A multiscale simulation approach to grinding ferrous surfaces for process optimization

•Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200 microns.•Each approach offers different pathways to process optimization.•Material removal rates obtained with the different methods overlap remarkabl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical sciences Vol. 194; p. 106186
Main Authors Eder, S.J., Leroch, S., Grützmacher, P.G., Spenger, T., Heckes, H.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200 microns.•Each approach offers different pathways to process optimization.•Material removal rates obtained with the different methods overlap remarkably. A fundamental optimization of a grinding process usually involves expensive equipment and experimental matrices covering a large parameter space. To aid this often cumbersome procedure, here we present three simulation approaches that are intrinsically related and even use the same software, but consider the grinding process at different levels of detail, thus spanning several length scales. Using a molecular dynamics (MD) model, we subject a nanocrystalline carbon steel work piece to grinding by hard alumina abrasives and study material removal and surface topography. A second, much larger MD model allows us to additionally study the microstructural and stress response of a polycrystalline ferritic work piece with a grain size that qualitatively reproduces macroscopic material behavior. Finally, the material point method is introduced as a way of modeling a machining process at the mesoscale in a mesh-free fashion, which is highly advantageous because it intrinsically treats the large deformations during chip formation correctly without the need for repeated remeshing. We discuss which aspects of the grinding process or the work piece quality may be optimized using the adopted approaches, and we show that although our simulations span almost four orders of magnitude in length, the obtained material removal rates agree well. Thus, the presented mesh-free multiscale approach opens new avenues for simulation-aided optimization of grinding processes. [Display omitted]
AbstractList •Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200 microns.•Each approach offers different pathways to process optimization.•Material removal rates obtained with the different methods overlap remarkably. A fundamental optimization of a grinding process usually involves expensive equipment and experimental matrices covering a large parameter space. To aid this often cumbersome procedure, here we present three simulation approaches that are intrinsically related and even use the same software, but consider the grinding process at different levels of detail, thus spanning several length scales. Using a molecular dynamics (MD) model, we subject a nanocrystalline carbon steel work piece to grinding by hard alumina abrasives and study material removal and surface topography. A second, much larger MD model allows us to additionally study the microstructural and stress response of a polycrystalline ferritic work piece with a grain size that qualitatively reproduces macroscopic material behavior. Finally, the material point method is introduced as a way of modeling a machining process at the mesoscale in a mesh-free fashion, which is highly advantageous because it intrinsically treats the large deformations during chip formation correctly without the need for repeated remeshing. We discuss which aspects of the grinding process or the work piece quality may be optimized using the adopted approaches, and we show that although our simulations span almost four orders of magnitude in length, the obtained material removal rates agree well. Thus, the presented mesh-free multiscale approach opens new avenues for simulation-aided optimization of grinding processes. [Display omitted]
ArticleNumber 106186
Author Grützmacher, P.G.
Spenger, T.
Heckes, H.
Eder, S.J.
Leroch, S.
Author_xml – sequence: 1
  givenname: S.J.
  surname: Eder
  fullname: Eder, S.J.
  email: stefan.eder@ac2t.at
  organization: AC2T research GmbH, Viktor-Kaplan-Straße 2/C, 2700 Wiener Neustadt, Austria
– sequence: 2
  givenname: S.
  surname: Leroch
  fullname: Leroch, S.
  organization: AC2T research GmbH, Viktor-Kaplan-Straße 2/C, 2700 Wiener Neustadt, Austria
– sequence: 3
  givenname: P.G.
  surname: Grützmacher
  fullname: Grützmacher, P.G.
  organization: Institute of Engineering Design and Product Development, TU Wien, Lehárgasse 6 — Objekt 7, 1060 Vienna, Austria
– sequence: 4
  givenname: T.
  surname: Spenger
  fullname: Spenger, T.
  organization: Institute of Production Engineering, Graz University of Technology, Kopernikusgasse 24/I, 8010 Graz, Austria
– sequence: 5
  givenname: H.
  surname: Heckes
  fullname: Heckes, H.
  organization: Tyrolit – Schleifmittelwerke Swarovski K.G., Swarovskistraße 33, 6130 Schwaz, Austria
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIrHSexEYkFV8ZIqsQG2lmtPiqMkjuwUCb6etIUNm67mea5m7oxMOt8hIdfAFsBA3NQLV7doonELzvi-KaAQZ2QKhSwTDoJPyJSNk0RmLL0gsxhrxkCyPJ2S9yVtd83gotEN0ujGQg_Od1T3ffDafNDB021wnXXdllYYgt9FGneh0gYjrXyg496YRur7wbXu-4BfkvNKNxGvfuOcvD3cv66ekvXL4_NquU5MKtiQlKxIc2atYRsprM2h0IxnIDlWkJcbwSqdlaABNfAcs5xbmcoCtCxTjcB5OifiqGuCjzFgpfrgWh2-FDC1d0fV6s8dtXdHHd0Zwdt_oHHD4fQhaNecxu-OOI7PfToMatzAzqB1Ac2grHenJH4AddyIkA
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2023_108482
crossref_primary_10_1371_journal_pone_0254893
crossref_primary_10_3390_pr11010064
crossref_primary_10_3390_coatings13020410
crossref_primary_10_1007_s00170_022_09968_6
crossref_primary_10_1016_j_ijmecsci_2022_107545
crossref_primary_10_1007_s40544_021_0523_3
crossref_primary_10_1016_j_jmapro_2024_11_007
crossref_primary_10_1016_j_ijmecsci_2023_108952
crossref_primary_10_1016_j_jmapro_2022_12_064
crossref_primary_10_1016_j_wear_2023_204696
crossref_primary_10_1002_pamm_202200128
crossref_primary_10_33271_nvngu_2022_2_124
crossref_primary_10_1088_2051_672X_abdfb9
crossref_primary_10_3389_fmtec_2023_1114414
crossref_primary_10_1007_s11249_021_01451_9
crossref_primary_10_3390_ma14010060
crossref_primary_10_1016_j_apsusc_2021_151493
crossref_primary_10_1016_j_apsusc_2023_158440
crossref_primary_10_3390_jmmp6050120
crossref_primary_10_1016_j_apmt_2022_101588
crossref_primary_10_1016_j_ijsolstr_2023_112146
crossref_primary_10_1016_j_ijmachtools_2022_103884
crossref_primary_10_1016_j_ijmecsci_2024_109076
crossref_primary_10_1016_j_wear_2021_203670
crossref_primary_10_3390_mi13030415
Cites_doi 10.1088/0022-3727/46/5/055307
10.1088/0965-0393/18/8/085001
10.1016/j.procir.2019.03.122
10.3390/inventions3020024
10.1016/j.actamat.2019.09.013
10.1016/j.jmatprotec.2018.07.013
10.1186/2193-9772-3-5
10.1016/j.ijmecsci.2019.01.015
10.1007/s00339-010-5570-y
10.1016/j.cirp.2017.05.006
10.1088/0022-3727/48/46/465308
10.1016/j.cpc.2016.10.017
10.1021/acsami.8b06894
10.1103/PhysRevB.58.11085
10.1007/s11740-013-0449-3
10.1016/j.ijmachtools.2016.12.001
10.1007/s42452-020-2982-y
10.1201/b21863-6
10.1016/j.ijmachtools.2017.04.012
10.1007/s11831-019-09333-z
10.1007/s40544-019-0259-5
10.1021/acsami.7b01237
10.1016/j.cirp.2013.05.006
10.1016/j.ijmecsci.2018.08.014
10.1016/j.cirp.2006.10.003
10.1016/j.ijmecsci.2020.105737
10.1016/j.cirp.2007.10.005
10.1103/PhysRevLett.115.025502
10.1016/j.ijmecsci.2018.12.022
10.1103/PhysRevB.79.144107
10.1016/j.matdes.2020.109053
10.1016/j.ijmecsci.2019.01.037
10.1016/0013-7944(85)90052-9
10.1080/14786430310001613264
10.1016/j.commatsci.2016.03.008
10.1007/s11671-009-9268-z
10.1016/j.ijmecsci.2016.11.016
10.1016/j.ijmachtools.2018.02.001
10.1016/j.ijmachtools.2014.10.007
10.1016/j.ijmachtools.2005.03.010
10.1016/j.apsusc.2015.12.145
10.1016/j.cirp.2016.06.003
10.1016/j.wear.2018.12.013
10.1088/1757-899X/119/1/012009
10.1016/j.wear.2016.11.023
10.1016/j.triboint.2019.02.004
10.1006/jcph.1995.1039
10.1007/s11740-011-0360-8
10.1016/j.jmatprotec.2010.07.033
10.1016/j.ijmachtools.2014.09.013
10.1021/acsami.0c09302
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijmecsci.2020.106186
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2162
ExternalDocumentID 10_1016_j_ijmecsci_2020_106186
S0020740320342910
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
XPP
XSW
ZMT
~G-
29J
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c360t-908350ddc0b76dd518a024172ef159b60fa491a1ea125e452d73781a793ae1223
IEDL.DBID .~1
ISSN 0020-7403
IngestDate Tue Jul 01 03:06:49 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Material point method
Surface quality
Microstructure
Large-scale molecular dynamics
Grinding
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-908350ddc0b76dd518a024172ef159b60fa491a1ea125e452d73781a793ae1223
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0020740320342910
ParticipantIDs crossref_primary_10_1016_j_ijmecsci_2020_106186
crossref_citationtrail_10_1016_j_ijmecsci_2020_106186
elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2020_106186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of mechanical sciences
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pei, Lu, Lee, Zhang (bib0028) 2009; 4
Henriksson, Nordlund (bib0046) 2009; 79
Grützmacher, Gachot, Eder (bib0010) 2020; 195
Eder, Cihak-Bayr, Bianchi (bib0026) 2016; 119
Malkin, Guo (bib0002) 2008
Plimpton (bib0040) 1995; 117
Holtermann, Schumann, Menzel, Biermann (bib0059) 2013; 7
Spenger, Haas, Cihak-Bayr, Eder, Weiß, Weinzerl (bib0049) 2019; 81
Varga, Leroch, Eder, Ripoll (bib0036) 2017; 376
Groeber, Jackson (bib0042) 2014; 3
Afazov, Ratchev, Segal (bib0051) 2010; 210
Stukowski, Albe (bib0041) 2010; 18
Denkena, Köhler, Kästner (bib0054) 2012; 6
Eder, Cihak-Bayr, Bianchi (bib0034) 2017
Rowe (bib0058) 2013
Zitt U.R. Modellierung und Simulation von Hochleistungsschleifprozessen. 1999. PhD thesis, Univ., Lehrstuhl für Fertigungstechnik und Betriebsorganisation.
Xiao, To, Zhang (bib0053) 2015; 88
Eder, Cihak-Bayr, Gachot, Ripoll (bib0055) 2018; 10
Eder, Bianchi, Cihak-Bayr, Gkagkas (bib0043) 2017; 212
Eder, Cihak-Bayr, Bianchi, Feldbauer, Betz (bib0044) 2017; 9
Duan, Yu, Wang, Xu (bib0057) 2017; 120
Steffan, Haas, Spenger (bib0048) 2017
Johnson, Cook (bib0050) 1985; 21
Rowe (bib0004) 2018; 3
Arrazola, Özel, Umbrello, Davies, Jawahir (bib0001) 2013; 62
Grützmacher, Rammacher, Rathmann, Motz, Mücklich, Suarez (bib0018) 2019; 7
Markopoulos, Karkalos, Papazoglou (bib0025) 2020; 27
Klocke (bib0008) 2018
Eder, Ripoll, Cihak-Bayr, Dini, Gachot (bib0035) 2020; 12
Denkena, Tönshoff (bib0005) 2011
Eder, Cihak-Bayr, Vernes, Betz (bib0027) 2015; 48
Fang, Wu, Liu (bib0017) 2005; 45
Guziewski, Coleman, Weinberger (bib0047) 2019; 180
Khorasani, Yazdi, Safizadeh (bib0020) 2012; 5
Bai, Bai, Tong, Guo (bib0007) 2018; 148
Liu, Xu, Chen, Li, Wang, Yang (bib0006) 2019; 152
Li, Guo, Luo, Fang, Wu, Zhang (bib0032) 2016; 364
Dai, Ding, Xu, Fu, Yu (bib0013) 2017; 113
Brinksmeier, Aurich, Govekar, Heinzel, Hoffmeister, Klocke, Peters, Rentsch, Stephenson, Uhlmann (bib0021) 2006; 55
Li, Yu, Wang, Zhu, Wang (bib0022) 2017; 126
Mendelev, Han, Srolovitz, Ackland, Sun, Asta (bib0045) 2003; 83
Eder, Feldbauer, Bianchi, Cihak-Bayr, Betz, Vernes (bib0052) 2015; 115
Steffens (bib0016) 1983
Varga, Leroch, Eder, Rojacz, Ripoll (bib0037) 2019; 426
Zhong, Shakiba, Adams (bib0031) 2013; 46
Kelchner, Plimpton, Hamilton (bib0056) 1998; 58
Jackson (bib0023) 2020; 2
Zhou, Ding, Wang, Wang, Guo, Liu (bib0011) 2019; 134
Hashimoto, Yamaguchi, Krajnik, Wegener, Chaudhari, Hoffmeister (bib0019) 2016; 65
Wegener, Bleicher, Krajnik, Hoffmeister, Brecher (bib0003) 2017; 66
Malkin, Guo (bib0009) 2007; 56
Meng, Yuan, Xu (bib0029) 2019; 151
Leroch, Eder, Ganzenmüller, Murillo, Ripoll (bib0038) 2018; 262
Agrawal, Raff, Bukkapatnam, Komanduri (bib0030) 2010; 100
Goel, Luo, Agrawal, Reuben (bib0024) 2015; 88
He, Zong, Zhang (bib0014) 2018; 129
Wang, Yu, Wang, Zhang, Zhao, Wen (bib0039) 2019; 153
Li, Liu, Luo, Fang, Liu, Liu (bib0033) 2016; 118
Li, Chen, Xiao, Chen, Qu, Dai (bib0012) 2020; 182
Denkena (10.1016/j.ijmecsci.2020.106186_bib0005) 2011
Stukowski (10.1016/j.ijmecsci.2020.106186_bib0041) 2010; 18
10.1016/j.ijmecsci.2020.106186_bib0015
Grützmacher (10.1016/j.ijmecsci.2020.106186_bib0010) 2020; 195
Zhong (10.1016/j.ijmecsci.2020.106186_bib0031) 2013; 46
Varga (10.1016/j.ijmecsci.2020.106186_bib0036) 2017; 376
Holtermann (10.1016/j.ijmecsci.2020.106186_bib0059) 2013; 7
Rowe (10.1016/j.ijmecsci.2020.106186_bib0004) 2018; 3
Zhou (10.1016/j.ijmecsci.2020.106186_bib0011) 2019; 134
Groeber (10.1016/j.ijmecsci.2020.106186_bib0042) 2014; 3
Meng (10.1016/j.ijmecsci.2020.106186_bib0029) 2019; 151
Eder (10.1016/j.ijmecsci.2020.106186_bib0026) 2016; 119
Bai (10.1016/j.ijmecsci.2020.106186_bib0007) 2018; 148
Duan (10.1016/j.ijmecsci.2020.106186_bib0057) 2017; 120
Khorasani (10.1016/j.ijmecsci.2020.106186_bib0020) 2012; 5
Jackson (10.1016/j.ijmecsci.2020.106186_bib0023) 2020; 2
Wang (10.1016/j.ijmecsci.2020.106186_bib0039) 2019; 153
Eder (10.1016/j.ijmecsci.2020.106186_bib0034) 2017
Brinksmeier (10.1016/j.ijmecsci.2020.106186_bib0021) 2006; 55
Kelchner (10.1016/j.ijmecsci.2020.106186_bib0056) 1998; 58
Eder (10.1016/j.ijmecsci.2020.106186_bib0044) 2017; 9
Denkena (10.1016/j.ijmecsci.2020.106186_bib0054) 2012; 6
Wegener (10.1016/j.ijmecsci.2020.106186_bib0003) 2017; 66
Eder (10.1016/j.ijmecsci.2020.106186_bib0035) 2020; 12
Plimpton (10.1016/j.ijmecsci.2020.106186_bib0040) 1995; 117
Dai (10.1016/j.ijmecsci.2020.106186_bib0013) 2017; 113
Grützmacher (10.1016/j.ijmecsci.2020.106186_bib0018) 2019; 7
Hashimoto (10.1016/j.ijmecsci.2020.106186_bib0019) 2016; 65
Steffens (10.1016/j.ijmecsci.2020.106186_bib0016) 1983
He (10.1016/j.ijmecsci.2020.106186_bib0014) 2018; 129
Malkin (10.1016/j.ijmecsci.2020.106186_bib0002) 2008
Varga (10.1016/j.ijmecsci.2020.106186_bib0037) 2019; 426
Eder (10.1016/j.ijmecsci.2020.106186_bib0027) 2015; 48
Henriksson (10.1016/j.ijmecsci.2020.106186_bib0046) 2009; 79
Pei (10.1016/j.ijmecsci.2020.106186_bib0028) 2009; 4
Li (10.1016/j.ijmecsci.2020.106186_bib0033) 2016; 118
Xiao (10.1016/j.ijmecsci.2020.106186_bib0053) 2015; 88
Malkin (10.1016/j.ijmecsci.2020.106186_bib0009) 2007; 56
Li (10.1016/j.ijmecsci.2020.106186_bib0032) 2016; 364
Markopoulos (10.1016/j.ijmecsci.2020.106186_bib0025) 2020; 27
Liu (10.1016/j.ijmecsci.2020.106186_bib0006) 2019; 152
Fang (10.1016/j.ijmecsci.2020.106186_bib0017) 2005; 45
Steffan (10.1016/j.ijmecsci.2020.106186_bib0048) 2017
Agrawal (10.1016/j.ijmecsci.2020.106186_bib0030) 2010; 100
Goel (10.1016/j.ijmecsci.2020.106186_bib0024) 2015; 88
Guziewski (10.1016/j.ijmecsci.2020.106186_bib0047) 2019; 180
Arrazola (10.1016/j.ijmecsci.2020.106186_bib0001) 2013; 62
Li (10.1016/j.ijmecsci.2020.106186_bib0022) 2017; 126
Mendelev (10.1016/j.ijmecsci.2020.106186_bib0045) 2003; 83
Eder (10.1016/j.ijmecsci.2020.106186_bib0052) 2015; 115
Klocke (10.1016/j.ijmecsci.2020.106186_bib0008) 2018
Afazov (10.1016/j.ijmecsci.2020.106186_bib0051) 2010; 210
Li (10.1016/j.ijmecsci.2020.106186_bib0012) 2020; 182
Eder (10.1016/j.ijmecsci.2020.106186_bib0043) 2017; 212
Spenger (10.1016/j.ijmecsci.2020.106186_bib0049) 2019; 81
Johnson (10.1016/j.ijmecsci.2020.106186_bib0050) 1985; 21
Leroch (10.1016/j.ijmecsci.2020.106186_bib0038) 2018; 262
Eder (10.1016/j.ijmecsci.2020.106186_bib0055) 2018; 10
Rowe (10.1016/j.ijmecsci.2020.106186_bib0058) 2013
References_xml – start-page: 86
  year: 2013
  ident: bib0058
  article-title: Principles of modern grinding technology
  publication-title: William Andrew
– volume: 45
  start-page: 1681
  year: 2005
  end-page: 1686
  ident: bib0017
  article-title: Modelling and experimental investigation on nanometric cutting of monocrystalline silicon
  publication-title: Int J Mach Tools Manuf
– volume: 5
  start-page: 68
  year: 2012
  end-page: 84
  ident: bib0020
  article-title: Analysis of machining parameters effects on surface roughness: a review
  publication-title: Int J Comput Mater Sci Surf Eng
– volume: 115
  start-page: 025502
  year: 2015
  ident: bib0052
  article-title: Applicability of macroscopic wear and friction laws on the atomic length scale
  publication-title: Phys Rev Lett
– volume: 3
  start-page: 5
  year: 2014
  ident: bib0042
  article-title: Dream.3d: a digital representation environment for the analysis of microstructure in 3D
  publication-title: Integrating Materials and Manufacturing Innovation
– volume: 6
  start-page: 107
  year: 2012
  end-page: 115
  ident: bib0054
  article-title: Chip formation in grinding: an experimental study
  publication-title: Prod Eng
– volume: 3
  start-page: 24
  year: 2018
  ident: bib0004
  article-title: Towards high productivity in precision grinding
  publication-title: Inventions
– volume: 2
  start-page: 1172
  year: 2020
  ident: bib0023
  article-title: Recent advances in ultraprecision abrasive machining processes
  publication-title: SN Applied Sciences
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib0040
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
– volume: 210
  start-page: 2154
  year: 2010
  end-page: 2162
  ident: bib0051
  article-title: Modelling and simulation of micro-milling cutting forces
  publication-title: J Mater Process Technol
– volume: 126
  start-page: 319
  year: 2017
  end-page: 339
  ident: bib0022
  article-title: Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions
  publication-title: Int J Mech Sci
– volume: 88
  start-page: 214
  year: 2015
  end-page: 222
  ident: bib0053
  article-title: Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide
  publication-title: Int J Mach Tools Manuf
– volume: 151
  start-page: 724
  year: 2019
  end-page: 732
  ident: bib0029
  article-title: Study on strain rate and heat effect on the removal mechanism of sic during nano-scratching process by molecular dynamics simulation
  publication-title: Int J Mech Sci
– volume: 7
  start-page: 637
  year: 2019
  end-page: 650
  ident: bib0018
  article-title: Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals
  publication-title: Friction
– volume: 21
  start-page: 31
  year: 1985
  end-page: 48
  ident: bib0050
  article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
  publication-title: Eng Fract Mech
– volume: 56
  start-page: 760
  year: 2007
  end-page: 782
  ident: bib0009
  article-title: Thermal analysis of grinding
  publication-title: CIRP Ann
– volume: 364
  start-page: 190
  year: 2016
  end-page: 200
  ident: bib0032
  article-title: Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations
  publication-title: Appl Surf Sci
– volume: 129
  start-page: 15
  year: 2018
  end-page: 26
  ident: bib0014
  article-title: Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art
  publication-title: Int J Mach Tools Manuf
– volume: 79
  start-page: 144107
  year: 2009
  ident: bib0046
  article-title: Simulations of cementite: an analytical potential for the fe-c system
  publication-title: Physical Review B
– volume: 66
  start-page: 779
  year: 2017
  end-page: 802
  ident: bib0003
  article-title: Recent developments in grinding machines
  publication-title: CIRP Ann
– year: 1983
  ident: bib0016
  article-title: Thermomechanik des Schleifens
– volume: 376
  start-page: 1122
  year: 2017
  end-page: 1129
  ident: bib0036
  article-title: Meshless microscale simulation of wear mechanisms in scratch testing
  publication-title: Wear
– volume: 65
  start-page: 597
  year: 2016
  end-page: 620
  ident: bib0019
  article-title: Abrasive fine-finishing technology
  publication-title: CIRP Ann
– volume: 7
  start-page: 251
  year: 2013
  end-page: 263
  ident: bib0059
  article-title: Modelling, simulation and experimental investigation of chip formation in internal traverse grinding
  publication-title: Prod Eng
– volume: 113
  start-page: 49
  year: 2017
  end-page: 58
  ident: bib0013
  article-title: Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain
  publication-title: Int J Mach Tools Manuf
– volume: 153
  start-page: 131
  year: 2019
  end-page: 142
  ident: bib0039
  article-title: Grinding temperature field prediction by meshless finite block method with double infinite element
  publication-title: Int J Mech Sci
– volume: 18
  start-page: 085001
  year: 2010
  ident: bib0041
  article-title: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data
  publication-title: Modell Simul Mater Sci Eng
– volume: 134
  start-page: 417
  year: 2019
  end-page: 426
  ident: bib0011
  publication-title: Tribol Int
– volume: 58
  start-page: 11085
  year: 1998
  end-page: 11088
  ident: bib0056
  article-title: Dislocation nucleation and defect structure during surface indentation
  publication-title: Phys Rev B
– volume: 81
  start-page: 476
  year: 2019
  end-page: 481
  ident: bib0049
  article-title: RPM-Synchronous Grinding — investigation and comparison of surface topography of Synchro-Finish manufactured workpieces
  publication-title: Procedia CIRP
– volume: 62
  start-page: 695
  year: 2013
  end-page: 718
  ident: bib0001
  article-title: Recent advances in modelling of metal machining processes
  publication-title: CIRP Ann
– volume: 426
  start-page: 370
  year: 2019
  end-page: 377
  ident: bib0037
  article-title: Influence of velocity on high-temperature fundamental abrasive contact: a numerical and experimental approach
  publication-title: Wear
– volume: 55
  start-page: 667
  year: 2006
  end-page: 696
  ident: bib0021
  article-title: Advances in modeling and simulation of grinding processes
  publication-title: CIRP Annals-Manufacturing Technology
– volume: 118
  start-page: 66
  year: 2016
  end-page: 76
  ident: bib0033
  article-title: A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates
  publication-title: Comput Mater Sci
– volume: 4
  start-page: 444
  year: 2009
  end-page: 451
  ident: bib0028
  article-title: Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations
  publication-title: Nanoscale Res Lett
– year: 2011
  ident: bib0005
  article-title: Spanen: Grundlagen
– volume: 180
  start-page: 287
  year: 2019
  end-page: 300
  ident: bib0047
  article-title: Atomistic investigation into interfacial effects on the plastic response and deformation mechanisms of the pearlitic microstructure
  publication-title: Acta Mater
– volume: 119
  start-page: 012009
  year: 2016
  ident: bib0026
  article-title: Single-asperity contributions to multi-asperity wear simulated with molecular dynamics
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 9
  start-page: 13713
  year: 2017
  end-page: 13725
  ident: bib0044
  article-title: Thermostat influence on the structural development and material removal during abrasion of nanocrystalline ferrite
  publication-title: ACS Applied Materials & Interfaces
– volume: 182
  start-page: 105737
  year: 2020
  ident: bib0012
  article-title: Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass
  publication-title: Int J Mech Sci
– year: 2018
  ident: bib0008
  article-title: Fertigungsverfahren 2: Zerspanung mit geometrisch unbestimmter Schneide
– year: 2008
  ident: bib0002
  article-title: Grinding technology: theory and application of machining with abrasives
– volume: 12
  start-page: 32197
  year: 2020
  end-page: 32208
  ident: bib0035
  article-title: Unraveling and mapping the mechanisms for near-surface microstructure evolution in cuni alloys under sliding
  publication-title: ACS Applied Materials & Interfaces
– volume: 10
  start-page: 24288
  year: 2018
  end-page: 24301
  ident: bib0055
  article-title: Interfacial microstructure evolution due to strain path changes in sliding contacts
  publication-title: ACS Applied Materials & Interfaces
– volume: 148
  start-page: 64
  year: 2018
  end-page: 72
  ident: bib0007
  article-title: Theoretical model for subsurface microstructure prediction in micro-machining ti-6al-4v alloy–experimental validation
  publication-title: Int J Mech Sci
– start-page: 141
  year: 2017
  ident: bib0034
  article-title: Large-scale molecular dynamics simulations of nanomachining
  publication-title: Advanced Machining Processes: Innovative Modeling Techniques
– volume: 195
  start-page: 109053
  year: 2020
  ident: bib0010
  article-title: Visualization of microstructural mechanisms in nanocrystalline ferrite during grinding
  publication-title: Materials & Design
– year: 2017
  ident: bib0048
  article-title: RPM-Synchronous Grinding — Control concepts to improve surface qualities for a highly efficient non-circular grinding approach
  publication-title: In ASME 2017 International Mechanical Engineering Congress and Exposition, page V002T02A009 American Society of Mechanical Engineers
– volume: 120
  start-page: 49
  year: 2017
  end-page: 60
  ident: bib0057
  article-title: Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the fem and sph
  publication-title: Int J Mach Tools Manuf
– volume: 46
  start-page: 055307
  year: 2013
  ident: bib0031
  article-title: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate
  publication-title: J Phys D Appl Phys
– volume: 27
  start-page: 831
  year: 2020
  end-page: 853
  ident: bib0025
  article-title: Meshless methods for the simulation of machining and micro-machining: a review
  publication-title: Arch Comput Methods Eng
– volume: 212
  start-page: 100
  year: 2017
  end-page: 112
  ident: bib0043
  article-title: Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces
  publication-title: Comput Phys Commun
– volume: 262
  start-page: 449
  year: 2018
  end-page: 458
  ident: bib0038
  article-title: Development and validation of a meshless 3d material point method for simulating the micro-milling process
  publication-title: J Mater Process Technol
– volume: 100
  start-page: 89
  year: 2010
  end-page: 104
  ident: bib0030
  article-title: Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive
  publication-title: Appl Phys A
– volume: 83
  start-page: 3977
  year: 2003
  end-page: 3994
  ident: bib0045
  article-title: Development of new interatomic potentials appropriate for crystalline and liquid iron
  publication-title: Philos Mag
– volume: 88
  start-page: 131
  year: 2015
  end-page: 164
  ident: bib0024
  article-title: Diamond machining of silicon: a review of advances in molecular dynamics simulation
  publication-title: Int J Mach Tools Manuf
– reference: Zitt U.R. Modellierung und Simulation von Hochleistungsschleifprozessen. 1999. PhD thesis, Univ., Lehrstuhl für Fertigungstechnik und Betriebsorganisation.
– volume: 152
  start-page: 378
  year: 2019
  end-page: 383
  ident: bib0006
  article-title: In situ experimental study on material removal behaviour of single-crystal silicon in nanocutting
  publication-title: Int J Mech Sci
– volume: 48
  start-page: 465308
  year: 2015
  ident: bib0027
  article-title: Evolution of topography and material removal during nanoscale grinding
  publication-title: J Phys D Appl Phys
– volume: 46
  start-page: 055307
  issue: 5
  year: 2013
  ident: 10.1016/j.ijmecsci.2020.106186_bib0031
  article-title: Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/46/5/055307
– volume: 18
  start-page: 085001
  issue: 8
  year: 2010
  ident: 10.1016/j.ijmecsci.2020.106186_bib0041
  article-title: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data
  publication-title: Modell Simul Mater Sci Eng
  doi: 10.1088/0965-0393/18/8/085001
– volume: 81
  start-page: 476
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0049
  article-title: RPM-Synchronous Grinding — investigation and comparison of surface topography of Synchro-Finish manufactured workpieces
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.122
– volume: 3
  start-page: 24
  issue: 2
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.106186_bib0004
  article-title: Towards high productivity in precision grinding
  publication-title: Inventions
  doi: 10.3390/inventions3020024
– volume: 180
  start-page: 287
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0047
  article-title: Atomistic investigation into interfacial effects on the plastic response and deformation mechanisms of the pearlitic microstructure
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.09.013
– volume: 262
  start-page: 449
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.106186_bib0038
  article-title: Development and validation of a meshless 3d material point method for simulating the micro-milling process
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.07.013
– volume: 3
  start-page: 5
  issue: 1
  year: 2014
  ident: 10.1016/j.ijmecsci.2020.106186_bib0042
  article-title: Dream.3d: a digital representation environment for the analysis of microstructure in 3D
  publication-title: Integrating Materials and Manufacturing Innovation
  doi: 10.1186/2193-9772-3-5
– volume: 152
  start-page: 378
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0006
  article-title: In situ experimental study on material removal behaviour of single-crystal silicon in nanocutting
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.01.015
– volume: 100
  start-page: 89
  issue: 1
  year: 2010
  ident: 10.1016/j.ijmecsci.2020.106186_bib0030
  article-title: Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive
  publication-title: Appl Phys A
  doi: 10.1007/s00339-010-5570-y
– volume: 66
  start-page: 779
  issue: 2
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0003
  article-title: Recent developments in grinding machines
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2017.05.006
– volume: 48
  start-page: 465308
  year: 2015
  ident: 10.1016/j.ijmecsci.2020.106186_bib0027
  article-title: Evolution of topography and material removal during nanoscale grinding
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/48/46/465308
– volume: 212
  start-page: 100
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0043
  article-title: Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2016.10.017
– volume: 10
  start-page: 24288
  issue: 28
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.106186_bib0055
  article-title: Interfacial microstructure evolution due to strain path changes in sliding contacts
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.8b06894
– volume: 58
  start-page: 11085
  issue: 17
  year: 1998
  ident: 10.1016/j.ijmecsci.2020.106186_bib0056
  article-title: Dislocation nucleation and defect structure during surface indentation
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.58.11085
– volume: 5
  start-page: 68
  issue: 1
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.106186_bib0020
  article-title: Analysis of machining parameters effects on surface roughness: a review
  publication-title: Int J Comput Mater Sci Surf Eng
– volume: 7
  start-page: 251
  issue: 2–3
  year: 2013
  ident: 10.1016/j.ijmecsci.2020.106186_bib0059
  article-title: Modelling, simulation and experimental investigation of chip formation in internal traverse grinding
  publication-title: Prod Eng
  doi: 10.1007/s11740-013-0449-3
– volume: 113
  start-page: 49
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0013
  article-title: Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2016.12.001
– volume: 2
  start-page: 1172
  year: 2020
  ident: 10.1016/j.ijmecsci.2020.106186_bib0023
  article-title: Recent advances in ultraprecision abrasive machining processes
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-2982-y
– start-page: 141
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0034
  article-title: Large-scale molecular dynamics simulations of nanomachining
  publication-title: Advanced Machining Processes: Innovative Modeling Techniques
  doi: 10.1201/b21863-6
– volume: 120
  start-page: 49
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0057
  article-title: Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the fem and sph
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2017.04.012
– volume: 27
  start-page: 831
  issue: 3
  year: 2020
  ident: 10.1016/j.ijmecsci.2020.106186_bib0025
  article-title: Meshless methods for the simulation of machining and micro-machining: a review
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09333-z
– year: 2008
  ident: 10.1016/j.ijmecsci.2020.106186_bib0002
– year: 2011
  ident: 10.1016/j.ijmecsci.2020.106186_bib0005
– volume: 7
  start-page: 637
  issue: 6
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0018
  article-title: Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals
  publication-title: Friction
  doi: 10.1007/s40544-019-0259-5
– volume: 9
  start-page: 13713
  issue: 15
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0044
  article-title: Thermostat influence on the structural development and material removal during abrasion of nanocrystalline ferrite
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b01237
– ident: 10.1016/j.ijmecsci.2020.106186_bib0015
– volume: 62
  start-page: 695
  issue: 2
  year: 2013
  ident: 10.1016/j.ijmecsci.2020.106186_bib0001
  article-title: Recent advances in modelling of metal machining processes
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2013.05.006
– volume: 148
  start-page: 64
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.106186_bib0007
  article-title: Theoretical model for subsurface microstructure prediction in micro-machining ti-6al-4v alloy–experimental validation
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.08.014
– year: 2018
  ident: 10.1016/j.ijmecsci.2020.106186_bib0008
– volume: 55
  start-page: 667
  issue: 2
  year: 2006
  ident: 10.1016/j.ijmecsci.2020.106186_bib0021
  article-title: Advances in modeling and simulation of grinding processes
  publication-title: CIRP Annals-Manufacturing Technology
  doi: 10.1016/j.cirp.2006.10.003
– volume: 182
  start-page: 105737
  year: 2020
  ident: 10.1016/j.ijmecsci.2020.106186_bib0012
  article-title: Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2020.105737
– volume: 56
  start-page: 760
  issue: 2
  year: 2007
  ident: 10.1016/j.ijmecsci.2020.106186_bib0009
  article-title: Thermal analysis of grinding
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2007.10.005
– year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0048
  article-title: RPM-Synchronous Grinding — Control concepts to improve surface qualities for a highly efficient non-circular grinding approach
  publication-title: In ASME 2017 International Mechanical Engineering Congress and Exposition, page V002T02A009 American Society of Mechanical Engineers
– volume: 115
  start-page: 025502
  year: 2015
  ident: 10.1016/j.ijmecsci.2020.106186_bib0052
  article-title: Applicability of macroscopic wear and friction laws on the atomic length scale
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.115.025502
– volume: 151
  start-page: 724
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0029
  article-title: Study on strain rate and heat effect on the removal mechanism of sic during nano-scratching process by molecular dynamics simulation
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.12.022
– year: 1983
  ident: 10.1016/j.ijmecsci.2020.106186_bib0016
– volume: 79
  start-page: 144107
  issue: 14
  year: 2009
  ident: 10.1016/j.ijmecsci.2020.106186_bib0046
  article-title: Simulations of cementite: an analytical potential for the fe-c system
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.79.144107
– volume: 195
  start-page: 109053
  year: 2020
  ident: 10.1016/j.ijmecsci.2020.106186_bib0010
  article-title: Visualization of microstructural mechanisms in nanocrystalline ferrite during grinding
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2020.109053
– volume: 153
  start-page: 131
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0039
  article-title: Grinding temperature field prediction by meshless finite block method with double infinite element
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.01.037
– volume: 21
  start-page: 31
  issue: 1
  year: 1985
  ident: 10.1016/j.ijmecsci.2020.106186_bib0050
  article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90052-9
– volume: 83
  start-page: 3977
  year: 2003
  ident: 10.1016/j.ijmecsci.2020.106186_bib0045
  article-title: Development of new interatomic potentials appropriate for crystalline and liquid iron
  publication-title: Philos Mag
  doi: 10.1080/14786430310001613264
– volume: 118
  start-page: 66
  year: 2016
  ident: 10.1016/j.ijmecsci.2020.106186_bib0033
  article-title: A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2016.03.008
– volume: 4
  start-page: 444
  issue: 5
  year: 2009
  ident: 10.1016/j.ijmecsci.2020.106186_bib0028
  article-title: Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations
  publication-title: Nanoscale Res Lett
  doi: 10.1007/s11671-009-9268-z
– volume: 126
  start-page: 319
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0022
  article-title: Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2016.11.016
– volume: 129
  start-page: 15
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.106186_bib0014
  article-title: Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2018.02.001
– volume: 88
  start-page: 214
  year: 2015
  ident: 10.1016/j.ijmecsci.2020.106186_bib0053
  article-title: Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2014.10.007
– volume: 45
  start-page: 1681
  issue: 15
  year: 2005
  ident: 10.1016/j.ijmecsci.2020.106186_bib0017
  article-title: Modelling and experimental investigation on nanometric cutting of monocrystalline silicon
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2005.03.010
– volume: 364
  start-page: 190
  year: 2016
  ident: 10.1016/j.ijmecsci.2020.106186_bib0032
  article-title: Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.12.145
– volume: 65
  start-page: 597
  issue: 2
  year: 2016
  ident: 10.1016/j.ijmecsci.2020.106186_bib0019
  article-title: Abrasive fine-finishing technology
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2016.06.003
– volume: 426
  start-page: 370
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0037
  article-title: Influence of velocity on high-temperature fundamental abrasive contact: a numerical and experimental approach
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.013
– volume: 119
  start-page: 012009
  issue: 1
  year: 2016
  ident: 10.1016/j.ijmecsci.2020.106186_bib0026
  article-title: Single-asperity contributions to multi-asperity wear simulated with molecular dynamics
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/119/1/012009
– volume: 376
  start-page: 1122
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.106186_bib0036
  article-title: Meshless microscale simulation of wear mechanisms in scratch testing
  publication-title: Wear
  doi: 10.1016/j.wear.2016.11.023
– volume: 134
  start-page: 417
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.106186_bib0011
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.02.004
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1016/j.ijmecsci.2020.106186_bib0040
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1039
– volume: 6
  start-page: 107
  issue: 2
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.106186_bib0054
  article-title: Chip formation in grinding: an experimental study
  publication-title: Prod Eng
  doi: 10.1007/s11740-011-0360-8
– volume: 210
  start-page: 2154
  issue: 15
  year: 2010
  ident: 10.1016/j.ijmecsci.2020.106186_bib0051
  article-title: Modelling and simulation of micro-milling cutting forces
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2010.07.033
– volume: 88
  start-page: 131
  year: 2015
  ident: 10.1016/j.ijmecsci.2020.106186_bib0024
  article-title: Diamond machining of silicon: a review of advances in molecular dynamics simulation
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2014.09.013
– volume: 12
  start-page: 32197
  issue: 28
  year: 2020
  ident: 10.1016/j.ijmecsci.2020.106186_bib0035
  article-title: Unraveling and mapping the mechanisms for near-surface microstructure evolution in cuni alloys under sliding
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c09302
– start-page: 86
  year: 2013
  ident: 10.1016/j.ijmecsci.2020.106186_bib0058
  article-title: Principles of modern grinding technology
  publication-title: William Andrew
SSID ssj0017053
Score 2.435589
Snippet •Multiple approaches to modeling a grinding process with meshless simulation methods.•Length scales range from grains of nanocrystalline steel to 200...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106186
SubjectTerms Grinding
Large-scale molecular dynamics
Material point method
Microstructure
Surface quality
Title A multiscale simulation approach to grinding ferrous surfaces for process optimization
URI https://dx.doi.org/10.1016/j.ijmecsci.2020.106186
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La4NAEB5CemkPpU_6DHvo1UTXVeMxhIa0hZyakpvsumMxNA-Mufa3d1bXkEIhh14XR2QcZ77B75sBeCIQgFIodDQiNShSeE6sdORQbfIlV1yFacW2mITjqXidBbMWDBstjKFV2txf5_QqW9uTnvVmb53nRuPLqf6ZBeA-JdVKZiVEZKK8-72jeZhpMfVfZmqTzNV7KuF5N58vMKWbU5_IzaEZHv93gdorOqMzOLVokQ3qBzqHFi4v4GRvhuAlfAxYRQrckLORbfKF3cfFmmnhrFyxzyKv1Cssw6KgXp9ttkVmyFiMMCtb12IBtqL0sbC6zCuYjp7fh2PHLktwUj90Syc2WMrVOnVVFGodeH1J5ZfgCWaEWFToZlLEnvRQEqRBEXAd-VHfk_R9SvQIJFxDe7la4g0wgoh0KgLsZ6lwFY8x4lzLICNsEEkhbyFoPJSkdpK4WWjxlTSUsXnSeDYxnk1qz95Cb2e3rmdpHLSImxeQ_IqKhBL-Adu7f9jewzE33BXD2wseoF0WW3wk8FGqThVdHTgavLyNJz9rc9oU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QPKgH4zPicw96LLTbbUsPHohKQJATGG51205NiTzSQowX_5R_0Nl2SzAx4WC4bjJJd3Yy3zfpNzOE3CAJAMF90EIALFAENzTXDx0NsckUzGe-HWRqi57dGvCnoTUske-iF0bKKlXuz3N6lq3VSU15szaLY9njyxD_5AJwE5OqoStlZQc-P7BuS-_aD_jIt4w1H_v3LU2tFtAC09bnmiuZhx6Gge47dhhaRl0gWCGYQ4T47tt6JLhrCAMEEgDgFgsd06kbAqNZgMHktAPM-1sc04Vcm1D9WupK5Hia_Lc21mXy81bakkfVeDSGAG-DhSmTh3Ja_d-IuIJyzX2yp-gpbeQeOCAlmByS3ZWhhUfkpUEzFWKKrws0jcdqARgtxpPT-ZS-JXHWLkMjSJLpIqXpIomk-osiSaazvDuBTjFfjVUj6DEZbMSFJ6Q8mU7glFDkpHjKLahHAdd95oLDWCisCMmII7ioEKvwkBeo0eVyg8a7V2jURl7hWU961ss9WyG1pd0sH96x1sItHsD7FYYeIswa27N_2F6T7Vb_uet1273OOdlhUjgjRYPWBSnPkwVcIvOZ-1dZpFHyuunQ_gFmIxPV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+simulation+approach+to+grinding+ferrous+surfaces+for+process+optimization&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Eder%2C+S.J.&rft.au=Leroch%2C+S.&rft.au=Gr%C3%BCtzmacher%2C+P.G.&rft.au=Spenger%2C+T.&rft.date=2021-03-15&rft.pub=Elsevier+Ltd&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=194&rft_id=info:doi/10.1016%2Fj.ijmecsci.2020.106186&rft.externalDocID=S0020740320342910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon