Polarized Raman spectroscopy analysis of SiHX bonds in nanocrystalline silicon thin films

For nanocrystalline silicon films deposited at high rates, the presence of a silicon–hydrogen (SiH) bond stretching mode doublet in the high wavenumber region of the Raman spectrum can be used for optimizing the stabilized efficiency of solar cells based on this material. These peaks appear often fo...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 537; pp. 145 - 148
Main Authors Chaigneau, M., Johnson, E.V., Kroely, L., Roca i Cabarrocas, P., Ossikovski, R.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 30.06.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For nanocrystalline silicon films deposited at high rates, the presence of a silicon–hydrogen (SiH) bond stretching mode doublet in the high wavenumber region of the Raman spectrum can be used for optimizing the stabilized efficiency of solar cells based on this material. These peaks appear often for remote-plasma high deposition rate techniques targeting intrinsic layer deposition for photovoltaics, and so their structural origin may reveal the fundamental limitations of such techniques. We present the use of Polarized Raman Spectroscopy in oblique back-scattering configuration to reveal details of the specific bonding configuration of certain silicon-hydrogen bonds in hydrogenated nanocrystalline silicon (nc-Si:H). Twinned, narrow peaks located at 2083 and 2100cm−1 in the infrared absorption spectroscopy and Raman scattering spectrum of nc-Si:H thin films due to SiHX stretching modes are strongly associated with films likely to oxidize and degrade rapidly, but the precise origin of these characteristic peaks is a subject of debate. Through the use of PRS, as well as numerous other complementary techniques (standard Raman scattering spectroscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectrometry and X-ray diffraction), a logical conclusion can be reached, strongly suggesting that the origin of these peaks is due to the stretching modes of SiH2 bonds at {110} interfaces between crystallites, passivated by hydrogen rather than by amorphous silicon. The use of the oblique back scattering Raman configuration, combined with group symmetry considerations, allows one to compare the symmetry of the vibrational modes detected with those of possible SiHX (X=1, 2 or 3) configurations, thus eliminating certain structures as the sources of these characteristic absorption and scattering signatures. •We study nanocrystalline silicon films in solar cells.•The twin SiH peaks in Raman spectrum are a subject of debate.•We present the use Polarized Raman Spectroscopy (PRS).•PRS allows one to compare the symmetry of the vibrational modes.•We conclude that the twinned peaks can be attributed to SiH2 bonding.
AbstractList For nanocrystalline silicon films deposited at high rates, the presence of a silicon-hydrogen (Si-H) bond stretching mode doublet in the high wavenumber region of the Raman spectrum can be used for optimizing the stabilized efficiency of solar cells based on this material. These peaks appear often for remote-plasma high deposition rate techniques targeting intrinsic layer deposition for photovoltaics, and so their structural origin may reveal the fundamental limitations of such techniques. We present the use of Polarized Raman Spectroscopy in oblique back-scattering configuration to reveal details of the specific bonding configuration of certain silicon-hydrogen bonds in hydrogenated nanocrystalline silicon (nc-Si:H). Twinned, narrow peaks located at 2083 and 2100cm-1 in the infrared absorption spectroscopy and Raman scattering spectrum of nc-Si:H thin films due to Si-HX stretching modes are strongly associated with films likely to oxidize and degrade rapidly, but the precise origin of these characteristic peaks is a subject of debate. Through the use of PRS, as well as numerous other complementary techniques (standard Raman scattering spectroscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectrometry and X-ray diffraction), a logical conclusion can be reached, strongly suggesting that the origin of these peaks is due to the stretching modes of SiH2 bonds at {110} interfaces between crystallites, passivated by hydrogen rather than by amorphous silicon. The use of the oblique back scattering Raman configuration, combined with group symmetry considerations, allows one to compare the symmetry of the vibrational modes detected with those of possible SiHX (X=1, 2 or 3) configurations, thus eliminating certain structures as the sources of these characteristic absorption and scattering signatures.
For nanocrystalline silicon films deposited at high rates, the presence of a silicon–hydrogen (SiH) bond stretching mode doublet in the high wavenumber region of the Raman spectrum can be used for optimizing the stabilized efficiency of solar cells based on this material. These peaks appear often for remote-plasma high deposition rate techniques targeting intrinsic layer deposition for photovoltaics, and so their structural origin may reveal the fundamental limitations of such techniques. We present the use of Polarized Raman Spectroscopy in oblique back-scattering configuration to reveal details of the specific bonding configuration of certain silicon-hydrogen bonds in hydrogenated nanocrystalline silicon (nc-Si:H). Twinned, narrow peaks located at 2083 and 2100cm−1 in the infrared absorption spectroscopy and Raman scattering spectrum of nc-Si:H thin films due to SiHX stretching modes are strongly associated with films likely to oxidize and degrade rapidly, but the precise origin of these characteristic peaks is a subject of debate. Through the use of PRS, as well as numerous other complementary techniques (standard Raman scattering spectroscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectrometry and X-ray diffraction), a logical conclusion can be reached, strongly suggesting that the origin of these peaks is due to the stretching modes of SiH2 bonds at {110} interfaces between crystallites, passivated by hydrogen rather than by amorphous silicon. The use of the oblique back scattering Raman configuration, combined with group symmetry considerations, allows one to compare the symmetry of the vibrational modes detected with those of possible SiHX (X=1, 2 or 3) configurations, thus eliminating certain structures as the sources of these characteristic absorption and scattering signatures. •We study nanocrystalline silicon films in solar cells.•The twin SiH peaks in Raman spectrum are a subject of debate.•We present the use Polarized Raman Spectroscopy (PRS).•PRS allows one to compare the symmetry of the vibrational modes.•We conclude that the twinned peaks can be attributed to SiH2 bonding.
Author Ossikovski, R.
Roca i Cabarrocas, P.
Chaigneau, M.
Kroely, L.
Johnson, E.V.
Author_xml – sequence: 1
  givenname: M.
  surname: Chaigneau
  fullname: Chaigneau, M.
  email: marc.chaigneau@polytechnique.edu
  organization: LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
– sequence: 2
  givenname: E.V.
  surname: Johnson
  fullname: Johnson, E.V.
  organization: LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
– sequence: 3
  givenname: L.
  surname: Kroely
  fullname: Kroely, L.
  organization: SOLAYL, Business Incubator X-Technologies, Ecole Polytechnique, 91128 Palaiseau, France
– sequence: 4
  givenname: P.
  surname: Roca i Cabarrocas
  fullname: Roca i Cabarrocas, P.
  organization: LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
– sequence: 5
  givenname: R.
  surname: Ossikovski
  fullname: Ossikovski, R.
  organization: LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27491534$$DView record in Pascal Francis
BookMark eNp9kU2LFDEQQIOs4OzqD_CWi-Clx0rS0z2NJ1nUFRYUP0BPoTqdYA2ZZExlhfHXm2WWPexhoSCHeq8OL-fiLOXkhXipYK1ADW9268phrUGZNbTR6olYqe04dXo06kysAHroBpjgmThn3gGA0tqsxK8vOWKhf36RX3GPSfLBu1oyu3w4SkwYj0wsc5Df6OqnnHNaWFKSCVN25cgVY6TkJVMkl5Osv9syUNzzc_E0YGT_4u69ED8-vP9-edVdf_746fLddefMALWbJrU1SwgwGxd8P2vn9LSA8f1m68aNc71CpVHrURvAAEO_6YdhnnSvcZ59MBfi9enuoeQ_N56r3RM7HyMmn2_YqmEA2JheQ0Nf3aHIDmMomByxPRTaYzlaPfaTamTj1IlzLQQXH-4RBfY2t93Zltve5rbQRqvmjA8cRxUr5VQLUnzUfHsyfav0l3yx7Mgn5xcq7S_skukR-z9Eo5yx
CODEN THSFAP
CitedBy_id crossref_primary_10_1016_j_est_2022_105817
crossref_primary_10_1007_s10800_024_02152_6
Cites_doi 10.1557/PROC-1245-A13-05
10.1016/j.tsf.2007.12.067
10.1116/1.581520
10.1063/1.3106053
10.1016/j.solmat.2009.06.018
10.1143/JJAP.24.L491
10.1063/1.361485
10.1002/jrs.1911
10.1016/0038-1098(81)90158-7
10.1063/1.363541
10.1080/13642810008216507
10.1080/00018736400101051
10.1002/pssb.2221180202
10.1103/PhysRevB.76.073202
10.1063/1.2917314
10.1063/1.2837536
10.1002/(SICI)1097-4555(199910)30:10<877::AID-JRS464>3.0.CO;2-5
10.1088/0022-3719/14/3/013
10.1016/S0040-6090(98)00485-4
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.tsf.2013.03.021
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1879-2731
EndPage 148
ExternalDocumentID 27491534
10_1016_j_tsf_2013_03_021
S0040609013004525
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TWZ
WH7
ZMT
~G-
29Q
6TJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
VOH
WUQ
EFKBS
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c360t-99183dff0b3cfe4b2cc29d03e458c75cc41a12a227230af0645466b9242abbef3
IEDL.DBID .~1
ISSN 0040-6090
IngestDate Fri Jul 11 16:39:18 EDT 2025
Mon Jul 21 09:16:14 EDT 2025
Tue Jul 01 03:52:13 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Fri Feb 23 02:32:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar cell
Polarized Raman spectroscopy
Nanocrystalline silicon
Thin film
Raman spectra
Infrared spectroscopy
Fourier transform spectroscopy
XRD
Symmetry groups
Nanostructures
Photovoltaic cell
Thin films
Crystallites
Hydrogen bonds
Raman scattering
Chemical bonds
Silicon
Absorption spectra
Stretching
Nanocrystal
Solar cells
Symmetry property
Secondary ion mass spectrometry
Deposition rate
Raman spectroscopy
Interfaces
Vibrational modes
Plasma deposition
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-99183dff0b3cfe4b2cc29d03e458c75cc41a12a227230af0645466b9242abbef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660053420
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1660053420
pascalfrancis_primary_27491534
crossref_primary_10_1016_j_tsf_2013_03_021
crossref_citationtrail_10_1016_j_tsf_2013_03_021
elsevier_sciencedirect_doi_10_1016_j_tsf_2013_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-30
PublicationDateYYYYMMDD 2013-06-30
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-30
  day: 30
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Thin solid films
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Stryahilev, Diehl, Schröder, Scheib, Belogorokhov (bb0060) 2000; 80
Meier, Dubail, Flückiger, Fischer, Keppner, Shah (bb0005) 1994; 1
Stenger, Frigout, Tondelier, Geffroy, Ossikovski, Bonnassieux (bb0100) 2009; 94
Ossikovski, Nguyen, Picardi, Schreiber, Morin (bb0085) 2008; 39
Gardiner, Graves (bb0120) 1989
Smets, Matsui, Kondo (bb0035) 2008; 92
Johnson, Kroely, Roca i Cabarrocas (bb0040) 2010; 1245
Cardona (bb0045) 1983; 118
Veprek, Iqbal, Oswald, Webb (bb0010) 1981; 14
Marra, Edelberg, Naone, Aydil (bb0020) 1998; 16
Johnson, Kroely, Moreno, Roca i Cabarrocas (bb0025) 2009; 93
Satoh, Hiraki (bb0050) 1985; 24
De Wolf, Maes, Jones (bb0070) 1996; 79
Basova, Kolesov (bb0090) 1998; 325
Kroll, Meyer, Shah, Mikhailov, Weber (bb0055) 1996; 80
Loudon (bb0110) 1964; 13
Smets, van de Sanden (bb0030) 2007; 76
De Wolf (bb0075) 1999; 30
Cardona (bb0065) 1975
Roca i Cabarrocas, Bulkin, Daineka, Dao, Leempoel, Descamps, Kervyn de Meerendre, Charliac (bb0105) 2008; 516
Ledinský, Vetushka, Stuchlík, Fejfar, Kočka (bb0095) 2010; 1267
Turrell, Corset (bb0115) 1996
Ossikovski, Nguyen, Picardi, Schreiber (bb0080) 2008; 103
Imura, Mogi, Hiraki, Nakashima, Mitsuishi (bb0015) 1981; 40
Marra (10.1016/j.tsf.2013.03.021_bb0020) 1998; 16
Smets (10.1016/j.tsf.2013.03.021_bb0030) 2007; 76
Ledinský (10.1016/j.tsf.2013.03.021_bb0095) 2010; 1267
Cardona (10.1016/j.tsf.2013.03.021_bb0045) 1983; 118
Ossikovski (10.1016/j.tsf.2013.03.021_bb0085) 2008; 39
Gardiner (10.1016/j.tsf.2013.03.021_bb0120) 1989
Loudon (10.1016/j.tsf.2013.03.021_bb0110) 1964; 13
Johnson (10.1016/j.tsf.2013.03.021_bb0040) 2010; 1245
Stryahilev (10.1016/j.tsf.2013.03.021_bb0060) 2000; 80
Satoh (10.1016/j.tsf.2013.03.021_bb0050) 1985; 24
Cardona (10.1016/j.tsf.2013.03.021_bb0065) 1975
Meier (10.1016/j.tsf.2013.03.021_bb0005) 1994; 1
Smets (10.1016/j.tsf.2013.03.021_bb0035) 2008; 92
Ossikovski (10.1016/j.tsf.2013.03.021_bb0080) 2008; 103
Veprek (10.1016/j.tsf.2013.03.021_bb0010) 1981; 14
Turrell (10.1016/j.tsf.2013.03.021_bb0115) 1996
Kroll (10.1016/j.tsf.2013.03.021_bb0055) 1996; 80
Johnson (10.1016/j.tsf.2013.03.021_bb0025) 2009; 93
De Wolf (10.1016/j.tsf.2013.03.021_bb0075) 1999; 30
De Wolf (10.1016/j.tsf.2013.03.021_bb0070) 1996; 79
Stenger (10.1016/j.tsf.2013.03.021_bb0100) 2009; 94
Roca i Cabarrocas (10.1016/j.tsf.2013.03.021_bb0105) 2008; 516
Imura (10.1016/j.tsf.2013.03.021_bb0015) 1981; 40
Basova (10.1016/j.tsf.2013.03.021_bb0090) 1998; 325
References_xml – volume: 40
  start-page: 161
  year: 1981
  ident: bb0015
  publication-title: Solid State Commun.
– volume: 79
  start-page: 7148
  year: 1996
  ident: bb0070
  publication-title: J. Appl. Phys.
– volume: 1267
  start-page: 1109
  year: 2010
  ident: bb0095
  publication-title: Am. Inst. Phys. Conf. Proc.
– volume: 516
  start-page: 6834
  year: 2008
  ident: bb0105
  publication-title: Thin Solid Films
– year: 1989
  ident: bb0120
  article-title: Practical Raman Spectroscopy
– volume: 80
  start-page: 4971
  year: 1996
  ident: bb0055
  publication-title: J. Appl. Phys.
– volume: 1245
  start-page: A13-05
  year: 2010
  ident: bb0040
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 80
  start-page: 1799
  year: 2000
  ident: bb0060
  publication-title: Phil. Mag. B
– volume: 24
  start-page: L491
  year: 1985
  ident: bb0050
  publication-title: Jpn. J. Appl. Phys.
– volume: 1
  start-page: 409
  year: 1994
  ident: bb0005
  publication-title: Photovoltaic Energy Conversion, Hawaii, U.S.A., December 5 9, 1994, Proc. of the 1st IEEE World Conference on Photovoltaic Energy Conversion
– volume: 14
  start-page: 295
  year: 1981
  ident: bb0010
  publication-title: J. Phys. C: Solid State Phys.
– volume: 325
  start-page: 140
  year: 1998
  ident: bb0090
  publication-title: Thin Solid Films
– volume: 92
  start-page: 033506
  year: 2008
  ident: bb0035
  publication-title: Appl. Phys. Lett.
– volume: 76
  start-page: 073202
  year: 2007
  ident: bb0030
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 133301
  year: 2009
  ident: bb0100
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 093525
  year: 2008
  ident: bb0080
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 3199
  year: 1998
  ident: bb0020
  publication-title: J. Vac. Sci. Technol. A
– volume: 30
  start-page: 877
  year: 1999
  ident: bb0075
  publication-title: J. Raman Spectrosc.
– volume: 39
  start-page: 661
  year: 2008
  ident: bb0085
  publication-title: J. Raman Spectrosc.
– volume: 13
  start-page: 423
  year: 1964
  ident: bb0110
  publication-title: Adv. Phys.
– volume: 93
  start-page: 1904
  year: 2009
  ident: bb0025
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 1975
  ident: bb0065
  article-title: Light Scattering in Solids I
– year: 1996
  ident: bb0115
  article-title: Raman Microscopy: Developments and Applications
– volume: 118
  start-page: 463
  year: 1983
  ident: bb0045
  publication-title: Phys. Status Solidi B
– volume: 1245
  start-page: A13-05
  year: 2010
  ident: 10.1016/j.tsf.2013.03.021_bb0040
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-1245-A13-05
– volume: 516
  start-page: 6834
  year: 2008
  ident: 10.1016/j.tsf.2013.03.021_bb0105
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.12.067
– volume: 16
  start-page: 3199
  year: 1998
  ident: 10.1016/j.tsf.2013.03.021_bb0020
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.581520
– volume: 1
  start-page: 409
  year: 1994
  ident: 10.1016/j.tsf.2013.03.021_bb0005
– volume: 94
  start-page: 133301
  year: 2009
  ident: 10.1016/j.tsf.2013.03.021_bb0100
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3106053
– volume: 93
  start-page: 1904
  year: 2009
  ident: 10.1016/j.tsf.2013.03.021_bb0025
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.06.018
– volume: 24
  start-page: L491
  year: 1985
  ident: 10.1016/j.tsf.2013.03.021_bb0050
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.24.L491
– year: 1996
  ident: 10.1016/j.tsf.2013.03.021_bb0115
– volume: 79
  start-page: 7148
  year: 1996
  ident: 10.1016/j.tsf.2013.03.021_bb0070
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.361485
– volume: 39
  start-page: 661
  year: 2008
  ident: 10.1016/j.tsf.2013.03.021_bb0085
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1911
– volume: 1267
  start-page: 1109
  year: 2010
  ident: 10.1016/j.tsf.2013.03.021_bb0095
  publication-title: Am. Inst. Phys. Conf. Proc.
– year: 1989
  ident: 10.1016/j.tsf.2013.03.021_bb0120
– year: 1975
  ident: 10.1016/j.tsf.2013.03.021_bb0065
– volume: 40
  start-page: 161
  year: 1981
  ident: 10.1016/j.tsf.2013.03.021_bb0015
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(81)90158-7
– volume: 80
  start-page: 4971
  year: 1996
  ident: 10.1016/j.tsf.2013.03.021_bb0055
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363541
– volume: 80
  start-page: 1799
  year: 2000
  ident: 10.1016/j.tsf.2013.03.021_bb0060
  publication-title: Phil. Mag. B
  doi: 10.1080/13642810008216507
– volume: 13
  start-page: 423
  year: 1964
  ident: 10.1016/j.tsf.2013.03.021_bb0110
  publication-title: Adv. Phys.
  doi: 10.1080/00018736400101051
– volume: 118
  start-page: 463
  year: 1983
  ident: 10.1016/j.tsf.2013.03.021_bb0045
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.2221180202
– volume: 76
  start-page: 073202
  year: 2007
  ident: 10.1016/j.tsf.2013.03.021_bb0030
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.073202
– volume: 103
  start-page: 093525
  year: 2008
  ident: 10.1016/j.tsf.2013.03.021_bb0080
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2917314
– volume: 92
  start-page: 033506
  year: 2008
  ident: 10.1016/j.tsf.2013.03.021_bb0035
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837536
– volume: 30
  start-page: 877
  year: 1999
  ident: 10.1016/j.tsf.2013.03.021_bb0075
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/(SICI)1097-4555(199910)30:10<877::AID-JRS464>3.0.CO;2-5
– volume: 14
  start-page: 295
  year: 1981
  ident: 10.1016/j.tsf.2013.03.021_bb0010
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/14/3/013
– volume: 325
  start-page: 140
  year: 1998
  ident: 10.1016/j.tsf.2013.03.021_bb0090
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(98)00485-4
SSID ssj0001223
Score 2.0768101
Snippet For nanocrystalline silicon films deposited at high rates, the presence of a silicon–hydrogen (SiH) bond stretching mode doublet in the high wavenumber region...
For nanocrystalline silicon films deposited at high rates, the presence of a silicon-hydrogen (Si-H) bond stretching mode doublet in the high wavenumber region...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Applied sciences
Cross-disciplinary physics: materials science; rheology
Deposition
Energy
Exact sciences and technology
Ion and electron beam-assisted deposition; ion plating
Materials science
Methods of deposition of films and coatings; film growth and epitaxy
Nanocrystalline silicon
Nanocrystals
Nanoscale materials and structures: fabrication and characterization
Natural energy
Origins
Other topics in nanoscale materials and structures
Photovoltaic conversion
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma applications
Plasma-based ion implantation and deposition
Polarized Raman spectroscopy
Raman scattering
Scattering
Solar cell
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Stretching
Thin film
Thin films
Title Polarized Raman spectroscopy analysis of SiHX bonds in nanocrystalline silicon thin films
URI https://dx.doi.org/10.1016/j.tsf.2013.03.021
https://www.proquest.com/docview/1660053420
Volume 537
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIigiWhXPjyOCT8La3ST7kcdSLKeHRarF8ylMsglduWaP7vahPvi3O8nunhaxD8LCwm5CwmQyH8zMbwh57YBVupSQyBzdVeG0TQDAJVYie0gBuopg1R-Pi8Wp-LDKVzvkcKqFCWmVo-wfZHqU1uOX_ZGa-5umCTW-qIxSGUJvARc8FJoLUQYuf_vzd5pHxtg2cy6MniKbMcer7yKKJ484pyz7l266t4EOKeaGVhd_Se2oio4ekPujDUkPhm0-JDvW75G7fyAL7pHbMbPTdI_It0_BeW1-2JqewDl4GmsrA4Zlu7miMGKS0NbRz81iRXXr6442nnrwrbm4QuMxoHZb2jVrZBpP-zP86Zr1efeYnB69-3K4SMZ-ConhRdonaApWvHYu1dw4KzQzhsk65VbklSlzY0QGGQPGSvRLwAUkO1EUGj00Blpbx5-QXd96-5RQgRc3NaayJQh08LTEQSBNXXFr84zXM5JOlFRmBBsPPS_Wasoq-66Q-CoQX6X4sGxG3mynbAakjZsGi-l41DV2UagJbpo2v3aU24XQN5co-8WMvJrOVuE9C8ET8La97FRWFEFgCZY--7-1n5M7bGilkfD0BdntLy7tSzRoej2PHDsntw7eLxfH4b08-br8BTnl9t0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB7qFVEpRaviqa0RfBKWZrPZvc1jKS1b2x6iLZxPIckmdOWaPbrbh_rXO9kfh0Xsg7BPuwlZJpNvZpjJNwCfnGK5ngkViRTDVe60jZRSLrIC1UNwpfOOrPp8nhWX_MsiXWzA4XgXJpRVDtjfY3qH1sOb_UGa-6uqCnd80RhREVJvgRc8fQSbgZ0qncDmwclpMV8DcszYunguTBiTm12ZV9t0RJ5JR3XK4n-Zp62ValBoru928Rdwd9bo-DlsD24kOej_9AVsWL8Dz_4gF9yBx11xp2lewo-vIX6tftmSfFPXypPuemWgsaxXd0QNtCSkduR7VSyIrn3ZkMoTr3xtbu7QfwzE3ZY01RL1xpP2Cj-6anndvILL46OLwyIaWipEJsloG6E3mCelc1QnxlmumTFMlDSxPM3NLDWGxypmirEZhibKBTI7nmUagzSmtLYueQ0TX3v7BgjHs0uNye1McYzxtMBBSpgyT6xN46ScAh0lKc3ANx7aXizlWFj2U6LwZRC-pPiweAqf11NWPdnGQ4P5uD3ynsZINAYPTdu7t5XrhTA8Fwj_fAofx72VeNRC_kR5W982Ms6ygFmc0bf_t_YHeFJcnJ_Js5P56Tt4yvrOGlFC38Okvbm1u-jftHpv0N_f8jb36w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarized+Raman+spectroscopy+analysis+of+SiHX+bonds+in+nanocrystalline+silicon+thin+films&rft.jtitle=Thin+solid+films&rft.au=Chaigneau%2C+M&rft.au=Johnson%2C+E+V&rft.au=Kroely%2C+L&rft.au=Roca+i+Cabarrocas%2C+P&rft.date=2013-06-30&rft.issn=0040-6090&rft.volume=537&rft.spage=145&rft.epage=148&rft_id=info:doi/10.1016%2Fj.tsf.2013.03.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon