Systematic derivation of a surface polarisation model for planar perovskite solar cells

Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and transient current–voltage characteristics of a planar metal halide CH3NH3PbI3 PSC are analysed with a drift-diffusion model that accounts for...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 30; no. 3; pp. 427 - 457
Main Authors COURTIER, N. E., FOSTER, J. M., O'KANE, S. E. J., WALKER, A. B., RICHARDSON, G.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2019
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792518000207

Cover

Abstract Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and transient current–voltage characteristics of a planar metal halide CH3NH3PbI3 PSC are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ~2 nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (~600 nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamics are replaced by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.
AbstractList Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and transient current–voltage characteristics of a planar metal halide CH3NH3PbI3 PSC are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ~2 nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (~600 nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamics are replaced by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.
Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and transient current–voltage characteristics of a planar metal halide CH 3 NH 3 PbI 3 PSC are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ~2 nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (~600 nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamics are replaced by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.
Author COURTIER, N. E.
O'KANE, S. E. J.
WALKER, A. B.
RICHARDSON, G.
FOSTER, J. M.
Author_xml – sequence: 1
  givenname: N. E.
  surname: COURTIER
  fullname: COURTIER, N. E.
  email: nc4g14@soton.ac.uk
  organization: 1Mathematical Sciences, University of Southampton, SO17 1BJ, UK emails: nc4g14@soton.ac.uk, G.Richardson@soton.ac.uk
– sequence: 2
  givenname: J. M.
  surname: FOSTER
  fullname: FOSTER, J. M.
  email: jamie.michael.foster@gmail.com
  organization: 2Department of Mathematics, University of Portsmouth, PO1 3HF, UK email: jamie.michael.foster@gmail.com
– sequence: 3
  givenname: S. E. J.
  surname: O'KANE
  fullname: O'KANE, S. E. J.
  email: A.B.Walker@bath.ac.uk
  organization: 3Department of Physics, University of Bath, BA2 7AY, UK emails: A.B.Walker@bath.ac.uk, S.E.J.O'Kane@bath.ac.uk
– sequence: 4
  givenname: A. B.
  surname: WALKER
  fullname: WALKER, A. B.
  email: A.B.Walker@bath.ac.uk
  organization: 3Department of Physics, University of Bath, BA2 7AY, UK emails: A.B.Walker@bath.ac.uk, S.E.J.O'Kane@bath.ac.uk
– sequence: 5
  givenname: G.
  surname: RICHARDSON
  fullname: RICHARDSON, G.
  email: nc4g14@soton.ac.uk
  organization: 1Mathematical Sciences, University of Southampton, SO17 1BJ, UK emails: nc4g14@soton.ac.uk, G.Richardson@soton.ac.uk
BookMark eNp9kF9LwzAUxYNMcJt-AN8CPldv2qRpHmWoEwY-TPGxpGkimWlTk26wb2_rBoKiT-fCOb_7b4YmrW81QpcErgkQfrMGwXIuUkYKAEiBn6ApoblIKE3ZBE1HOxn9MzSLcQNAMuBiil7X-9jrRvZW4VoHuxsq32JvsMRxG4xUGnfeyWDjwWl8rR02PuDOyVYOooPfxXfbaxzHIFbauXiOTo10UV8cdY5e7u-eF8tk9fTwuLhdJSrLoU8EFExRUqcCMs0LNkglmck4qYkQwBWt0qqgUJmcFZqDMbVSqeA1V0LSSmVzdHXo2wX_sdWxLzd-G9phZJkOF2aEESqGFD-kVPAxBm1KZfuve_ogrSsJlOMXy19fHEjyg-yCbWTY_8tkR0Y2VbD1m_5e6m_qEwvbhWI
CitedBy_id crossref_primary_10_1039_D0CP04350H
crossref_primary_10_1063_5_0136683
crossref_primary_10_1039_D1SE00369K
crossref_primary_10_1103_PhysRevApplied_23_014055
crossref_primary_10_1016_j_joule_2019_10_003
crossref_primary_10_1088_2515_7655_acc4e9
crossref_primary_10_1039_C8EE01576G
crossref_primary_10_1007_s10825_019_01396_2
crossref_primary_10_1039_D0TA12046D
crossref_primary_10_1002_solr_202300742
crossref_primary_10_1002_advs_201901397
crossref_primary_10_1002_aenm_202400955
crossref_primary_10_1103_PhysRevApplied_19_014061
crossref_primary_10_1016_j_chemphys_2021_111422
crossref_primary_10_1063_5_0065983
crossref_primary_10_1103_PhysRevApplied_14_024031
crossref_primary_10_1002_pssa_202100472
crossref_primary_10_1007_s10825_024_02212_2
crossref_primary_10_1017_S0956792519000135
crossref_primary_10_1002_pssa_202200262
crossref_primary_10_1017_S0956792518000293
crossref_primary_10_1103_PhysRevApplied_18_064087
Cites_doi 10.1021/acs.jpclett.7b00045
10.1142/p276
10.1039/C6TC04964H
10.1016/j.apm.2018.06.051
10.1103/PhysRevB.89.155204
10.1039/c4ee00168k
10.1126/science.aai9081
10.1021/jz502471h
10.1007/978-1-4613-8410-6_20
10.1126/science.1228604
10.1021/jz500113x
10.1103/PhysRevApplied.2.034007
10.1126/science.aaa5333
10.1021/ja809598r
10.1039/C6EE03397K
10.1038/nnano.2015.90
10.1142/S0218202512500625
10.1021/acs.jpclett.5b01645
10.1063/1.4820567
10.1039/C4TA04994B
10.1016/j.solmat.2017.05.021
10.1017/S0956792516000541
10.1021/acs.jpclett.7b00571
10.1002/ange.201409740
10.1038/ncomms13831
10.1093/imamat/28.3.301
10.1039/C6EE03352K
10.1038/ncomms8497
10.1137/130934258
10.1039/9781782624066-00297
10.1021/ic401215x
10.1093/imammb/dqn027
10.1021/jp510837q
10.1038/srep00591
10.1039/C5EE02740C
10.1016/j.chempr.2016.10.002
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2018
2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © Cambridge University Press 2018
– notice: 2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792518000207
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate A surface polarisation model for planar perovskite solar cells
N. E. Courtier et al.
EISSN 1469-4425
EndPage 457
ExternalDocumentID 10_1017_S0956792518000207
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXGN
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABHFL
ABXHF
ACEJA
ACOZI
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
IPYYG
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-9085c41d2903e785903ba5f371d19907c4b2b840bf658e70ffdcc297d7c9a4bc3
IEDL.DBID 8FG
ISSN 0956-7925
IngestDate Fri Jul 25 19:29:18 EDT 2025
Tue Jul 01 01:07:13 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Tue Jan 21 06:23:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords asymptotic analysis
drift-diffusion
perovskite
ion vacancy
solar cell
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-9085c41d2903e785903ba5f371d19907c4b2b840bf658e70ffdcc297d7c9a4bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0956792518000207/type/journal_article
PQID 2307315149
PQPubID 37129
PageCount 31
ParticipantIDs proquest_journals_2307315149
crossref_citationtrail_10_1017_S0956792518000207
crossref_primary_10_1017_S0956792518000207
cambridge_journals_10_1017_S0956792518000207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190600
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 20190600
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationTitleAlternate Eur. J. Appl. Math
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0956792518000207_ref28
S0956792518000207_ref29
S0956792518000207_ref26
S0956792518000207_ref27
S0956792518000207_ref24
S0956792518000207_ref25
Schmeiser (S0956792518000207_ref31) 1992
S0956792518000207_ref22
S0956792518000207_ref23
S0956792518000207_ref20
Koutselas (S0956792518000207_ref16) 1996; 8
S0956792518000207_ref21
S0956792518000207_ref40
S0956792518000207_ref41
S0956792518000207_ref19
S0956792518000207_ref17
S0956792518000207_ref39
S0956792518000207_ref18
S0956792518000207_ref37
Black (S0956792518000207_ref2) 2017; 82
S0956792518000207_ref15
S0956792518000207_ref38
S0956792518000207_ref35
S0956792518000207_ref13
S0956792518000207_ref14
S0956792518000207_ref36
S0956792518000207_ref11
S0956792518000207_ref7
S0956792518000207_ref33
S0956792518000207_ref6
S0956792518000207_ref12
S0956792518000207_ref34
S0956792518000207_ref9
S0956792518000207_ref32
S0956792518000207_ref10
S0956792518000207_ref8
S0956792518000207_ref30
S0956792518000207_ref1
S0956792518000207_ref3
S0956792518000207_ref5
S0956792518000207_ref4
References_xml – ident: S0956792518000207_ref26
  doi: 10.1021/acs.jpclett.7b00045
– ident: S0956792518000207_ref20
  doi: 10.1142/p276
– ident: S0956792518000207_ref23
  doi: 10.1039/C6TC04964H
– ident: S0956792518000207_ref7
  doi: 10.1016/j.apm.2018.06.051
– ident: S0956792518000207_ref4
  doi: 10.1103/PhysRevB.89.155204
– ident: S0956792518000207_ref33
  doi: 10.1039/c4ee00168k
– volume: 8
  start-page: 1217
  year: 1996
  ident: S0956792518000207_ref16
  article-title: Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units.
  publication-title: J. Phys.: Condens. Matter
– ident: S0956792518000207_ref39
  doi: 10.1126/science.aai9081
– ident: S0956792518000207_ref18
  doi: 10.1021/jz502471h
– ident: S0956792518000207_ref19
– start-page: 268
  volume-title: Pitman Research Notes Mathematics Series
  year: 1992
  ident: S0956792518000207_ref31
– ident: S0956792518000207_ref32
  doi: 10.1007/978-1-4613-8410-6_20
– ident: S0956792518000207_ref17
  doi: 10.1126/science.1228604
– ident: S0956792518000207_ref35
  doi: 10.1021/jz500113x
– ident: S0956792518000207_ref37
  doi: 10.1103/PhysRevApplied.2.034007
– ident: S0956792518000207_ref8
  doi: 10.1126/science.aaa5333
– ident: S0956792518000207_ref15
  doi: 10.1021/ja809598r
– ident: S0956792518000207_ref6
  doi: 10.1039/C6EE03397K
– ident: S0956792518000207_ref38
  doi: 10.1038/nnano.2015.90
– ident: S0956792518000207_ref3
  doi: 10.1142/S0218202512500625
– ident: S0956792518000207_ref40
  doi: 10.1021/acs.jpclett.5b01645
– ident: S0956792518000207_ref11
  doi: 10.1063/1.4820567
– ident: S0956792518000207_ref22
  doi: 10.1039/C4TA04994B
– ident: S0956792518000207_ref21
  doi: 10.1016/j.solmat.2017.05.021
– ident: S0956792518000207_ref29
  doi: 10.1017/S0956792516000541
– ident: S0956792518000207_ref34
  doi: 10.1021/acs.jpclett.7b00571
– ident: S0956792518000207_ref41
  doi: 10.1002/ange.201409740
– ident: S0956792518000207_ref1
– ident: S0956792518000207_ref5
  doi: 10.1038/ncomms13831
– volume: 82
  start-page: 251
  year: 2017
  ident: S0956792518000207_ref2
  article-title: Quantum mechanical effects in continuum charge flow models.
  publication-title: IMA J. Appl. Math.
– ident: S0956792518000207_ref24
  doi: 10.1093/imamat/28.3.301
– ident: S0956792518000207_ref9
  doi: 10.1039/C6EE03352K
– ident: S0956792518000207_ref10
  doi: 10.1038/ncomms8497
– ident: S0956792518000207_ref12
  doi: 10.1137/130934258
– ident: S0956792518000207_ref30
  doi: 10.1039/9781782624066-00297
– ident: S0956792518000207_ref36
  doi: 10.1021/ic401215x
– ident: S0956792518000207_ref27
  doi: 10.1093/imammb/dqn027
– ident: S0956792518000207_ref25
  doi: 10.1021/jp510837q
– ident: S0956792518000207_ref14
  doi: 10.1038/srep00591
– ident: S0956792518000207_ref28
  doi: 10.1039/C5EE02740C
– ident: S0956792518000207_ref13
  doi: 10.1016/j.chempr.2016.10.002
SSID ssj0013079
Score 2.3056273
Snippet Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 427
SubjectTerms Applied mathematics
Asymptotic properties
Carrier density
Charge density
Charge transport
Current carriers
Current voltage characteristics
Ion dynamics
Metal halides
Perovskites
Photovoltaic cells
Polarization
Simplified surfaces
Solar cells
Stiffness
Transient current
Vacancies
SummonAdditionalLinks – databaseName: Cambridge University Press Wholly Gold Open Access Journals
  dbid: IKXGN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKu8CAeIpCQR6YEFHedTwiRCmgdikV2SK_IiFVaZS0_H7OiZNSkCoxebFP1p2T-3x3_g6hW-JzzQnjWU4oiRUQSS3uOdyKpGIpdfyo5tmeTIfjefAah3EHxc1bGF1W2XIcVJn8qj9aXtOf2p-yrqFRhT3TFHqEgn-OqnwasXXQ0jYmSIzi91APMIMLX0Dv5S1-nm4yDM6Gh09LaTKeFZ30L8k_eRe2_df277vySaMjdGjAJH6oN3GMOio7QQeTlom1PEUfs5aqGUs4bXUEFi9TzHC5LlImFM719daU9eCqNQ4GKIvzBcsYDKpYfpU6yItLPRHrWH95huajp_fHsWWaKVjCHzoriwK2EoErPTCAIlEIA2dh6hNXuuCRiAi4x-G2x1PAJIo4aSqF8CiRRFAWcOGfo262zNQFwilAMF8wkAUOnkU-XDIF51xJyQPisLCP7lt1JcYeZVKXk5Hkj3b7yGk0mghDTK77Yyx2Lblrl-Q1K8euyYPGTJvd6Pp3H9BOQC__t9srtA-YidbVYgPUXRVrdQ24ZMVvzBH7BvkJ2tc
  priority: 102
  providerName: Cambridge University Press
Title Systematic derivation of a surface polarisation model for planar perovskite solar cells
URI https://www.cambridge.org/core/product/identifier/S0956792518000207/type/journal_article
https://www.proquest.com/docview/2307315149
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaSw6exMXsq9k9iUofKi2iFntb8jyV3bXb-vud7NMi9BTIJmGZDDNfZoZvELqmLjecMI5FfEktj8rQ4g7hViAV0yFxg4JnezLtj2fey9yflwG3rCyrrGxibqhlIkyM_M4ULLvgnrzwPv22TNcok10tW2jsorYNnsboeTAcNVkE0nDt0dDxq6xmThkNk2bODvJsHP3LrbDpozZNdO53hofooASM-KG44SO0o-JjtD-p2VazE_T1UdMxYwkaVURZcaIxw9l6qZlQODVP2LJ0B-ftbzDAVZwuWMxgUMvkJzOBXJyZhdjE87NTNBsOPp_GVtkwwRJun6ysEPCT8GzpgJAVDXwYOPO1S21pg9ehwuMOhxcd14A7FCVaSyGckEoqQuZx4Z6hVpzE6hxhDTDLFQzOAifOAhcekoJzrqTkHiXM76DbWlxRqfZZVJSM0eifdDuIVBKNREk-bnpgLLZtuam3pAXzxrbF3eqamr9pVOZi--dLtAc4KCwqwLqotVqu1RVgjRXv5QrVQ-3HwfTtHcbn1_lo-guf8NAs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcgAOiFUsBXyACyIizYKTA0IsRYUuQtCK3oK3nKqmNC2In-IbGWcrFVJvnCw5tmWNJ57VbwCOqc01JoxlmK6khkOlb3DL5IYnFQt90_ZSnO1W-6LedR57bq8E3_lbGJ1Wmd-JyUUtI6F95Oc6YdlG8eT4V8N3Q1eN0tHVvIRGyhYN9fWJJlt8-XCH53tiWfe1zm3dyKoKGMK-MMeGj0qGcKrSwp0o6rnYcOaGNq3KKl7NVDjc4mj28BCFs6JmGEohLJ9KKnzmcGHjuguw6OgXrWVYvKm1n56ncQtziu5HfcvN46gJSDV26r6ql8T_6G80h1mpOCsUEkl3vwarmYpKrlOeWoeSGmzASqvAd4034fWlAIAmEnk49euSKCSMxJNRyIQiQ200Z8lCJCm4Q1BBJsM-GzBs1Cj6iLXrmMR6INERhHgLuv9CzG0oD6KB2gESomJnC4ZrodrAPBtNV8E5V1Jyh5rM3YWzglxB9qPFQZqkRoM_1N0FM6doIDK4c111oz9vymkxZZhifcwbXMmPabqbKZPuzf98BEv1TqsZNB_ajX1YRi3MT_PPKlAejybqADWdMT_M2IvA239z9A8UdwrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+derivation+of+a+surface+polarisation+model+for+planar+perovskite+solar+cells&rft.jtitle=European+journal+of+applied+mathematics&rft.au=Courtier%2C+N+E&rft.au=Foster%2C+J+M&rft.au=O%27Kane%2C+S+E+J&rft.au=Walker%2C+A+B&rft.date=2019-06-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=30&rft.issue=3&rft.spage=427&rft.epage=457&rft_id=info:doi/10.1017%2FS0956792518000207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon