOCAqogQJzQJxw4njX2fhYRVQBmopDK-VmeR-WHDl2ZCdIufAn-4c6s16XICH1wMny2mOtdsbz2P1mhrFPRlohcyMCZWIMUNDiBlMdhoFRqCZVnCmpaGtgcTWZ34jvy3h5xGZ9LgzBKr3u73S609Z-ZORXc7QpCsrxRfMUU8DizrOWj9hjEXNJoj38_QfnIRPfxiAaB_T6QZrwarjKrCsaiYFiFOEgmv_w3xbqwOpcvGDPvbsI592MXrIjW52wZwdFBE_YYIF-b9247XH4DLOyQCfU3b1ity6_Nlhbyu8t2jW4vMU91Dm4KdUl6GxDhwig9pBj6FzvWrzSEXr7BYpKlzsybvTINoCytCb4zKhuCp-zVOEgFRsnaAdklYGNXz1Y18jCblYeNDKEn40tXRsxnAP6uNsWfuEooVQBnWckcVDdfdC67jzWQIvmmiCD1f1329fs5uLr9Wwe-DYOgeaTcBsk1mZhwsd5nGmZT4zQYprjFbULxlpchLnh0o4tlyZRyC2M-LIM40xlJ3RoqPgbdlzVlT1lQBvMocl0hIIlNBdTbWSUC26FkpJrNWBxz7pU-xrn1GqjTHsw2yrtWZ4Sy9OO5QM2uqfbdFU-HqRIeslI_5LXFE3RA7Rv_4P2I3syv15cppffrn68Y0_pSQdHPGPH22Zn36OLtFUf3C9wB8E5Flc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-mechanism+theory+of+aerosol+capture+by+fibrous+filters%2C+including+fiber+diameter%2Forientation+dispersity+and+particle+morphology+effects.+Preliminary+tests+vs.+data+for+mobility-selected+submicron+particles&rft.jtitle=Journal+of+aerosol+science&rft.au=Rosner%2C+Daniel+E.&rft.au=Arias-Zugasti%2C+Manuel&rft.date=2022-08-01&rft.issn=0021-8502&rft.volume=164&rft.spage=106000&rft_id=info:doi/10.1016%2Fj.jaerosci.2022.106000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaerosci_2022_106000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8502&client=summon |