A multiscale simulation approach to grinding ferrous surfaces for process optimization
•Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200 microns.•Each approach offers different pathways to process optimization.•Material removal rates obtained with the different methods overlap remarkabl...
Saved in:
Published in | International journal of mechanical sciences Vol. 194; p. 106186 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200 microns.•Each approach offers different pathways to process optimization.•Material removal rates obtained with the different methods overlap remarkably.
A fundamental optimization of a grinding process usually involves expensive equipment and experimental matrices covering a large parameter space. To aid this often cumbersome procedure, here we present three simulation approaches that are intrinsically related and even use the same software, but consider the grinding process at different levels of detail, thus spanning several length scales. Using a molecular dynamics (MD) model, we subject a nanocrystalline carbon steel work piece to grinding by hard alumina abrasives and study material removal and surface topography. A second, much larger MD model allows us to additionally study the microstructural and stress response of a polycrystalline ferritic work piece with a grain size that qualitatively reproduces macroscopic material behavior. Finally, the material point method is introduced as a way of modeling a machining process at the mesoscale in a mesh-free fashion, which is highly advantageous because it intrinsically treats the large deformations during chip formation correctly without the need for repeated remeshing. We discuss which aspects of the grinding process or the work piece quality may be optimized using the adopted approaches, and we show that although our simulations span almost four orders of magnitude in length, the obtained material removal rates agree well. Thus, the presented mesh-free multiscale approach opens new avenues for simulation-aided optimization of grinding processes.
[Display omitted] |
---|---|
AbstractList | •Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200 microns.•Each approach offers different pathways to process optimization.•Material removal rates obtained with the different methods overlap remarkably.
A fundamental optimization of a grinding process usually involves expensive equipment and experimental matrices covering a large parameter space. To aid this often cumbersome procedure, here we present three simulation approaches that are intrinsically related and even use the same software, but consider the grinding process at different levels of detail, thus spanning several length scales. Using a molecular dynamics (MD) model, we subject a nanocrystalline carbon steel work piece to grinding by hard alumina abrasives and study material removal and surface topography. A second, much larger MD model allows us to additionally study the microstructural and stress response of a polycrystalline ferritic work piece with a grain size that qualitatively reproduces macroscopic material behavior. Finally, the material point method is introduced as a way of modeling a machining process at the mesoscale in a mesh-free fashion, which is highly advantageous because it intrinsically treats the large deformations during chip formation correctly without the need for repeated remeshing. We discuss which aspects of the grinding process or the work piece quality may be optimized using the adopted approaches, and we show that although our simulations span almost four orders of magnitude in length, the obtained material removal rates agree well. Thus, the presented mesh-free multiscale approach opens new avenues for simulation-aided optimization of grinding processes.
[Display omitted] |
ArticleNumber | 106186 |
Author | Grützmacher, P.G. Spenger, T. Heckes, H. Eder, S.J. Leroch, S. |
Author_xml | – sequence: 1 givenname: S.J. surname: Eder fullname: Eder, S.J. email: stefan.eder@ac2t.at organization: AC2T research GmbH, Viktor-Kaplan-Straße 2/C, 2700 Wiener Neustadt, Austria – sequence: 2 givenname: S. surname: Leroch fullname: Leroch, S. organization: AC2T research GmbH, Viktor-Kaplan-Straße 2/C, 2700 Wiener Neustadt, Austria – sequence: 3 givenname: P.G. surname: Grützmacher fullname: Grützmacher, P.G. organization: Institute of Engineering Design and Product Development, TU Wien, Lehárgasse 6 — Objekt 7, 1060 Vienna, Austria – sequence: 4 givenname: T. surname: Spenger fullname: Spenger, T. organization: Institute of Production Engineering, Graz University of Technology, Kopernikusgasse 24/I, 8010 Graz, Austria – sequence: 5 givenname: H. surname: Heckes fullname: Heckes, H. organization: Tyrolit – Schleifmittelwerke Swarovski K.G., Swarovskistraße 33, 6130 Schwaz, Austria |
BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QIrHSexEYkFV8ZIqsQG2lmtPiqMkjuwUCb6etIUNm67mea5m7oxMOt8hIdfAFsBA3NQLV7doonELzvi-KaAQZ2QKhSwTDoJPyJSNk0RmLL0gsxhrxkCyPJ2S9yVtd83gotEN0ujGQg_Od1T3ffDafNDB021wnXXdllYYgt9FGneh0gYjrXyg496YRur7wbXu-4BfkvNKNxGvfuOcvD3cv66ekvXL4_NquU5MKtiQlKxIc2atYRsprM2h0IxnIDlWkJcbwSqdlaABNfAcs5xbmcoCtCxTjcB5OifiqGuCjzFgpfrgWh2-FDC1d0fV6s8dtXdHHd0Zwdt_oHHD4fQhaNecxu-OOI7PfToMatzAzqB1Ac2grHenJH4AddyIkA |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2023_108482 crossref_primary_10_1371_journal_pone_0254893 crossref_primary_10_3390_pr11010064 crossref_primary_10_3390_coatings13020410 crossref_primary_10_1007_s00170_022_09968_6 crossref_primary_10_1016_j_ijmecsci_2022_107545 crossref_primary_10_1007_s40544_021_0523_3 crossref_primary_10_1016_j_jmapro_2024_11_007 crossref_primary_10_1016_j_ijmecsci_2023_108952 crossref_primary_10_1016_j_jmapro_2022_12_064 crossref_primary_10_1016_j_wear_2023_204696 crossref_primary_10_1002_pamm_202200128 crossref_primary_10_33271_nvngu_2022_2_124 crossref_primary_10_1088_2051_672X_abdfb9 crossref_primary_10_3389_fmtec_2023_1114414 crossref_primary_10_1007_s11249_021_01451_9 crossref_primary_10_3390_ma14010060 crossref_primary_10_1016_j_apsusc_2021_151493 crossref_primary_10_1016_j_apsusc_2023_158440 crossref_primary_10_3390_jmmp6050120 crossref_primary_10_1016_j_apmt_2022_101588 crossref_primary_10_1016_j_ijsolstr_2023_112146 crossref_primary_10_1016_j_ijmachtools_2022_103884 crossref_primary_10_1016_j_ijmecsci_2024_109076 crossref_primary_10_1016_j_wear_2021_203670 crossref_primary_10_3390_mi13030415 |
Cites_doi | 10.1088/0022-3727/46/5/055307 10.1088/0965-0393/18/8/085001 10.1016/j.procir.2019.03.122 10.3390/inventions3020024 10.1016/j.actamat.2019.09.013 10.1016/j.jmatprotec.2018.07.013 10.1186/2193-9772-3-5 10.1016/j.ijmecsci.2019.01.015 10.1007/s00339-010-5570-y 10.1016/j.cirp.2017.05.006 10.1088/0022-3727/48/46/465308 10.1016/j.cpc.2016.10.017 10.1021/acsami.8b06894 10.1103/PhysRevB.58.11085 10.1007/s11740-013-0449-3 10.1016/j.ijmachtools.2016.12.001 10.1007/s42452-020-2982-y 10.1201/b21863-6 10.1016/j.ijmachtools.2017.04.012 10.1007/s11831-019-09333-z 10.1007/s40544-019-0259-5 10.1021/acsami.7b01237 10.1016/j.cirp.2013.05.006 10.1016/j.ijmecsci.2018.08.014 10.1016/j.cirp.2006.10.003 10.1016/j.ijmecsci.2020.105737 10.1016/j.cirp.2007.10.005 10.1103/PhysRevLett.115.025502 10.1016/j.ijmecsci.2018.12.022 10.1103/PhysRevB.79.144107 10.1016/j.matdes.2020.109053 10.1016/j.ijmecsci.2019.01.037 10.1016/0013-7944(85)90052-9 10.1080/14786430310001613264 10.1016/j.commatsci.2016.03.008 10.1007/s11671-009-9268-z 10.1016/j.ijmecsci.2016.11.016 10.1016/j.ijmachtools.2018.02.001 10.1016/j.ijmachtools.2014.10.007 10.1016/j.ijmachtools.2005.03.010 10.1016/j.apsusc.2015.12.145 10.1016/j.cirp.2016.06.003 10.1016/j.wear.2018.12.013 10.1088/1757-899X/119/1/012009 10.1016/j.wear.2016.11.023 10.1016/j.triboint.2019.02.004 10.1006/jcph.1995.1039 10.1007/s11740-011-0360-8 10.1016/j.jmatprotec.2010.07.033 10.1016/j.ijmachtools.2014.09.013 10.1021/acsami.0c09302 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ijmecsci.2020.106186 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2162 |
ExternalDocumentID | 10_1016_j_ijmecsci_2020_106186 S0020740320342910 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSZ T5K TN5 UNMZH XPP XSW ZMT ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c360t-908350ddc0b76dd518a024172ef159b60fa491a1ea125e452d73781a793ae1223 |
IEDL.DBID | .~1 |
ISSN | 0020-7403 |
IngestDate | Tue Jul 01 03:06:49 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Feb 23 02:47:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Material point method Surface quality Microstructure Large-scale molecular dynamics Grinding |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-908350ddc0b76dd518a024172ef159b60fa491a1ea125e452d73781a793ae1223 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0020740320342910 |
ParticipantIDs | crossref_primary_10_1016_j_ijmecsci_2020_106186 crossref_citationtrail_10_1016_j_ijmecsci_2020_106186 elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2020_106186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International journal of mechanical sciences |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pei, Lu, Lee, Zhang (bib0028) 2009; 4 Henriksson, Nordlund (bib0046) 2009; 79 Grützmacher, Gachot, Eder (bib0010) 2020; 195 Eder, Cihak-Bayr, Bianchi (bib0026) 2016; 119 Malkin, Guo (bib0002) 2008 Plimpton (bib0040) 1995; 117 Holtermann, Schumann, Menzel, Biermann (bib0059) 2013; 7 Spenger, Haas, Cihak-Bayr, Eder, Weiß, Weinzerl (bib0049) 2019; 81 Varga, Leroch, Eder, Ripoll (bib0036) 2017; 376 Groeber, Jackson (bib0042) 2014; 3 Afazov, Ratchev, Segal (bib0051) 2010; 210 Stukowski, Albe (bib0041) 2010; 18 Denkena, Köhler, Kästner (bib0054) 2012; 6 Eder, Cihak-Bayr, Bianchi (bib0034) 2017 Rowe (bib0058) 2013 Zitt U.R. Modellierung und Simulation von Hochleistungsschleifprozessen. 1999. PhD thesis, Univ., Lehrstuhl für Fertigungstechnik und Betriebsorganisation. Xiao, To, Zhang (bib0053) 2015; 88 Eder, Cihak-Bayr, Gachot, Ripoll (bib0055) 2018; 10 Eder, Bianchi, Cihak-Bayr, Gkagkas (bib0043) 2017; 212 Eder, Cihak-Bayr, Bianchi, Feldbauer, Betz (bib0044) 2017; 9 Duan, Yu, Wang, Xu (bib0057) 2017; 120 Steffan, Haas, Spenger (bib0048) 2017 Johnson, Cook (bib0050) 1985; 21 Rowe (bib0004) 2018; 3 Arrazola, Özel, Umbrello, Davies, Jawahir (bib0001) 2013; 62 Grützmacher, Rammacher, Rathmann, Motz, Mücklich, Suarez (bib0018) 2019; 7 Markopoulos, Karkalos, Papazoglou (bib0025) 2020; 27 Klocke (bib0008) 2018 Eder, Ripoll, Cihak-Bayr, Dini, Gachot (bib0035) 2020; 12 Denkena, Tönshoff (bib0005) 2011 Eder, Cihak-Bayr, Vernes, Betz (bib0027) 2015; 48 Fang, Wu, Liu (bib0017) 2005; 45 Guziewski, Coleman, Weinberger (bib0047) 2019; 180 Khorasani, Yazdi, Safizadeh (bib0020) 2012; 5 Bai, Bai, Tong, Guo (bib0007) 2018; 148 Liu, Xu, Chen, Li, Wang, Yang (bib0006) 2019; 152 Li, Guo, Luo, Fang, Wu, Zhang (bib0032) 2016; 364 Dai, Ding, Xu, Fu, Yu (bib0013) 2017; 113 Brinksmeier, Aurich, Govekar, Heinzel, Hoffmeister, Klocke, Peters, Rentsch, Stephenson, Uhlmann (bib0021) 2006; 55 Li, Yu, Wang, Zhu, Wang (bib0022) 2017; 126 Mendelev, Han, Srolovitz, Ackland, Sun, Asta (bib0045) 2003; 83 Eder, Feldbauer, Bianchi, Cihak-Bayr, Betz, Vernes (bib0052) 2015; 115 Steffens (bib0016) 1983 Varga, Leroch, Eder, Rojacz, Ripoll (bib0037) 2019; 426 Zhong, Shakiba, Adams (bib0031) 2013; 46 Kelchner, Plimpton, Hamilton (bib0056) 1998; 58 Jackson (bib0023) 2020; 2 Zhou, Ding, Wang, Wang, Guo, Liu (bib0011) 2019; 134 Hashimoto, Yamaguchi, Krajnik, Wegener, Chaudhari, Hoffmeister (bib0019) 2016; 65 Wegener, Bleicher, Krajnik, Hoffmeister, Brecher (bib0003) 2017; 66 Malkin, Guo (bib0009) 2007; 56 Meng, Yuan, Xu (bib0029) 2019; 151 Leroch, Eder, Ganzenmüller, Murillo, Ripoll (bib0038) 2018; 262 Agrawal, Raff, Bukkapatnam, Komanduri (bib0030) 2010; 100 Goel, Luo, Agrawal, Reuben (bib0024) 2015; 88 He, Zong, Zhang (bib0014) 2018; 129 Wang, Yu, Wang, Zhang, Zhao, Wen (bib0039) 2019; 153 Li, Liu, Luo, Fang, Liu, Liu (bib0033) 2016; 118 Li, Chen, Xiao, Chen, Qu, Dai (bib0012) 2020; 182 Denkena (10.1016/j.ijmecsci.2020.106186_bib0005) 2011 Stukowski (10.1016/j.ijmecsci.2020.106186_bib0041) 2010; 18 10.1016/j.ijmecsci.2020.106186_bib0015 Grützmacher (10.1016/j.ijmecsci.2020.106186_bib0010) 2020; 195 Zhong (10.1016/j.ijmecsci.2020.106186_bib0031) 2013; 46 Varga (10.1016/j.ijmecsci.2020.106186_bib0036) 2017; 376 Holtermann (10.1016/j.ijmecsci.2020.106186_bib0059) 2013; 7 Rowe (10.1016/j.ijmecsci.2020.106186_bib0004) 2018; 3 Zhou (10.1016/j.ijmecsci.2020.106186_bib0011) 2019; 134 Groeber (10.1016/j.ijmecsci.2020.106186_bib0042) 2014; 3 Meng (10.1016/j.ijmecsci.2020.106186_bib0029) 2019; 151 Eder (10.1016/j.ijmecsci.2020.106186_bib0026) 2016; 119 Bai (10.1016/j.ijmecsci.2020.106186_bib0007) 2018; 148 Duan (10.1016/j.ijmecsci.2020.106186_bib0057) 2017; 120 Khorasani (10.1016/j.ijmecsci.2020.106186_bib0020) 2012; 5 Jackson (10.1016/j.ijmecsci.2020.106186_bib0023) 2020; 2 Wang (10.1016/j.ijmecsci.2020.106186_bib0039) 2019; 153 Eder (10.1016/j.ijmecsci.2020.106186_bib0034) 2017 Brinksmeier (10.1016/j.ijmecsci.2020.106186_bib0021) 2006; 55 Kelchner (10.1016/j.ijmecsci.2020.106186_bib0056) 1998; 58 Eder (10.1016/j.ijmecsci.2020.106186_bib0044) 2017; 9 Denkena (10.1016/j.ijmecsci.2020.106186_bib0054) 2012; 6 Wegener (10.1016/j.ijmecsci.2020.106186_bib0003) 2017; 66 Eder (10.1016/j.ijmecsci.2020.106186_bib0035) 2020; 12 Plimpton (10.1016/j.ijmecsci.2020.106186_bib0040) 1995; 117 Dai (10.1016/j.ijmecsci.2020.106186_bib0013) 2017; 113 Grützmacher (10.1016/j.ijmecsci.2020.106186_bib0018) 2019; 7 Hashimoto (10.1016/j.ijmecsci.2020.106186_bib0019) 2016; 65 Steffens (10.1016/j.ijmecsci.2020.106186_bib0016) 1983 He (10.1016/j.ijmecsci.2020.106186_bib0014) 2018; 129 Malkin (10.1016/j.ijmecsci.2020.106186_bib0002) 2008 Varga (10.1016/j.ijmecsci.2020.106186_bib0037) 2019; 426 Eder (10.1016/j.ijmecsci.2020.106186_bib0027) 2015; 48 Henriksson (10.1016/j.ijmecsci.2020.106186_bib0046) 2009; 79 Pei (10.1016/j.ijmecsci.2020.106186_bib0028) 2009; 4 Li (10.1016/j.ijmecsci.2020.106186_bib0033) 2016; 118 Xiao (10.1016/j.ijmecsci.2020.106186_bib0053) 2015; 88 Malkin (10.1016/j.ijmecsci.2020.106186_bib0009) 2007; 56 Li (10.1016/j.ijmecsci.2020.106186_bib0032) 2016; 364 Markopoulos (10.1016/j.ijmecsci.2020.106186_bib0025) 2020; 27 Liu (10.1016/j.ijmecsci.2020.106186_bib0006) 2019; 152 Fang (10.1016/j.ijmecsci.2020.106186_bib0017) 2005; 45 Steffan (10.1016/j.ijmecsci.2020.106186_bib0048) 2017 Agrawal (10.1016/j.ijmecsci.2020.106186_bib0030) 2010; 100 Goel (10.1016/j.ijmecsci.2020.106186_bib0024) 2015; 88 Guziewski (10.1016/j.ijmecsci.2020.106186_bib0047) 2019; 180 Arrazola (10.1016/j.ijmecsci.2020.106186_bib0001) 2013; 62 Li (10.1016/j.ijmecsci.2020.106186_bib0022) 2017; 126 Mendelev (10.1016/j.ijmecsci.2020.106186_bib0045) 2003; 83 Eder (10.1016/j.ijmecsci.2020.106186_bib0052) 2015; 115 Klocke (10.1016/j.ijmecsci.2020.106186_bib0008) 2018 Afazov (10.1016/j.ijmecsci.2020.106186_bib0051) 2010; 210 Li (10.1016/j.ijmecsci.2020.106186_bib0012) 2020; 182 Eder (10.1016/j.ijmecsci.2020.106186_bib0043) 2017; 212 Spenger (10.1016/j.ijmecsci.2020.106186_bib0049) 2019; 81 Johnson (10.1016/j.ijmecsci.2020.106186_bib0050) 1985; 21 Leroch (10.1016/j.ijmecsci.2020.106186_bib0038) 2018; 262 Eder (10.1016/j.ijmecsci.2020.106186_bib0055) 2018; 10 Rowe (10.1016/j.ijmecsci.2020.106186_bib0058) 2013 |
References_xml | – start-page: 86 year: 2013 ident: bib0058 article-title: Principles of modern grinding technology publication-title: William Andrew – volume: 45 start-page: 1681 year: 2005 end-page: 1686 ident: bib0017 article-title: Modelling and experimental investigation on nanometric cutting of monocrystalline silicon publication-title: Int J Mach Tools Manuf – volume: 5 start-page: 68 year: 2012 end-page: 84 ident: bib0020 article-title: Analysis of machining parameters effects on surface roughness: a review publication-title: Int J Comput Mater Sci Surf Eng – volume: 115 start-page: 025502 year: 2015 ident: bib0052 article-title: Applicability of macroscopic wear and friction laws on the atomic length scale publication-title: Phys Rev Lett – volume: 3 start-page: 5 year: 2014 ident: bib0042 article-title: Dream.3d: a digital representation environment for the analysis of microstructure in 3D publication-title: Integrating Materials and Manufacturing Innovation – volume: 6 start-page: 107 year: 2012 end-page: 115 ident: bib0054 article-title: Chip formation in grinding: an experimental study publication-title: Prod Eng – volume: 3 start-page: 24 year: 2018 ident: bib0004 article-title: Towards high productivity in precision grinding publication-title: Inventions – volume: 2 start-page: 1172 year: 2020 ident: bib0023 article-title: Recent advances in ultraprecision abrasive machining processes publication-title: SN Applied Sciences – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib0040 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys – volume: 210 start-page: 2154 year: 2010 end-page: 2162 ident: bib0051 article-title: Modelling and simulation of micro-milling cutting forces publication-title: J Mater Process Technol – volume: 126 start-page: 319 year: 2017 end-page: 339 ident: bib0022 article-title: Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions publication-title: Int J Mech Sci – volume: 88 start-page: 214 year: 2015 end-page: 222 ident: bib0053 article-title: Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide publication-title: Int J Mach Tools Manuf – volume: 151 start-page: 724 year: 2019 end-page: 732 ident: bib0029 article-title: Study on strain rate and heat effect on the removal mechanism of sic during nano-scratching process by molecular dynamics simulation publication-title: Int J Mech Sci – volume: 7 start-page: 637 year: 2019 end-page: 650 ident: bib0018 article-title: Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals publication-title: Friction – volume: 21 start-page: 31 year: 1985 end-page: 48 ident: bib0050 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech – volume: 56 start-page: 760 year: 2007 end-page: 782 ident: bib0009 article-title: Thermal analysis of grinding publication-title: CIRP Ann – volume: 364 start-page: 190 year: 2016 end-page: 200 ident: bib0032 article-title: Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations publication-title: Appl Surf Sci – volume: 129 start-page: 15 year: 2018 end-page: 26 ident: bib0014 article-title: Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art publication-title: Int J Mach Tools Manuf – volume: 79 start-page: 144107 year: 2009 ident: bib0046 article-title: Simulations of cementite: an analytical potential for the fe-c system publication-title: Physical Review B – volume: 66 start-page: 779 year: 2017 end-page: 802 ident: bib0003 article-title: Recent developments in grinding machines publication-title: CIRP Ann – year: 1983 ident: bib0016 article-title: Thermomechanik des Schleifens – volume: 376 start-page: 1122 year: 2017 end-page: 1129 ident: bib0036 article-title: Meshless microscale simulation of wear mechanisms in scratch testing publication-title: Wear – volume: 65 start-page: 597 year: 2016 end-page: 620 ident: bib0019 article-title: Abrasive fine-finishing technology publication-title: CIRP Ann – volume: 7 start-page: 251 year: 2013 end-page: 263 ident: bib0059 article-title: Modelling, simulation and experimental investigation of chip formation in internal traverse grinding publication-title: Prod Eng – volume: 113 start-page: 49 year: 2017 end-page: 58 ident: bib0013 article-title: Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain publication-title: Int J Mach Tools Manuf – volume: 153 start-page: 131 year: 2019 end-page: 142 ident: bib0039 article-title: Grinding temperature field prediction by meshless finite block method with double infinite element publication-title: Int J Mech Sci – volume: 18 start-page: 085001 year: 2010 ident: bib0041 article-title: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data publication-title: Modell Simul Mater Sci Eng – volume: 134 start-page: 417 year: 2019 end-page: 426 ident: bib0011 publication-title: Tribol Int – volume: 58 start-page: 11085 year: 1998 end-page: 11088 ident: bib0056 article-title: Dislocation nucleation and defect structure during surface indentation publication-title: Phys Rev B – volume: 81 start-page: 476 year: 2019 end-page: 481 ident: bib0049 article-title: RPM-Synchronous Grinding — investigation and comparison of surface topography of Synchro-Finish manufactured workpieces publication-title: Procedia CIRP – volume: 62 start-page: 695 year: 2013 end-page: 718 ident: bib0001 article-title: Recent advances in modelling of metal machining processes publication-title: CIRP Ann – volume: 426 start-page: 370 year: 2019 end-page: 377 ident: bib0037 article-title: Influence of velocity on high-temperature fundamental abrasive contact: a numerical and experimental approach publication-title: Wear – volume: 55 start-page: 667 year: 2006 end-page: 696 ident: bib0021 article-title: Advances in modeling and simulation of grinding processes publication-title: CIRP Annals-Manufacturing Technology – volume: 118 start-page: 66 year: 2016 end-page: 76 ident: bib0033 article-title: A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates publication-title: Comput Mater Sci – volume: 4 start-page: 444 year: 2009 end-page: 451 ident: bib0028 article-title: Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations publication-title: Nanoscale Res Lett – year: 2011 ident: bib0005 article-title: Spanen: Grundlagen – volume: 180 start-page: 287 year: 2019 end-page: 300 ident: bib0047 article-title: Atomistic investigation into interfacial effects on the plastic response and deformation mechanisms of the pearlitic microstructure publication-title: Acta Mater – volume: 119 start-page: 012009 year: 2016 ident: bib0026 article-title: Single-asperity contributions to multi-asperity wear simulated with molecular dynamics publication-title: IOP Conference Series: Materials Science and Engineering – volume: 9 start-page: 13713 year: 2017 end-page: 13725 ident: bib0044 article-title: Thermostat influence on the structural development and material removal during abrasion of nanocrystalline ferrite publication-title: ACS Applied Materials & Interfaces – volume: 182 start-page: 105737 year: 2020 ident: bib0012 article-title: Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass publication-title: Int J Mech Sci – year: 2018 ident: bib0008 article-title: Fertigungsverfahren 2: Zerspanung mit geometrisch unbestimmter Schneide – year: 2008 ident: bib0002 article-title: Grinding technology: theory and application of machining with abrasives – volume: 12 start-page: 32197 year: 2020 end-page: 32208 ident: bib0035 article-title: Unraveling and mapping the mechanisms for near-surface microstructure evolution in cuni alloys under sliding publication-title: ACS Applied Materials & Interfaces – volume: 10 start-page: 24288 year: 2018 end-page: 24301 ident: bib0055 article-title: Interfacial microstructure evolution due to strain path changes in sliding contacts publication-title: ACS Applied Materials & Interfaces – volume: 148 start-page: 64 year: 2018 end-page: 72 ident: bib0007 article-title: Theoretical model for subsurface microstructure prediction in micro-machining ti-6al-4v alloy–experimental validation publication-title: Int J Mech Sci – start-page: 141 year: 2017 ident: bib0034 article-title: Large-scale molecular dynamics simulations of nanomachining publication-title: Advanced Machining Processes: Innovative Modeling Techniques – volume: 195 start-page: 109053 year: 2020 ident: bib0010 article-title: Visualization of microstructural mechanisms in nanocrystalline ferrite during grinding publication-title: Materials & Design – year: 2017 ident: bib0048 article-title: RPM-Synchronous Grinding — Control concepts to improve surface qualities for a highly efficient non-circular grinding approach publication-title: In ASME 2017 International Mechanical Engineering Congress and Exposition, page V002T02A009 American Society of Mechanical Engineers – volume: 120 start-page: 49 year: 2017 end-page: 60 ident: bib0057 article-title: Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the fem and sph publication-title: Int J Mach Tools Manuf – volume: 46 start-page: 055307 year: 2013 ident: bib0031 article-title: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate publication-title: J Phys D Appl Phys – volume: 27 start-page: 831 year: 2020 end-page: 853 ident: bib0025 article-title: Meshless methods for the simulation of machining and micro-machining: a review publication-title: Arch Comput Methods Eng – volume: 212 start-page: 100 year: 2017 end-page: 112 ident: bib0043 article-title: Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces publication-title: Comput Phys Commun – volume: 262 start-page: 449 year: 2018 end-page: 458 ident: bib0038 article-title: Development and validation of a meshless 3d material point method for simulating the micro-milling process publication-title: J Mater Process Technol – volume: 100 start-page: 89 year: 2010 end-page: 104 ident: bib0030 article-title: Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive publication-title: Appl Phys A – volume: 83 start-page: 3977 year: 2003 end-page: 3994 ident: bib0045 article-title: Development of new interatomic potentials appropriate for crystalline and liquid iron publication-title: Philos Mag – volume: 88 start-page: 131 year: 2015 end-page: 164 ident: bib0024 article-title: Diamond machining of silicon: a review of advances in molecular dynamics simulation publication-title: Int J Mach Tools Manuf – reference: Zitt U.R. Modellierung und Simulation von Hochleistungsschleifprozessen. 1999. PhD thesis, Univ., Lehrstuhl für Fertigungstechnik und Betriebsorganisation. – volume: 152 start-page: 378 year: 2019 end-page: 383 ident: bib0006 article-title: In situ experimental study on material removal behaviour of single-crystal silicon in nanocutting publication-title: Int J Mech Sci – volume: 48 start-page: 465308 year: 2015 ident: bib0027 article-title: Evolution of topography and material removal during nanoscale grinding publication-title: J Phys D Appl Phys – volume: 46 start-page: 055307 issue: 5 year: 2013 ident: 10.1016/j.ijmecsci.2020.106186_bib0031 article-title: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/46/5/055307 – volume: 18 start-page: 085001 issue: 8 year: 2010 ident: 10.1016/j.ijmecsci.2020.106186_bib0041 article-title: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data publication-title: Modell Simul Mater Sci Eng doi: 10.1088/0965-0393/18/8/085001 – volume: 81 start-page: 476 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0049 article-title: RPM-Synchronous Grinding — investigation and comparison of surface topography of Synchro-Finish manufactured workpieces publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.122 – volume: 3 start-page: 24 issue: 2 year: 2018 ident: 10.1016/j.ijmecsci.2020.106186_bib0004 article-title: Towards high productivity in precision grinding publication-title: Inventions doi: 10.3390/inventions3020024 – volume: 180 start-page: 287 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0047 article-title: Atomistic investigation into interfacial effects on the plastic response and deformation mechanisms of the pearlitic microstructure publication-title: Acta Mater doi: 10.1016/j.actamat.2019.09.013 – volume: 262 start-page: 449 year: 2018 ident: 10.1016/j.ijmecsci.2020.106186_bib0038 article-title: Development and validation of a meshless 3d material point method for simulating the micro-milling process publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.07.013 – volume: 3 start-page: 5 issue: 1 year: 2014 ident: 10.1016/j.ijmecsci.2020.106186_bib0042 article-title: Dream.3d: a digital representation environment for the analysis of microstructure in 3D publication-title: Integrating Materials and Manufacturing Innovation doi: 10.1186/2193-9772-3-5 – volume: 152 start-page: 378 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0006 article-title: In situ experimental study on material removal behaviour of single-crystal silicon in nanocutting publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.01.015 – volume: 100 start-page: 89 issue: 1 year: 2010 ident: 10.1016/j.ijmecsci.2020.106186_bib0030 article-title: Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive publication-title: Appl Phys A doi: 10.1007/s00339-010-5570-y – volume: 66 start-page: 779 issue: 2 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0003 article-title: Recent developments in grinding machines publication-title: CIRP Ann doi: 10.1016/j.cirp.2017.05.006 – volume: 48 start-page: 465308 year: 2015 ident: 10.1016/j.ijmecsci.2020.106186_bib0027 article-title: Evolution of topography and material removal during nanoscale grinding publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/48/46/465308 – volume: 212 start-page: 100 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0043 article-title: Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2016.10.017 – volume: 10 start-page: 24288 issue: 28 year: 2018 ident: 10.1016/j.ijmecsci.2020.106186_bib0055 article-title: Interfacial microstructure evolution due to strain path changes in sliding contacts publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.8b06894 – volume: 58 start-page: 11085 issue: 17 year: 1998 ident: 10.1016/j.ijmecsci.2020.106186_bib0056 article-title: Dislocation nucleation and defect structure during surface indentation publication-title: Phys Rev B doi: 10.1103/PhysRevB.58.11085 – volume: 5 start-page: 68 issue: 1 year: 2012 ident: 10.1016/j.ijmecsci.2020.106186_bib0020 article-title: Analysis of machining parameters effects on surface roughness: a review publication-title: Int J Comput Mater Sci Surf Eng – volume: 7 start-page: 251 issue: 2–3 year: 2013 ident: 10.1016/j.ijmecsci.2020.106186_bib0059 article-title: Modelling, simulation and experimental investigation of chip formation in internal traverse grinding publication-title: Prod Eng doi: 10.1007/s11740-013-0449-3 – volume: 113 start-page: 49 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0013 article-title: Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2016.12.001 – volume: 2 start-page: 1172 year: 2020 ident: 10.1016/j.ijmecsci.2020.106186_bib0023 article-title: Recent advances in ultraprecision abrasive machining processes publication-title: SN Applied Sciences doi: 10.1007/s42452-020-2982-y – start-page: 141 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0034 article-title: Large-scale molecular dynamics simulations of nanomachining publication-title: Advanced Machining Processes: Innovative Modeling Techniques doi: 10.1201/b21863-6 – volume: 120 start-page: 49 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0057 article-title: Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the fem and sph publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2017.04.012 – volume: 27 start-page: 831 issue: 3 year: 2020 ident: 10.1016/j.ijmecsci.2020.106186_bib0025 article-title: Meshless methods for the simulation of machining and micro-machining: a review publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-019-09333-z – year: 2008 ident: 10.1016/j.ijmecsci.2020.106186_bib0002 – year: 2011 ident: 10.1016/j.ijmecsci.2020.106186_bib0005 – volume: 7 start-page: 637 issue: 6 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0018 article-title: Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals publication-title: Friction doi: 10.1007/s40544-019-0259-5 – volume: 9 start-page: 13713 issue: 15 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0044 article-title: Thermostat influence on the structural development and material removal during abrasion of nanocrystalline ferrite publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b01237 – ident: 10.1016/j.ijmecsci.2020.106186_bib0015 – volume: 62 start-page: 695 issue: 2 year: 2013 ident: 10.1016/j.ijmecsci.2020.106186_bib0001 article-title: Recent advances in modelling of metal machining processes publication-title: CIRP Ann doi: 10.1016/j.cirp.2013.05.006 – volume: 148 start-page: 64 year: 2018 ident: 10.1016/j.ijmecsci.2020.106186_bib0007 article-title: Theoretical model for subsurface microstructure prediction in micro-machining ti-6al-4v alloy–experimental validation publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.08.014 – year: 2018 ident: 10.1016/j.ijmecsci.2020.106186_bib0008 – volume: 55 start-page: 667 issue: 2 year: 2006 ident: 10.1016/j.ijmecsci.2020.106186_bib0021 article-title: Advances in modeling and simulation of grinding processes publication-title: CIRP Annals-Manufacturing Technology doi: 10.1016/j.cirp.2006.10.003 – volume: 182 start-page: 105737 year: 2020 ident: 10.1016/j.ijmecsci.2020.106186_bib0012 article-title: Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.105737 – volume: 56 start-page: 760 issue: 2 year: 2007 ident: 10.1016/j.ijmecsci.2020.106186_bib0009 article-title: Thermal analysis of grinding publication-title: CIRP Ann doi: 10.1016/j.cirp.2007.10.005 – year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0048 article-title: RPM-Synchronous Grinding — Control concepts to improve surface qualities for a highly efficient non-circular grinding approach publication-title: In ASME 2017 International Mechanical Engineering Congress and Exposition, page V002T02A009 American Society of Mechanical Engineers – volume: 115 start-page: 025502 year: 2015 ident: 10.1016/j.ijmecsci.2020.106186_bib0052 article-title: Applicability of macroscopic wear and friction laws on the atomic length scale publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.115.025502 – volume: 151 start-page: 724 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0029 article-title: Study on strain rate and heat effect on the removal mechanism of sic during nano-scratching process by molecular dynamics simulation publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.12.022 – year: 1983 ident: 10.1016/j.ijmecsci.2020.106186_bib0016 – volume: 79 start-page: 144107 issue: 14 year: 2009 ident: 10.1016/j.ijmecsci.2020.106186_bib0046 article-title: Simulations of cementite: an analytical potential for the fe-c system publication-title: Physical Review B doi: 10.1103/PhysRevB.79.144107 – volume: 195 start-page: 109053 year: 2020 ident: 10.1016/j.ijmecsci.2020.106186_bib0010 article-title: Visualization of microstructural mechanisms in nanocrystalline ferrite during grinding publication-title: Materials & Design doi: 10.1016/j.matdes.2020.109053 – volume: 153 start-page: 131 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0039 article-title: Grinding temperature field prediction by meshless finite block method with double infinite element publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.01.037 – volume: 21 start-page: 31 issue: 1 year: 1985 ident: 10.1016/j.ijmecsci.2020.106186_bib0050 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90052-9 – volume: 83 start-page: 3977 year: 2003 ident: 10.1016/j.ijmecsci.2020.106186_bib0045 article-title: Development of new interatomic potentials appropriate for crystalline and liquid iron publication-title: Philos Mag doi: 10.1080/14786430310001613264 – volume: 118 start-page: 66 year: 2016 ident: 10.1016/j.ijmecsci.2020.106186_bib0033 article-title: A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2016.03.008 – volume: 4 start-page: 444 issue: 5 year: 2009 ident: 10.1016/j.ijmecsci.2020.106186_bib0028 article-title: Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations publication-title: Nanoscale Res Lett doi: 10.1007/s11671-009-9268-z – volume: 126 start-page: 319 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0022 article-title: Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2016.11.016 – volume: 129 start-page: 15 year: 2018 ident: 10.1016/j.ijmecsci.2020.106186_bib0014 article-title: Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2018.02.001 – volume: 88 start-page: 214 year: 2015 ident: 10.1016/j.ijmecsci.2020.106186_bib0053 article-title: Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2014.10.007 – volume: 45 start-page: 1681 issue: 15 year: 2005 ident: 10.1016/j.ijmecsci.2020.106186_bib0017 article-title: Modelling and experimental investigation on nanometric cutting of monocrystalline silicon publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2005.03.010 – volume: 364 start-page: 190 year: 2016 ident: 10.1016/j.ijmecsci.2020.106186_bib0032 article-title: Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.12.145 – volume: 65 start-page: 597 issue: 2 year: 2016 ident: 10.1016/j.ijmecsci.2020.106186_bib0019 article-title: Abrasive fine-finishing technology publication-title: CIRP Ann doi: 10.1016/j.cirp.2016.06.003 – volume: 426 start-page: 370 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0037 article-title: Influence of velocity on high-temperature fundamental abrasive contact: a numerical and experimental approach publication-title: Wear doi: 10.1016/j.wear.2018.12.013 – volume: 119 start-page: 012009 issue: 1 year: 2016 ident: 10.1016/j.ijmecsci.2020.106186_bib0026 article-title: Single-asperity contributions to multi-asperity wear simulated with molecular dynamics publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/119/1/012009 – volume: 376 start-page: 1122 year: 2017 ident: 10.1016/j.ijmecsci.2020.106186_bib0036 article-title: Meshless microscale simulation of wear mechanisms in scratch testing publication-title: Wear doi: 10.1016/j.wear.2016.11.023 – volume: 134 start-page: 417 year: 2019 ident: 10.1016/j.ijmecsci.2020.106186_bib0011 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.02.004 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.ijmecsci.2020.106186_bib0040 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys doi: 10.1006/jcph.1995.1039 – volume: 6 start-page: 107 issue: 2 year: 2012 ident: 10.1016/j.ijmecsci.2020.106186_bib0054 article-title: Chip formation in grinding: an experimental study publication-title: Prod Eng doi: 10.1007/s11740-011-0360-8 – volume: 210 start-page: 2154 issue: 15 year: 2010 ident: 10.1016/j.ijmecsci.2020.106186_bib0051 article-title: Modelling and simulation of micro-milling cutting forces publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2010.07.033 – volume: 88 start-page: 131 year: 2015 ident: 10.1016/j.ijmecsci.2020.106186_bib0024 article-title: Diamond machining of silicon: a review of advances in molecular dynamics simulation publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2014.09.013 – volume: 12 start-page: 32197 issue: 28 year: 2020 ident: 10.1016/j.ijmecsci.2020.106186_bib0035 article-title: Unraveling and mapping the mechanisms for near-surface microstructure evolution in cuni alloys under sliding publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c09302 – start-page: 86 year: 2013 ident: 10.1016/j.ijmecsci.2020.106186_bib0058 article-title: Principles of modern grinding technology publication-title: William Andrew |
SSID | ssj0017053 |
Score | 2.435589 |
Snippet | •Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106186 |
SubjectTerms | Grinding Large-scale molecular dynamics Material point method Microstructure Surface quality |
Title | A multiscale simulation approach to grinding ferrous surfaces for process optimization |
URI | https://dx.doi.org/10.1016/j.ijmecsci.2020.106186 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La4NAEB5CemkPpU_6DHvo1UTXVeMxhIa0hZyakpvsumMxNA-Mufa3d1bXkEIhh14XR2QcZ77B75sBeCIQgFIodDQiNShSeE6sdORQbfIlV1yFacW2mITjqXidBbMWDBstjKFV2txf5_QqW9uTnvVmb53nRuPLqf6ZBeA-JdVKZiVEZKK8-72jeZhpMfVfZmqTzNV7KuF5N58vMKWbU5_IzaEZHv93gdorOqMzOLVokQ3qBzqHFi4v4GRvhuAlfAxYRQrckLORbfKF3cfFmmnhrFyxzyKv1Cssw6KgXp9ttkVmyFiMMCtb12IBtqL0sbC6zCuYjp7fh2PHLktwUj90Syc2WMrVOnVVFGodeH1J5ZfgCWaEWFToZlLEnvRQEqRBEXAd-VHfk_R9SvQIJFxDe7la4g0wgoh0KgLsZ6lwFY8x4lzLICNsEEkhbyFoPJSkdpK4WWjxlTSUsXnSeDYxnk1qz95Cb2e3rmdpHLSImxeQ_IqKhBL-Adu7f9jewzE33BXD2wseoF0WW3wk8FGqThVdHTgavLyNJz9rc9oU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QPKgH4zPicw96LLTbbUsPHohKQJATGG51205NiTzSQowX_5R_0Nl2SzAx4WC4bjJJd3Yy3zfpNzOE3CAJAMF90EIALFAENzTXDx0NsckUzGe-HWRqi57dGvCnoTUske-iF0bKKlXuz3N6lq3VSU15szaLY9njyxD_5AJwE5OqoStlZQc-P7BuS-_aD_jIt4w1H_v3LU2tFtAC09bnmiuZhx6Gge47dhhaRl0gWCGYQ4T47tt6JLhrCAMEEgDgFgsd06kbAqNZgMHktAPM-1sc04Vcm1D9WupK5Hia_Lc21mXy81bakkfVeDSGAG-DhSmTh3Ja_d-IuIJyzX2yp-gpbeQeOCAlmByS3ZWhhUfkpUEzFWKKrws0jcdqARgtxpPT-ZS-JXHWLkMjSJLpIqXpIomk-osiSaazvDuBTjFfjVUj6DEZbMSFJ6Q8mU7glFDkpHjKLahHAdd95oLDWCisCMmII7ioEKvwkBeo0eVyg8a7V2jURl7hWU961ss9WyG1pd0sH96x1sItHsD7FYYeIswa27N_2F6T7Vb_uet1273OOdlhUjgjRYPWBSnPkwVcIvOZ-1dZpFHyuunQ_gFmIxPV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+simulation+approach+to+grinding+ferrous+surfaces+for+process+optimization&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Eder%2C+S.J.&rft.au=Leroch%2C+S.&rft.au=Gr%C3%BCtzmacher%2C+P.G.&rft.au=Spenger%2C+T.&rft.date=2021-03-15&rft.pub=Elsevier+Ltd&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=194&rft_id=info:doi/10.1016%2Fj.ijmecsci.2020.106186&rft.externalDocID=S0020740320342910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon |