Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: A lattice Boltzmann study

A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under different wall wettability and temperature conditions. We consider the mutual influence of the temperature field and flow field to understand the e...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 276; p. 114261
Main Authors He, Xiaolong, Song, Xiang, Peng, Haonan, Huang, Wei, Zhang, Jianmin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under different wall wettability and temperature conditions. We consider the mutual influence of the temperature field and flow field to understand the effect of the wall temperature on the dynamic contact angle. The wettability of the wall exerts a great influence on the bubble morphology, with higher expansion velocities observed on non-wettable walls during the growth stage. The contact point is pinned due to the hysteresis effect, leading to a weaker collapse intensity on non-wettable walls. The present model obtains the thermal delay phenomenon caused by the supply of latent heat from the surrounding liquid to the bubble. Additionally, the efficiency of the temperature increase through the phase change is lower than that of wall cooling from a cooled wall, resulting in a low temperature at the contact point. Finally, for the wall-cooling processes, wettable walls reduce the deterioration of heat transfer efficiency during the growth stage and enhance the heat transfer efficiency during bubble collapse. •The growth and collapse of the attached-wall cavitation bubble are investigated.•The dynamic contact angle evolution process with different wall wettability are proposed.•The wall wettability effect on heat flux characteristics are analyzed.
AbstractList A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under different wall wettability and temperature conditions. We consider the mutual influence of the temperature field and flow field to understand the effect of the wall temperature on the dynamic contact angle. The wettability of the wall exerts a great influence on the bubble morphology, with higher expansion velocities observed on non-wettable walls during the growth stage. The contact point is pinned due to the hysteresis effect, leading to a weaker collapse intensity on non-wettable walls. The present model obtains the thermal delay phenomenon caused by the supply of latent heat from the surrounding liquid to the bubble. Additionally, the efficiency of the temperature increase through the phase change is lower than that of wall cooling from a cooled wall, resulting in a low temperature at the contact point. Finally, for the wall-cooling processes, wettable walls reduce the deterioration of heat transfer efficiency during the growth stage and enhance the heat transfer efficiency during bubble collapse. •The growth and collapse of the attached-wall cavitation bubble are investigated.•The dynamic contact angle evolution process with different wall wettability are proposed.•The wall wettability effect on heat flux characteristics are analyzed.
ArticleNumber 114261
Author He, Xiaolong
Song, Xiang
Huang, Wei
Zhang, Jianmin
Peng, Haonan
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: He
  fullname: He, Xiaolong
  organization: Chongqing Southwest Research Institute for Water Transport Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
– sequence: 2
  givenname: Xiang
  surname: Song
  fullname: Song, Xiang
  organization: School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
– sequence: 3
  givenname: Haonan
  orcidid: 0000-0003-1988-2026
  surname: Peng
  fullname: Peng, Haonan
  email: haonan.peng@psi.ch
  organization: Laboratory for Waste Management, Paul Scherrer Institute, CH, 5232, Villigen PSI, Switzerland
– sequence: 4
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
– sequence: 5
  givenname: Jianmin
  orcidid: 0000-0002-9154-231X
  surname: Zhang
  fullname: Zhang, Jianmin
  email: zhangjianmin@scu.edu.cn
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
BookMark eNqFkM1OAyEUhYnRxFp9BcMLTAVmBmdc-RP_EhM3uiZ34NLSIBig1voavrCj1bWruzj3Ozn5DshuiAEJOeZsxhmXJ8tZ1AgBw3wmmKhnnDdC8h0y4d1pXbWi7XbJhDHRVx3j3T45yHnJGJOS1RPyeYdQqPWrd6oXkEAXTC4XpzM1q-TCnM5TXJcFhWCojt7Da0YaLV2D9xWUAnqBYwJvrkBxMdBhNQweM127kTLOWkwYys8_XeMIDM67sjmjF9SPvNNIL6MvHy8QAs1lZTaHZM-Cz3j0e6fk-eb66equeni8vb-6eKh0LVmpelaDbLAVvWwaI3gtOALTXdvYXoqWAVjbNbZl2tQN9DDwtjW8B2ntcCrQ1FMit706xZwTWvWa3AukjeJMfatVS_WnVn2rVVu1I3i-BXFc9-YwqawdBo3GJdRFmej-q_gCL5yLbg
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_116720
crossref_primary_10_3934_dcdss_2023156
crossref_primary_10_1016_j_euromechflu_2023_12_014
crossref_primary_10_1063_5_0169239
crossref_primary_10_1063_5_0161289
Cites_doi 10.1063/1.4990876
10.1016/j.ijheatmasstransfer.2003.11.033
10.1103/PhysRevLett.96.224501
10.1016/j.csite.2022.102060
10.1007/s11630-013-0635-9
10.1103/PhysRevLett.98.254501
10.1016/j.heliyon.2022.e12636
10.1103/PhysRevE.96.063303
10.1016/S0017-9310(99)00005-8
10.1016/j.ijheatmasstransfer.2019.119136
10.1063/5.0099989
10.1146/annurev.fl.19.010187.000531
10.1088/0034-4885/62/6/203
10.1016/j.ijheatmasstransfer.2014.07.050
10.1016/j.applthermaleng.2008.09.015
10.1063/1.2187070
10.1103/PhysRevE.70.056310
10.1016/j.ultsonch.2015.04.026
10.1063/5.0005048
10.1016/j.pecs.2015.10.001
10.1016/j.icheatmasstransfer.2022.105988
10.1088/0953-8984/17/45/054
10.1017/jfm.2013.525
10.1016/j.ijheatmasstransfer.2012.04.037
10.1016/j.ijmultiphaseflow.2018.10.010
10.1016/j.compfluid.2020.104817
10.4208/cicp.291011.270112s
10.1098/rsfs.2015.0022
10.1103/PhysRevE.90.053301
10.1103/PhysRevE.49.2941
10.1115/1.1883238
10.1103/PhysRevE.47.1815
10.1115/1.3662286
10.1115/1.2819150
10.1103/PhysRevE.82.046708
10.1016/j.ijmultiphaseflow.2017.04.004
10.1063/1.5142243
10.1016/j.ijmultiphaseflow.2016.12.007
10.1103/PhysRevE.98.023305
10.1063/1.2396922
10.1016/j.compfluid.2022.105771
10.1016/j.icheatmasstransfer.2022.106529
10.1017/S0022112098008738
10.1016/j.oceaneng.2022.113058
10.1016/j.wear.2018.01.003
10.1016/S1001-6058(16)60638-8
10.1038/428819a
10.1016/j.ultsonch.2019.104873
10.1103/PhysRevE.87.053301
10.1103/PhysRevE.102.063306
10.1016/j.compfluid.2012.07.020
10.1016/j.ijheatmasstransfer.2019.03.096
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2023.114261
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2023_114261
S0029801823006455
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ACKIV
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
WUQ
ID FETCH-LOGICAL-c360t-903a64e529644d21321ea0c854f96250aaff84f50cd34a9ab155d19a6ffb72ed3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Thu Sep 26 15:45:03 EDT 2024
Fri Feb 23 02:36:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wall temperature
Wall wettability
Lattice Boltzmann method
Wall-attached cavitation bubble
Heat flux
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-903a64e529644d21321ea0c854f96250aaff84f50cd34a9ab155d19a6ffb72ed3
ORCID 0000-0003-1988-2026
0000-0002-9154-231X
OpenAccessLink https://doi.org/10.1016/j.oceaneng.2023.114261
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2023_114261
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_114261
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng, Tian, Li (bib41) 2018; 98
Liu, Cai, Huai (bib37) 2014; 78
Peng, Zhang, He (bib45) 2021; 217
Peng, Tian, Li (bib44) 2020; 149
Kim, Kim, Kang (bib29) 2004; 47
Kyriazis, Koukouvinis, Gavaises (bib30) 2017; 93
Li, Zhou, Yan (bib35) 2017; 96
Li, Luo, Kang (bib34) 2016; 52
Yang, He, Peng (bib54) 2022; 8
Huang, Sukop, Lu (bib28) 2015
Brennen (bib7) 1995
Peng, He, Zhang (bib43) 2020; 10
Gong, Cheng (bib19) 2012; 55
Abu-Bakr, Kanagawa, Abu-Nab (bib1) 2022; 34
Liu, Cai, Li (bib36) 2013; 22
Luo, Ji, Tsujimoto (bib38) 2016; 28
Yu, Fan (bib56) 2010; 82
He, Yang, Peng (bib22) 2021
Yuan, Schaefer (bib57) 2006; 18
Peng, Tian, Li (bib42) 2019; 137
He, Zhang, Yang (bib20) 2020; 102
Peng, He, Peng (bib46) 2022; 34
Shan, Chen (bib49) 1993; 47
Wang, Peng, He (bib52) 2022
He, Peng, Zhang (bib23) 2022; 266
Yuan, Peng, He (bib58) 2021; 15
He, Zhang, Xu (bib21) 2020; 10
Dular, Petkovšek (bib14) 2018; 400–401
Li, Luo, Li (bib32) 2013; 87
Fruman, Reboud, Stutz (bib17) 1999; 42
Dular, Coutier-Delgosha (bib13) 2013; 736
Chahine, Kapahi, Choi (bib11) 2016; 29
Ghahramani, Arabnejad, Bensow (bib18) 2019; 111
Shan, Chen (bib50) 1994; 49
He, Peng, Zhang (bib24) 2023; 140
Hosangadi, Ahuja (bib26) 2005; 127
Yang, Shan, Su (bib55) 2022; 134
Bremond, Arora, Dammer (bib5) 2006; 18
Ezzatneshan (bib15) 2017; 29
Hsiao, Ma, Chahine (bib27) 2017; 90
Blake, Gibson (bib3) 1987; 19
Bremond, Arora, Ohl (bib4) 2005; 17
Li, Luo, Kang (bib33) 2014; 90
Chahine, Hsiao, Raju (bib10) 2014
Zwaan, Le Gac, Tsuji (bib60) 2007; 98
Rowlinson, Widom (bib48) 1982
Zhang, Zhang (bib59) 2004; 70
He, Peng, Zhang (bib25) 2023; 252
Brennen (bib8) 2015; 5
Lauer, Hu, Hickel (bib31) 2012; 69
Cai, Huai, Yan (bib9) 2009; 29
Philipp, Lauterborn (bib47) 1998; 361
Sun (bib51) 2005
Bibette, Calderon, Poulin (bib2) 1999; 62
Patek, Korff, Caldwell (bib40) 2004; 428
Bremond, Arora, Ohl (bib6) 2006; 96
Naude, Ellis (bib39) 1961; 83
Deshpande, Feng, Merkle (bib12) 1997; 119
Falcucci, Ubertini, Bella (bib16) 2013; 13
Yang, Shan, Kan (bib53) 2020; 62
Peng (10.1016/j.oceaneng.2023.114261_bib41) 2018; 98
Bremond (10.1016/j.oceaneng.2023.114261_bib6) 2006; 96
Huang (10.1016/j.oceaneng.2023.114261_bib28) 2015
Dular (10.1016/j.oceaneng.2023.114261_bib14) 2018; 400–401
Liu (10.1016/j.oceaneng.2023.114261_bib36) 2013; 22
Yuan (10.1016/j.oceaneng.2023.114261_bib57) 2006; 18
Dular (10.1016/j.oceaneng.2023.114261_bib13) 2013; 736
Ezzatneshan (10.1016/j.oceaneng.2023.114261_bib15) 2017; 29
Cai (10.1016/j.oceaneng.2023.114261_bib9) 2009; 29
Yang (10.1016/j.oceaneng.2023.114261_bib55) 2022; 134
He (10.1016/j.oceaneng.2023.114261_bib23) 2022; 266
Li (10.1016/j.oceaneng.2023.114261_bib34) 2016; 52
Lauer (10.1016/j.oceaneng.2023.114261_bib31) 2012; 69
Naude (10.1016/j.oceaneng.2023.114261_bib39) 1961; 83
Wang (10.1016/j.oceaneng.2023.114261_bib52) 2022
Yuan (10.1016/j.oceaneng.2023.114261_bib58) 2021; 15
Hosangadi (10.1016/j.oceaneng.2023.114261_bib26) 2005; 127
Falcucci (10.1016/j.oceaneng.2023.114261_bib16) 2013; 13
Fruman (10.1016/j.oceaneng.2023.114261_bib17) 1999; 42
Yu (10.1016/j.oceaneng.2023.114261_bib56) 2010; 82
Peng (10.1016/j.oceaneng.2023.114261_bib44) 2020; 149
He (10.1016/j.oceaneng.2023.114261_bib21) 2020; 10
He (10.1016/j.oceaneng.2023.114261_bib22) 2021
Abu-Bakr (10.1016/j.oceaneng.2023.114261_bib1) 2022; 34
Li (10.1016/j.oceaneng.2023.114261_bib35) 2017; 96
Deshpande (10.1016/j.oceaneng.2023.114261_bib12) 1997; 119
Shan (10.1016/j.oceaneng.2023.114261_bib50) 1994; 49
He (10.1016/j.oceaneng.2023.114261_bib24) 2023; 140
Hsiao (10.1016/j.oceaneng.2023.114261_bib27) 2017; 90
Bremond (10.1016/j.oceaneng.2023.114261_bib4) 2005; 17
Philipp (10.1016/j.oceaneng.2023.114261_bib47) 1998; 361
Brennen (10.1016/j.oceaneng.2023.114261_bib7) 1995
Zhang (10.1016/j.oceaneng.2023.114261_bib59) 2004; 70
He (10.1016/j.oceaneng.2023.114261_bib20) 2020; 102
Chahine (10.1016/j.oceaneng.2023.114261_bib11) 2016; 29
Luo (10.1016/j.oceaneng.2023.114261_bib38) 2016; 28
Rowlinson (10.1016/j.oceaneng.2023.114261_bib48) 1982
Brennen (10.1016/j.oceaneng.2023.114261_bib8) 2015; 5
Zwaan (10.1016/j.oceaneng.2023.114261_bib60) 2007; 98
Kim (10.1016/j.oceaneng.2023.114261_bib29) 2004; 47
Li (10.1016/j.oceaneng.2023.114261_bib33) 2014; 90
Peng (10.1016/j.oceaneng.2023.114261_bib46) 2022; 34
Yang (10.1016/j.oceaneng.2023.114261_bib53) 2020; 62
He (10.1016/j.oceaneng.2023.114261_bib25) 2023; 252
Peng (10.1016/j.oceaneng.2023.114261_bib42) 2019; 137
Kyriazis (10.1016/j.oceaneng.2023.114261_bib30) 2017; 93
Yang (10.1016/j.oceaneng.2023.114261_bib54) 2022; 8
Bibette (10.1016/j.oceaneng.2023.114261_bib2) 1999; 62
Li (10.1016/j.oceaneng.2023.114261_bib32) 2013; 87
Sun (10.1016/j.oceaneng.2023.114261_bib51) 2005
Peng (10.1016/j.oceaneng.2023.114261_bib45) 2021; 217
Chahine (10.1016/j.oceaneng.2023.114261_bib10) 2014
Liu (10.1016/j.oceaneng.2023.114261_bib37) 2014; 78
Gong (10.1016/j.oceaneng.2023.114261_bib19) 2012; 55
Ghahramani (10.1016/j.oceaneng.2023.114261_bib18) 2019; 111
Bremond (10.1016/j.oceaneng.2023.114261_bib5) 2006; 18
Peng (10.1016/j.oceaneng.2023.114261_bib43) 2020; 10
Patek (10.1016/j.oceaneng.2023.114261_bib40) 2004; 428
Shan (10.1016/j.oceaneng.2023.114261_bib49) 1993; 47
Blake (10.1016/j.oceaneng.2023.114261_bib3) 1987; 19
References_xml – volume: 42
  start-page: 3195
  year: 1999
  end-page: 3204
  ident: bib17
  article-title: Estimation of thermal effects in cavitation of thermosensible liquids
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Stutz
– volume: 19
  start-page: 99
  year: 1987
  end-page: 123
  ident: bib3
  article-title: Cavitation bubbles near boundaries
  publication-title: Annu. Rev. Fluid Mech.
  contributor:
    fullname: Gibson
– volume: 111
  start-page: 339
  year: 2019
  end-page: 359
  ident: bib18
  article-title: A comparative study between numerical methods in simulation of cavitating bubbles
  publication-title: Int. J. Multiphas. Flow
  contributor:
    fullname: Bensow
– volume: 29
  start-page: 528
  year: 2016
  end-page: 549
  ident: bib11
  article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Choi
– volume: 62
  start-page: 969
  year: 1999
  end-page: 1033
  ident: bib2
  article-title: Emulsions: basic principles
  publication-title: Rep. Prog. Phys.
  contributor:
    fullname: Poulin
– volume: 5
  year: 2015
  ident: bib8
  article-title: Cavitation in medicine
  publication-title: Interface Focus
  contributor:
    fullname: Brennen
– volume: 96
  year: 2017
  ident: bib35
  article-title: Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change
  publication-title: Phys. Rev. E
  contributor:
    fullname: Yan
– volume: 78
  start-page: 830
  year: 2014
  end-page: 838
  ident: bib37
  article-title: Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Huai
– volume: 252
  year: 2023
  ident: bib25
  article-title: Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method
  publication-title: Comput. Fluid
  contributor:
    fullname: Zhang
– volume: 119
  start-page: 420
  year: 1997
  end-page: 427
  ident: bib12
  article-title: Numerical modeling of the thermodynamic effects of cavitation
  publication-title: J. Fluid Eng.
  contributor:
    fullname: Merkle
– volume: 55
  start-page: 4923
  year: 2012
  end-page: 4927
  ident: bib19
  article-title: A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Cheng
– volume: 96
  year: 2006
  ident: bib6
  article-title: Controlled multibubble surface cavitation
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Ohl
– volume: 62
  year: 2020
  ident: bib53
  article-title: Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM
  publication-title: Ultrason. Sonochem.
  contributor:
    fullname: Kan
– volume: 70
  year: 2004
  ident: bib59
  article-title: Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall
  publication-title: Phys. Rev. E
  contributor:
    fullname: Zhang
– year: 1982
  ident: bib48
  article-title: Molecular Theory of Capillarity
  contributor:
    fullname: Widom
– volume: 127
  start-page: 267
  year: 2005
  end-page: 281
  ident: bib26
  article-title: Numerical study of cavitation in cryogenic fluids
  publication-title: J. Fluid Eng.
  contributor:
    fullname: Ahuja
– volume: 13
  start-page: 685
  year: 2013
  end-page: 695
  ident: bib16
  article-title: Lattice Boltzmann simulation of cavitating flows
  publication-title: Commun. Comput. Phys.
  contributor:
    fullname: Bella
– volume: 149
  year: 2020
  ident: bib44
  article-title: Simulation of laser-produced single cavitation bubbles with hybrid thermal Lattice Boltzmann method
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Li
– volume: 82
  year: 2010
  ident: bib56
  article-title: Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow
  publication-title: Phys. Rev. E
  contributor:
    fullname: Fan
– volume: 10
  year: 2020
  ident: bib43
  article-title: Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method
  publication-title: AIP Adv.
  contributor:
    fullname: Zhang
– year: 1995
  ident: bib7
  article-title: Cavitation and Bubble Dynamics
  contributor:
    fullname: Brennen
– volume: 90
  year: 2014
  ident: bib33
  article-title: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
  publication-title: Phys. Rev. E
  contributor:
    fullname: Kang
– volume: 47
  start-page: 1815
  year: 1993
  end-page: 1819
  ident: bib49
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
  contributor:
    fullname: Chen
– volume: 83
  start-page: 648
  year: 1961
  end-page: 656
  ident: bib39
  article-title: On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary
  publication-title: Journal of Basic Engineering
  contributor:
    fullname: Ellis
– volume: 18
  year: 2006
  ident: bib57
  article-title: Equations of state in a lattice Boltzmann model
  publication-title: Phys. Fluids
  contributor:
    fullname: Schaefer
– volume: 98
  year: 2007
  ident: bib60
  article-title: Controlled cavitation in microfluidic systems
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Tsuji
– volume: 49
  start-page: 2941
  year: 1994
  end-page: 2948
  ident: bib50
  article-title: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation
  publication-title: Phys. Rev. E
  contributor:
    fullname: Chen
– year: 2014
  ident: bib10
  article-title: Scaling of Cavitation Bubble Cloud Dynamics on Propellers", Fluid Mechanics and its Applications
  contributor:
    fullname: Raju
– volume: 98
  year: 2018
  ident: bib41
  article-title: Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation
  publication-title: Phys. Rev. E
  contributor:
    fullname: Li
– volume: 266
  year: 2022
  ident: bib23
  article-title: Multiple vapor cavitation bubble interactions with a thermal lattice Boltzmann method
  publication-title: Ocean Eng.
  contributor:
    fullname: Zhang
– year: 2015
  ident: bib28
  article-title: Multiphase Lattice Boltzmann Methods: Theory and Application
  contributor:
    fullname: Lu
– volume: 47
  start-page: 2831
  year: 2004
  end-page: 2840
  ident: bib29
  article-title: Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Kang
– volume: 102
  year: 2020
  ident: bib20
  article-title: Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent multiphase lattice Boltzmann model
  publication-title: Phys. Rev. E
  contributor:
    fullname: Yang
– volume: 34
  year: 2022
  ident: bib46
  article-title: Mesoscopic modeling of vapor cavitation bubbles collapse and interaction in near-wall region with a pseudopotential lattice Boltzmann method
  publication-title: Phys. Fluids
  contributor:
    fullname: Peng
– volume: 736
  start-page: 44
  year: 2013
  end-page: 66
  ident: bib13
  article-title: Thermodynamic effects during growth and collapse of a single cavitation bubble
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Coutier-Delgosha
– volume: 10
  year: 2020
  ident: bib21
  article-title: Study of cavitation bubble collapse near a rigid boundary with a multi-relaxation-time pseudo-potential lattice Boltzmann method
  publication-title: AIP Adv.
  contributor:
    fullname: Xu
– volume: 15
  start-page: 964
  year: 2021
  end-page: 984
  ident: bib58
  article-title: Double droplet splashing on a thin liquid film with a pseudopotential lattice Boltzmann method
  publication-title: Eng. Appl. Computat. Fluid Mech.
  contributor:
    fullname: He
– volume: 17
  start-page: S3603
  year: 2005
  ident: bib4
  article-title: Cavitation on surfaces
  publication-title: J. Phys. Condens. Matter
  contributor:
    fullname: Ohl
– volume: 22
  start-page: 352
  year: 2013
  end-page: 358
  ident: bib36
  article-title: Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall
  publication-title: J. Therm. Sci.
  contributor:
    fullname: Li
– volume: 34
  year: 2022
  ident: bib1
  article-title: Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids
  publication-title: Case Stud. Therm. Eng.
  contributor:
    fullname: Abu-Nab
– year: 2005
  ident: bib51
  article-title: Acoustic Cavitation Enhanced Boiling Heat Transfer and Mass Transfer in Osmotic Dehydration Process
  contributor:
    fullname: Sun
– volume: 52
  start-page: 62
  year: 2016
  end-page: 105
  ident: bib34
  article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
  publication-title: Prog. Energy Combust. Sci.
  contributor:
    fullname: Kang
– volume: 400–401
  start-page: 111
  year: 2018
  end-page: 118
  ident: bib14
  article-title: Cavitation erosion in liquid nitrogen
  publication-title: Wear
  contributor:
    fullname: Petkovšek
– volume: 8
  year: 2022
  ident: bib54
  article-title: Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method
  publication-title: Heliyon
  contributor:
    fullname: Peng
– volume: 29
  year: 2017
  ident: bib15
  article-title: Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method
  publication-title: Phys. Fluids
  contributor:
    fullname: Ezzatneshan
– volume: 137
  start-page: 301
  year: 2019
  end-page: 317
  ident: bib42
  article-title: Simulation of multiple cavitation bubbles interaction with single-component multiphase Lattice Boltzmann method
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Li
– volume: 428
  start-page: 819
  year: 2004
  end-page: 820
  ident: bib40
  article-title: Deadly strike mechanism of a mantis shrimp
  publication-title: Nature
  contributor:
    fullname: Caldwell
– volume: 361
  start-page: 75
  year: 1998
  end-page: 116
  ident: bib47
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Lauterborn
– volume: 140
  year: 2023
  ident: bib24
  article-title: Wall wettability effects on the collapse of the attached vapor cavitation bubble with a thermal lattice Boltzmann method
  publication-title: Int. Commun. Heat Mass Tran.
  contributor:
    fullname: Zhang
– volume: 87
  year: 2013
  ident: bib32
  article-title: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model
  publication-title: Phys. Rev. E
  contributor:
    fullname: Li
– volume: 28
  start-page: 335
  year: 2016
  end-page: 358
  ident: bib38
  article-title: A review of cavitation in hydraulic machinery
  publication-title: Journal of Hydrodynamics, Ser B.
  contributor:
    fullname: Tsujimoto
– year: 2021
  ident: bib22
  article-title: Non-condensable gas bubble dissolution with a modified tunable surface tension multicomponent lattice Boltzmann model
  publication-title: Comput. Fluid
  contributor:
    fullname: Peng
– volume: 93
  start-page: 158
  year: 2017
  end-page: 177
  ident: bib30
  article-title: Numerical investigation of bubble dynamics using tabulated data
  publication-title: Int. J. Multiphas. Flow
  contributor:
    fullname: Gavaises
– volume: 69
  start-page: 1
  year: 2012
  end-page: 19
  ident: bib31
  article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics
  publication-title: Comput. Fluid
  contributor:
    fullname: Hickel
– volume: 90
  start-page: 102
  year: 2017
  end-page: 117
  ident: bib27
  article-title: Multiscale tow-phase flow modeling of sheet and cloud cavitation
  publication-title: Int. J. Multiphas. Flow
  contributor:
    fullname: Chahine
– volume: 18
  year: 2006
  ident: bib5
  article-title: Interaction of cavitation bubbles on a wall
  publication-title: Phys. Fluids
  contributor:
    fullname: Dammer
– volume: 217
  year: 2021
  ident: bib45
  article-title: Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary
  publication-title: Comput. Fluid
  contributor:
    fullname: He
– volume: 134
  year: 2022
  ident: bib55
  article-title: Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method
  publication-title: Int. Commun. Heat Mass Tran.
  contributor:
    fullname: Su
– volume: 29
  start-page: 1973
  year: 2009
  end-page: 1982
  ident: bib9
  article-title: Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Yan
– year: 2022
  ident: bib52
  article-title: Cavitation bubbles with a tunable-surface-tension thermal lattice Boltzmann model
  publication-title: Phys. Fluids
  contributor:
    fullname: He
– volume: 29
  year: 2017
  ident: 10.1016/j.oceaneng.2023.114261_bib15
  article-title: Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method
  publication-title: Phys. Fluids
  doi: 10.1063/1.4990876
  contributor:
    fullname: Ezzatneshan
– volume: 47
  start-page: 2831
  year: 2004
  ident: 10.1016/j.oceaneng.2023.114261_bib29
  article-title: Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2003.11.033
  contributor:
    fullname: Kim
– volume: 96
  year: 2006
  ident: 10.1016/j.oceaneng.2023.114261_bib6
  article-title: Controlled multibubble surface cavitation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.224501
  contributor:
    fullname: Bremond
– volume: 34
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114261_bib1
  article-title: Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102060
  contributor:
    fullname: Abu-Bakr
– volume: 22
  start-page: 352
  year: 2013
  ident: 10.1016/j.oceaneng.2023.114261_bib36
  article-title: Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-013-0635-9
  contributor:
    fullname: Liu
– volume: 98
  year: 2007
  ident: 10.1016/j.oceaneng.2023.114261_bib60
  article-title: Controlled cavitation in microfluidic systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.254501
  contributor:
    fullname: Zwaan
– volume: 8
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114261_bib54
  article-title: Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12636
  contributor:
    fullname: Yang
– year: 2021
  ident: 10.1016/j.oceaneng.2023.114261_bib22
  article-title: Non-condensable gas bubble dissolution with a modified tunable surface tension multicomponent lattice Boltzmann model
  publication-title: Comput. Fluid
  contributor:
    fullname: He
– volume: 96
  year: 2017
  ident: 10.1016/j.oceaneng.2023.114261_bib35
  article-title: Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.063303
  contributor:
    fullname: Li
– volume: 42
  start-page: 3195
  year: 1999
  ident: 10.1016/j.oceaneng.2023.114261_bib17
  article-title: Estimation of thermal effects in cavitation of thermosensible liquids
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/S0017-9310(99)00005-8
  contributor:
    fullname: Fruman
– volume: 149
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114261_bib44
  article-title: Simulation of laser-produced single cavitation bubbles with hybrid thermal Lattice Boltzmann method
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.119136
  contributor:
    fullname: Peng
– volume: 34
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114261_bib46
  article-title: Mesoscopic modeling of vapor cavitation bubbles collapse and interaction in near-wall region with a pseudopotential lattice Boltzmann method
  publication-title: Phys. Fluids
  doi: 10.1063/5.0099989
  contributor:
    fullname: Peng
– volume: 19
  start-page: 99
  year: 1987
  ident: 10.1016/j.oceaneng.2023.114261_bib3
  article-title: Cavitation bubbles near boundaries
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.19.010187.000531
  contributor:
    fullname: Blake
– volume: 62
  start-page: 969
  year: 1999
  ident: 10.1016/j.oceaneng.2023.114261_bib2
  article-title: Emulsions: basic principles
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/62/6/203
  contributor:
    fullname: Bibette
– volume: 78
  start-page: 830
  year: 2014
  ident: 10.1016/j.oceaneng.2023.114261_bib37
  article-title: Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2014.07.050
  contributor:
    fullname: Liu
– volume: 29
  start-page: 1973
  year: 2009
  ident: 10.1016/j.oceaneng.2023.114261_bib9
  article-title: Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.09.015
  contributor:
    fullname: Cai
– volume: 18
  year: 2006
  ident: 10.1016/j.oceaneng.2023.114261_bib57
  article-title: Equations of state in a lattice Boltzmann model
  publication-title: Phys. Fluids
  doi: 10.1063/1.2187070
  contributor:
    fullname: Yuan
– volume: 70
  year: 2004
  ident: 10.1016/j.oceaneng.2023.114261_bib59
  article-title: Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.056310
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 528
  year: 2016
  ident: 10.1016/j.oceaneng.2023.114261_bib11
  article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.04.026
  contributor:
    fullname: Chahine
– year: 1982
  ident: 10.1016/j.oceaneng.2023.114261_bib48
  contributor:
    fullname: Rowlinson
– volume: 10
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114261_bib43
  article-title: Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method
  publication-title: AIP Adv.
  doi: 10.1063/5.0005048
  contributor:
    fullname: Peng
– volume: 52
  start-page: 62
  year: 2016
  ident: 10.1016/j.oceaneng.2023.114261_bib34
  article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2015.10.001
  contributor:
    fullname: Li
– volume: 134
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114261_bib55
  article-title: Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2022.105988
  contributor:
    fullname: Yang
– volume: 17
  start-page: S3603
  year: 2005
  ident: 10.1016/j.oceaneng.2023.114261_bib4
  article-title: Cavitation on surfaces
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/17/45/054
  contributor:
    fullname: Bremond
– volume: 736
  start-page: 44
  year: 2013
  ident: 10.1016/j.oceaneng.2023.114261_bib13
  article-title: Thermodynamic effects during growth and collapse of a single cavitation bubble
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.525
  contributor:
    fullname: Dular
– volume: 55
  start-page: 4923
  year: 2012
  ident: 10.1016/j.oceaneng.2023.114261_bib19
  article-title: A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2012.04.037
  contributor:
    fullname: Gong
– volume: 111
  start-page: 339
  year: 2019
  ident: 10.1016/j.oceaneng.2023.114261_bib18
  article-title: A comparative study between numerical methods in simulation of cavitating bubbles
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.10.010
  contributor:
    fullname: Ghahramani
– volume: 217
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114261_bib45
  article-title: Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary
  publication-title: Comput. Fluid
  doi: 10.1016/j.compfluid.2020.104817
  contributor:
    fullname: Peng
– volume: 13
  start-page: 685
  year: 2013
  ident: 10.1016/j.oceaneng.2023.114261_bib16
  article-title: Lattice Boltzmann simulation of cavitating flows
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.291011.270112s
  contributor:
    fullname: Falcucci
– volume: 5
  year: 2015
  ident: 10.1016/j.oceaneng.2023.114261_bib8
  article-title: Cavitation in medicine
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2015.0022
  contributor:
    fullname: Brennen
– volume: 90
  year: 2014
  ident: 10.1016/j.oceaneng.2023.114261_bib33
  article-title: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.053301
  contributor:
    fullname: Li
– volume: 49
  start-page: 2941
  year: 1994
  ident: 10.1016/j.oceaneng.2023.114261_bib50
  article-title: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.2941
  contributor:
    fullname: Shan
– volume: 127
  start-page: 267
  year: 2005
  ident: 10.1016/j.oceaneng.2023.114261_bib26
  article-title: Numerical study of cavitation in cryogenic fluids
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.1883238
  contributor:
    fullname: Hosangadi
– volume: 47
  start-page: 1815
  year: 1993
  ident: 10.1016/j.oceaneng.2023.114261_bib49
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1815
  contributor:
    fullname: Shan
– volume: 83
  start-page: 648
  year: 1961
  ident: 10.1016/j.oceaneng.2023.114261_bib39
  article-title: On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary
  publication-title: Journal of Basic Engineering
  doi: 10.1115/1.3662286
  contributor:
    fullname: Naude
– volume: 119
  start-page: 420
  year: 1997
  ident: 10.1016/j.oceaneng.2023.114261_bib12
  article-title: Numerical modeling of the thermodynamic effects of cavitation
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.2819150
  contributor:
    fullname: Deshpande
– volume: 82
  year: 2010
  ident: 10.1016/j.oceaneng.2023.114261_bib56
  article-title: Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.046708
  contributor:
    fullname: Yu
– volume: 93
  start-page: 158
  year: 2017
  ident: 10.1016/j.oceaneng.2023.114261_bib30
  article-title: Numerical investigation of bubble dynamics using tabulated data
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.04.004
  contributor:
    fullname: Kyriazis
– volume: 10
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114261_bib21
  article-title: Study of cavitation bubble collapse near a rigid boundary with a multi-relaxation-time pseudo-potential lattice Boltzmann method
  publication-title: AIP Adv.
  doi: 10.1063/1.5142243
  contributor:
    fullname: He
– volume: 90
  start-page: 102
  year: 2017
  ident: 10.1016/j.oceaneng.2023.114261_bib27
  article-title: Multiscale tow-phase flow modeling of sheet and cloud cavitation
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.12.007
  contributor:
    fullname: Hsiao
– volume: 98
  year: 2018
  ident: 10.1016/j.oceaneng.2023.114261_bib41
  article-title: Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.023305
  contributor:
    fullname: Peng
– volume: 18
  year: 2006
  ident: 10.1016/j.oceaneng.2023.114261_bib5
  article-title: Interaction of cavitation bubbles on a wall
  publication-title: Phys. Fluids
  doi: 10.1063/1.2396922
  contributor:
    fullname: Bremond
– volume: 252
  year: 2023
  ident: 10.1016/j.oceaneng.2023.114261_bib25
  article-title: Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method
  publication-title: Comput. Fluid
  doi: 10.1016/j.compfluid.2022.105771
  contributor:
    fullname: He
– year: 2022
  ident: 10.1016/j.oceaneng.2023.114261_bib52
  article-title: Cavitation bubbles with a tunable-surface-tension thermal lattice Boltzmann model
  publication-title: Phys. Fluids
  contributor:
    fullname: Wang
– volume: 140
  year: 2023
  ident: 10.1016/j.oceaneng.2023.114261_bib24
  article-title: Wall wettability effects on the collapse of the attached vapor cavitation bubble with a thermal lattice Boltzmann method
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2022.106529
  contributor:
    fullname: He
– volume: 361
  start-page: 75
  year: 1998
  ident: 10.1016/j.oceaneng.2023.114261_bib47
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098008738
  contributor:
    fullname: Philipp
– volume: 15
  start-page: 964
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114261_bib58
  article-title: Double droplet splashing on a thin liquid film with a pseudopotential lattice Boltzmann method
  publication-title: Eng. Appl. Computat. Fluid Mech.
  contributor:
    fullname: Yuan
– volume: 266
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114261_bib23
  article-title: Multiple vapor cavitation bubble interactions with a thermal lattice Boltzmann method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113058
  contributor:
    fullname: He
– volume: 400–401
  start-page: 111
  year: 2018
  ident: 10.1016/j.oceaneng.2023.114261_bib14
  article-title: Cavitation erosion in liquid nitrogen
  publication-title: Wear
  doi: 10.1016/j.wear.2018.01.003
  contributor:
    fullname: Dular
– year: 2014
  ident: 10.1016/j.oceaneng.2023.114261_bib10
  contributor:
    fullname: Chahine
– volume: 28
  start-page: 335
  year: 2016
  ident: 10.1016/j.oceaneng.2023.114261_bib38
  article-title: A review of cavitation in hydraulic machinery
  publication-title: Journal of Hydrodynamics, Ser B.
  doi: 10.1016/S1001-6058(16)60638-8
  contributor:
    fullname: Luo
– volume: 428
  start-page: 819
  year: 2004
  ident: 10.1016/j.oceaneng.2023.114261_bib40
  article-title: Deadly strike mechanism of a mantis shrimp
  publication-title: Nature
  doi: 10.1038/428819a
  contributor:
    fullname: Patek
– year: 2005
  ident: 10.1016/j.oceaneng.2023.114261_bib51
  contributor:
    fullname: Sun
– volume: 62
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114261_bib53
  article-title: Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104873
  contributor:
    fullname: Yang
– volume: 87
  year: 2013
  ident: 10.1016/j.oceaneng.2023.114261_bib32
  article-title: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.053301
  contributor:
    fullname: Li
– year: 1995
  ident: 10.1016/j.oceaneng.2023.114261_bib7
  contributor:
    fullname: Brennen
– volume: 102
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114261_bib20
  article-title: Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent multiphase lattice Boltzmann model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.063306
  contributor:
    fullname: He
– volume: 69
  start-page: 1
  year: 2012
  ident: 10.1016/j.oceaneng.2023.114261_bib31
  article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics
  publication-title: Comput. Fluid
  doi: 10.1016/j.compfluid.2012.07.020
  contributor:
    fullname: Lauer
– volume: 137
  start-page: 301
  year: 2019
  ident: 10.1016/j.oceaneng.2023.114261_bib42
  article-title: Simulation of multiple cavitation bubbles interaction with single-component multiphase Lattice Boltzmann method
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.096
  contributor:
    fullname: Peng
– year: 2015
  ident: 10.1016/j.oceaneng.2023.114261_bib28
  contributor:
    fullname: Huang
SSID ssj0006603
Score 2.4550056
Snippet A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 114261
SubjectTerms Heat flux
Lattice Boltzmann method
Wall temperature
Wall wettability
Wall-attached cavitation bubble
Title Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: A lattice Boltzmann study
URI https://dx.doi.org/10.1016/j.oceaneng.2023.114261
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXAAJwQAxHpMPXLu1a9o13AYCDRBwAYlblTQJD5VuYh0DDvwJ_jB2H2JISBw4to2jKnY_O439mbF9FWktOKcvjQuHB0HPUSJRTo_ovRKMUSNJBc4Xl-Hghp_dBrdz7KiuhaG0ygr7S0wv0Lq606lWszN6eKAa365AfKWTIiJdo0JzIttCm25_fKd5hKHr12keNHqmSvixjS5CZia7a1MTcaLN7Ybe7w5qxumcrLKVKlqEfvlCa2zOZA22NMMh2GDLVzR7RTy9zj4HCK5g08krJD-5mKGsSIQ73Hjn9yAzDYURjMYGhhamMk0dmedE8IxP5EtF3g1qolRqxkB_bKHup5IX42FqUKBIr307gD6kKI_AA4fDNH9_klkGBXvtBrs5Ob4-GjhV4wUn8UM3d4Try5Cb4kiW6y5uWD0j3SQKuBW4X3KltDbiNnAT7XMppMKgRHtChtaqXtdof5PNZ8PMbDFAxLCaa8-POE7leTIQCUaVPgaaPHFD0WSderXjUcmvEdeJZ49xrZ-Y9BOX-mkyUSsl_mEpMTqBP2S3_yG7wxbpijIHvGCXzefPE7OHAUmuWoXFtdhC__R8cPkF7m_iRg
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ReqAgoUKLeLZz4JrdZONkY26AQNuWxwUkbpEd2zwUsis2ywKH_on-YWbyEItUqYdeY48VeSbfjOOZbwB2dWKMFIK_NCE9EUV9T8tMe32m98ooRk0UFzifnsWDS_HzKrqag8O2FobTKhvsrzG9QuvmSbfZze7o9pZrfHuS8JVviph0LfoAHwXzZ5FRd36_5XnEsR-2eR48faZM-K5DPkIVtrjucBdx5s3txcHfPdSM1zn-DMtNuIj79RutwJwtVmFxhkRwFZbOefWGefoL_BkQuqLLJ0-YvSdjxrokEa_p5F3eoCoMVlYwGlscOpyqPPdUWTLDM42ox4a9G_VE69yOkX_ZYttQpazm49SSQJVf-7yH-5iTPCEPHgzz8uVeFQVW9LVf4fL46OJw4DWdF7wsjP3Sk36oYmGrO1lhenRiDazysyQSTtKByVfKuUS4yM9MKJRUmqISE0gVO6f7PWvCNZgvhoVdByTIcEaYIEwELRUEKpIZhZUhRZoi82O5Ad12t9NRTbCRtplnd2mrn5T1k9b62QDZKiV9ZyopeYF_yG7-h-x3WBhcnJ6kJz_Ofm3BJx7hNIIg2ob58mFidyg6KfW3yvpeAWD24-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+flux+characteristics+during+growth+and+collapse+of+wall-attached+cavitation+bubbles+with+different+wall+wettability%3A+A+lattice+Boltzmann+study&rft.jtitle=Ocean+engineering&rft.au=He%2C+Xiaolong&rft.au=Song%2C+Xiang&rft.au=Peng%2C+Haonan&rft.au=Huang%2C+Wei&rft.date=2023-05-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=276&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.114261&rft.externalDocID=S0029801823006455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon