Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: A lattice Boltzmann study
A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under different wall wettability and temperature conditions. We consider the mutual influence of the temperature field and flow field to understand the e...
Saved in:
Published in | Ocean engineering Vol. 276; p. 114261 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under different wall wettability and temperature conditions. We consider the mutual influence of the temperature field and flow field to understand the effect of the wall temperature on the dynamic contact angle. The wettability of the wall exerts a great influence on the bubble morphology, with higher expansion velocities observed on non-wettable walls during the growth stage. The contact point is pinned due to the hysteresis effect, leading to a weaker collapse intensity on non-wettable walls. The present model obtains the thermal delay phenomenon caused by the supply of latent heat from the surrounding liquid to the bubble. Additionally, the efficiency of the temperature increase through the phase change is lower than that of wall cooling from a cooled wall, resulting in a low temperature at the contact point. Finally, for the wall-cooling processes, wettable walls reduce the deterioration of heat transfer efficiency during the growth stage and enhance the heat transfer efficiency during bubble collapse.
•The growth and collapse of the attached-wall cavitation bubble are investigated.•The dynamic contact angle evolution process with different wall wettability are proposed.•The wall wettability effect on heat flux characteristics are analyzed. |
---|---|
AbstractList | A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under different wall wettability and temperature conditions. We consider the mutual influence of the temperature field and flow field to understand the effect of the wall temperature on the dynamic contact angle. The wettability of the wall exerts a great influence on the bubble morphology, with higher expansion velocities observed on non-wettable walls during the growth stage. The contact point is pinned due to the hysteresis effect, leading to a weaker collapse intensity on non-wettable walls. The present model obtains the thermal delay phenomenon caused by the supply of latent heat from the surrounding liquid to the bubble. Additionally, the efficiency of the temperature increase through the phase change is lower than that of wall cooling from a cooled wall, resulting in a low temperature at the contact point. Finally, for the wall-cooling processes, wettable walls reduce the deterioration of heat transfer efficiency during the growth stage and enhance the heat transfer efficiency during bubble collapse.
•The growth and collapse of the attached-wall cavitation bubble are investigated.•The dynamic contact angle evolution process with different wall wettability are proposed.•The wall wettability effect on heat flux characteristics are analyzed. |
ArticleNumber | 114261 |
Author | He, Xiaolong Song, Xiang Huang, Wei Zhang, Jianmin Peng, Haonan |
Author_xml | – sequence: 1 givenname: Xiaolong surname: He fullname: He, Xiaolong organization: Chongqing Southwest Research Institute for Water Transport Engineering, Chongqing Jiaotong University, Chongqing, 400074, China – sequence: 2 givenname: Xiang surname: Song fullname: Song, Xiang organization: School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China – sequence: 3 givenname: Haonan orcidid: 0000-0003-1988-2026 surname: Peng fullname: Peng, Haonan email: haonan.peng@psi.ch organization: Laboratory for Waste Management, Paul Scherrer Institute, CH, 5232, Villigen PSI, Switzerland – sequence: 4 givenname: Wei surname: Huang fullname: Huang, Wei organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China – sequence: 5 givenname: Jianmin orcidid: 0000-0002-9154-231X surname: Zhang fullname: Zhang, Jianmin email: zhangjianmin@scu.edu.cn organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China |
BookMark | eNqFkM1OAyEUhYnRxFp9BcMLTAVmBmdc-RP_EhM3uiZ34NLSIBig1voavrCj1bWruzj3Ozn5DshuiAEJOeZsxhmXJ8tZ1AgBw3wmmKhnnDdC8h0y4d1pXbWi7XbJhDHRVx3j3T45yHnJGJOS1RPyeYdQqPWrd6oXkEAXTC4XpzM1q-TCnM5TXJcFhWCojt7Da0YaLV2D9xWUAnqBYwJvrkBxMdBhNQweM127kTLOWkwYys8_XeMIDM67sjmjF9SPvNNIL6MvHy8QAs1lZTaHZM-Cz3j0e6fk-eb66equeni8vb-6eKh0LVmpelaDbLAVvWwaI3gtOALTXdvYXoqWAVjbNbZl2tQN9DDwtjW8B2ntcCrQ1FMit706xZwTWvWa3AukjeJMfatVS_WnVn2rVVu1I3i-BXFc9-YwqawdBo3GJdRFmej-q_gCL5yLbg |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_116720 crossref_primary_10_3934_dcdss_2023156 crossref_primary_10_1016_j_euromechflu_2023_12_014 crossref_primary_10_1063_5_0169239 crossref_primary_10_1063_5_0161289 |
Cites_doi | 10.1063/1.4990876 10.1016/j.ijheatmasstransfer.2003.11.033 10.1103/PhysRevLett.96.224501 10.1016/j.csite.2022.102060 10.1007/s11630-013-0635-9 10.1103/PhysRevLett.98.254501 10.1016/j.heliyon.2022.e12636 10.1103/PhysRevE.96.063303 10.1016/S0017-9310(99)00005-8 10.1016/j.ijheatmasstransfer.2019.119136 10.1063/5.0099989 10.1146/annurev.fl.19.010187.000531 10.1088/0034-4885/62/6/203 10.1016/j.ijheatmasstransfer.2014.07.050 10.1016/j.applthermaleng.2008.09.015 10.1063/1.2187070 10.1103/PhysRevE.70.056310 10.1016/j.ultsonch.2015.04.026 10.1063/5.0005048 10.1016/j.pecs.2015.10.001 10.1016/j.icheatmasstransfer.2022.105988 10.1088/0953-8984/17/45/054 10.1017/jfm.2013.525 10.1016/j.ijheatmasstransfer.2012.04.037 10.1016/j.ijmultiphaseflow.2018.10.010 10.1016/j.compfluid.2020.104817 10.4208/cicp.291011.270112s 10.1098/rsfs.2015.0022 10.1103/PhysRevE.90.053301 10.1103/PhysRevE.49.2941 10.1115/1.1883238 10.1103/PhysRevE.47.1815 10.1115/1.3662286 10.1115/1.2819150 10.1103/PhysRevE.82.046708 10.1016/j.ijmultiphaseflow.2017.04.004 10.1063/1.5142243 10.1016/j.ijmultiphaseflow.2016.12.007 10.1103/PhysRevE.98.023305 10.1063/1.2396922 10.1016/j.compfluid.2022.105771 10.1016/j.icheatmasstransfer.2022.106529 10.1017/S0022112098008738 10.1016/j.oceaneng.2022.113058 10.1016/j.wear.2018.01.003 10.1016/S1001-6058(16)60638-8 10.1038/428819a 10.1016/j.ultsonch.2019.104873 10.1103/PhysRevE.87.053301 10.1103/PhysRevE.102.063306 10.1016/j.compfluid.2012.07.020 10.1016/j.ijheatmasstransfer.2019.03.096 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2023.114261 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2023_114261 S0029801823006455 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AAXKI AAYXX ABFNM ABXDB ACKIV ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET WUQ |
ID | FETCH-LOGICAL-c360t-903a64e529644d21321ea0c854f96250aaff84f50cd34a9ab155d19a6ffb72ed3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Sep 26 15:45:03 EDT 2024 Fri Feb 23 02:36:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wall temperature Wall wettability Lattice Boltzmann method Wall-attached cavitation bubble Heat flux |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-903a64e529644d21321ea0c854f96250aaff84f50cd34a9ab155d19a6ffb72ed3 |
ORCID | 0000-0003-1988-2026 0000-0002-9154-231X |
OpenAccessLink | https://doi.org/10.1016/j.oceaneng.2023.114261 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2023_114261 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_114261 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-15 |
PublicationDateYYYYMMDD | 2023-05-15 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peng, Tian, Li (bib41) 2018; 98 Liu, Cai, Huai (bib37) 2014; 78 Peng, Zhang, He (bib45) 2021; 217 Peng, Tian, Li (bib44) 2020; 149 Kim, Kim, Kang (bib29) 2004; 47 Kyriazis, Koukouvinis, Gavaises (bib30) 2017; 93 Li, Zhou, Yan (bib35) 2017; 96 Li, Luo, Kang (bib34) 2016; 52 Yang, He, Peng (bib54) 2022; 8 Huang, Sukop, Lu (bib28) 2015 Brennen (bib7) 1995 Peng, He, Zhang (bib43) 2020; 10 Gong, Cheng (bib19) 2012; 55 Abu-Bakr, Kanagawa, Abu-Nab (bib1) 2022; 34 Liu, Cai, Li (bib36) 2013; 22 Luo, Ji, Tsujimoto (bib38) 2016; 28 Yu, Fan (bib56) 2010; 82 He, Yang, Peng (bib22) 2021 Yuan, Schaefer (bib57) 2006; 18 Peng, Tian, Li (bib42) 2019; 137 He, Zhang, Yang (bib20) 2020; 102 Peng, He, Peng (bib46) 2022; 34 Shan, Chen (bib49) 1993; 47 Wang, Peng, He (bib52) 2022 He, Peng, Zhang (bib23) 2022; 266 Yuan, Peng, He (bib58) 2021; 15 He, Zhang, Xu (bib21) 2020; 10 Dular, Petkovšek (bib14) 2018; 400–401 Li, Luo, Li (bib32) 2013; 87 Fruman, Reboud, Stutz (bib17) 1999; 42 Dular, Coutier-Delgosha (bib13) 2013; 736 Chahine, Kapahi, Choi (bib11) 2016; 29 Ghahramani, Arabnejad, Bensow (bib18) 2019; 111 Shan, Chen (bib50) 1994; 49 He, Peng, Zhang (bib24) 2023; 140 Hosangadi, Ahuja (bib26) 2005; 127 Yang, Shan, Su (bib55) 2022; 134 Bremond, Arora, Dammer (bib5) 2006; 18 Ezzatneshan (bib15) 2017; 29 Hsiao, Ma, Chahine (bib27) 2017; 90 Blake, Gibson (bib3) 1987; 19 Bremond, Arora, Ohl (bib4) 2005; 17 Li, Luo, Kang (bib33) 2014; 90 Chahine, Hsiao, Raju (bib10) 2014 Zwaan, Le Gac, Tsuji (bib60) 2007; 98 Rowlinson, Widom (bib48) 1982 Zhang, Zhang (bib59) 2004; 70 He, Peng, Zhang (bib25) 2023; 252 Brennen (bib8) 2015; 5 Lauer, Hu, Hickel (bib31) 2012; 69 Cai, Huai, Yan (bib9) 2009; 29 Philipp, Lauterborn (bib47) 1998; 361 Sun (bib51) 2005 Bibette, Calderon, Poulin (bib2) 1999; 62 Patek, Korff, Caldwell (bib40) 2004; 428 Bremond, Arora, Ohl (bib6) 2006; 96 Naude, Ellis (bib39) 1961; 83 Deshpande, Feng, Merkle (bib12) 1997; 119 Falcucci, Ubertini, Bella (bib16) 2013; 13 Yang, Shan, Kan (bib53) 2020; 62 Peng (10.1016/j.oceaneng.2023.114261_bib41) 2018; 98 Bremond (10.1016/j.oceaneng.2023.114261_bib6) 2006; 96 Huang (10.1016/j.oceaneng.2023.114261_bib28) 2015 Dular (10.1016/j.oceaneng.2023.114261_bib14) 2018; 400–401 Liu (10.1016/j.oceaneng.2023.114261_bib36) 2013; 22 Yuan (10.1016/j.oceaneng.2023.114261_bib57) 2006; 18 Dular (10.1016/j.oceaneng.2023.114261_bib13) 2013; 736 Ezzatneshan (10.1016/j.oceaneng.2023.114261_bib15) 2017; 29 Cai (10.1016/j.oceaneng.2023.114261_bib9) 2009; 29 Yang (10.1016/j.oceaneng.2023.114261_bib55) 2022; 134 He (10.1016/j.oceaneng.2023.114261_bib23) 2022; 266 Li (10.1016/j.oceaneng.2023.114261_bib34) 2016; 52 Lauer (10.1016/j.oceaneng.2023.114261_bib31) 2012; 69 Naude (10.1016/j.oceaneng.2023.114261_bib39) 1961; 83 Wang (10.1016/j.oceaneng.2023.114261_bib52) 2022 Yuan (10.1016/j.oceaneng.2023.114261_bib58) 2021; 15 Hosangadi (10.1016/j.oceaneng.2023.114261_bib26) 2005; 127 Falcucci (10.1016/j.oceaneng.2023.114261_bib16) 2013; 13 Fruman (10.1016/j.oceaneng.2023.114261_bib17) 1999; 42 Yu (10.1016/j.oceaneng.2023.114261_bib56) 2010; 82 Peng (10.1016/j.oceaneng.2023.114261_bib44) 2020; 149 He (10.1016/j.oceaneng.2023.114261_bib21) 2020; 10 He (10.1016/j.oceaneng.2023.114261_bib22) 2021 Abu-Bakr (10.1016/j.oceaneng.2023.114261_bib1) 2022; 34 Li (10.1016/j.oceaneng.2023.114261_bib35) 2017; 96 Deshpande (10.1016/j.oceaneng.2023.114261_bib12) 1997; 119 Shan (10.1016/j.oceaneng.2023.114261_bib50) 1994; 49 He (10.1016/j.oceaneng.2023.114261_bib24) 2023; 140 Hsiao (10.1016/j.oceaneng.2023.114261_bib27) 2017; 90 Bremond (10.1016/j.oceaneng.2023.114261_bib4) 2005; 17 Philipp (10.1016/j.oceaneng.2023.114261_bib47) 1998; 361 Brennen (10.1016/j.oceaneng.2023.114261_bib7) 1995 Zhang (10.1016/j.oceaneng.2023.114261_bib59) 2004; 70 He (10.1016/j.oceaneng.2023.114261_bib20) 2020; 102 Chahine (10.1016/j.oceaneng.2023.114261_bib11) 2016; 29 Luo (10.1016/j.oceaneng.2023.114261_bib38) 2016; 28 Rowlinson (10.1016/j.oceaneng.2023.114261_bib48) 1982 Brennen (10.1016/j.oceaneng.2023.114261_bib8) 2015; 5 Zwaan (10.1016/j.oceaneng.2023.114261_bib60) 2007; 98 Kim (10.1016/j.oceaneng.2023.114261_bib29) 2004; 47 Li (10.1016/j.oceaneng.2023.114261_bib33) 2014; 90 Peng (10.1016/j.oceaneng.2023.114261_bib46) 2022; 34 Yang (10.1016/j.oceaneng.2023.114261_bib53) 2020; 62 He (10.1016/j.oceaneng.2023.114261_bib25) 2023; 252 Peng (10.1016/j.oceaneng.2023.114261_bib42) 2019; 137 Kyriazis (10.1016/j.oceaneng.2023.114261_bib30) 2017; 93 Yang (10.1016/j.oceaneng.2023.114261_bib54) 2022; 8 Bibette (10.1016/j.oceaneng.2023.114261_bib2) 1999; 62 Li (10.1016/j.oceaneng.2023.114261_bib32) 2013; 87 Sun (10.1016/j.oceaneng.2023.114261_bib51) 2005 Peng (10.1016/j.oceaneng.2023.114261_bib45) 2021; 217 Chahine (10.1016/j.oceaneng.2023.114261_bib10) 2014 Liu (10.1016/j.oceaneng.2023.114261_bib37) 2014; 78 Gong (10.1016/j.oceaneng.2023.114261_bib19) 2012; 55 Ghahramani (10.1016/j.oceaneng.2023.114261_bib18) 2019; 111 Bremond (10.1016/j.oceaneng.2023.114261_bib5) 2006; 18 Peng (10.1016/j.oceaneng.2023.114261_bib43) 2020; 10 Patek (10.1016/j.oceaneng.2023.114261_bib40) 2004; 428 Shan (10.1016/j.oceaneng.2023.114261_bib49) 1993; 47 Blake (10.1016/j.oceaneng.2023.114261_bib3) 1987; 19 |
References_xml | – volume: 42 start-page: 3195 year: 1999 end-page: 3204 ident: bib17 article-title: Estimation of thermal effects in cavitation of thermosensible liquids publication-title: Int. J. Heat Mass Tran. contributor: fullname: Stutz – volume: 19 start-page: 99 year: 1987 end-page: 123 ident: bib3 article-title: Cavitation bubbles near boundaries publication-title: Annu. Rev. Fluid Mech. contributor: fullname: Gibson – volume: 111 start-page: 339 year: 2019 end-page: 359 ident: bib18 article-title: A comparative study between numerical methods in simulation of cavitating bubbles publication-title: Int. J. Multiphas. Flow contributor: fullname: Bensow – volume: 29 start-page: 528 year: 2016 end-page: 549 ident: bib11 article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse publication-title: Ultrason. Sonochem. contributor: fullname: Choi – volume: 62 start-page: 969 year: 1999 end-page: 1033 ident: bib2 article-title: Emulsions: basic principles publication-title: Rep. Prog. Phys. contributor: fullname: Poulin – volume: 5 year: 2015 ident: bib8 article-title: Cavitation in medicine publication-title: Interface Focus contributor: fullname: Brennen – volume: 96 year: 2017 ident: bib35 article-title: Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change publication-title: Phys. Rev. E contributor: fullname: Yan – volume: 78 start-page: 830 year: 2014 end-page: 838 ident: bib37 article-title: Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls publication-title: Int. J. Heat Mass Tran. contributor: fullname: Huai – volume: 252 year: 2023 ident: bib25 article-title: Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method publication-title: Comput. Fluid contributor: fullname: Zhang – volume: 119 start-page: 420 year: 1997 end-page: 427 ident: bib12 article-title: Numerical modeling of the thermodynamic effects of cavitation publication-title: J. Fluid Eng. contributor: fullname: Merkle – volume: 55 start-page: 4923 year: 2012 end-page: 4927 ident: bib19 article-title: A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer publication-title: Int. J. Heat Mass Tran. contributor: fullname: Cheng – volume: 96 year: 2006 ident: bib6 article-title: Controlled multibubble surface cavitation publication-title: Phys. Rev. Lett. contributor: fullname: Ohl – volume: 62 year: 2020 ident: bib53 article-title: Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM publication-title: Ultrason. Sonochem. contributor: fullname: Kan – volume: 70 year: 2004 ident: bib59 article-title: Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall publication-title: Phys. Rev. E contributor: fullname: Zhang – year: 1982 ident: bib48 article-title: Molecular Theory of Capillarity contributor: fullname: Widom – volume: 127 start-page: 267 year: 2005 end-page: 281 ident: bib26 article-title: Numerical study of cavitation in cryogenic fluids publication-title: J. Fluid Eng. contributor: fullname: Ahuja – volume: 13 start-page: 685 year: 2013 end-page: 695 ident: bib16 article-title: Lattice Boltzmann simulation of cavitating flows publication-title: Commun. Comput. Phys. contributor: fullname: Bella – volume: 149 year: 2020 ident: bib44 article-title: Simulation of laser-produced single cavitation bubbles with hybrid thermal Lattice Boltzmann method publication-title: Int. J. Heat Mass Tran. contributor: fullname: Li – volume: 82 year: 2010 ident: bib56 article-title: Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow publication-title: Phys. Rev. E contributor: fullname: Fan – volume: 10 year: 2020 ident: bib43 article-title: Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method publication-title: AIP Adv. contributor: fullname: Zhang – year: 1995 ident: bib7 article-title: Cavitation and Bubble Dynamics contributor: fullname: Brennen – volume: 90 year: 2014 ident: bib33 article-title: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting publication-title: Phys. Rev. E contributor: fullname: Kang – volume: 47 start-page: 1815 year: 1993 end-page: 1819 ident: bib49 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys. Rev. E contributor: fullname: Chen – volume: 83 start-page: 648 year: 1961 end-page: 656 ident: bib39 article-title: On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary publication-title: Journal of Basic Engineering contributor: fullname: Ellis – volume: 18 year: 2006 ident: bib57 article-title: Equations of state in a lattice Boltzmann model publication-title: Phys. Fluids contributor: fullname: Schaefer – volume: 98 year: 2007 ident: bib60 article-title: Controlled cavitation in microfluidic systems publication-title: Phys. Rev. Lett. contributor: fullname: Tsuji – volume: 49 start-page: 2941 year: 1994 end-page: 2948 ident: bib50 article-title: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation publication-title: Phys. Rev. E contributor: fullname: Chen – year: 2014 ident: bib10 article-title: Scaling of Cavitation Bubble Cloud Dynamics on Propellers", Fluid Mechanics and its Applications contributor: fullname: Raju – volume: 98 year: 2018 ident: bib41 article-title: Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation publication-title: Phys. Rev. E contributor: fullname: Li – volume: 266 year: 2022 ident: bib23 article-title: Multiple vapor cavitation bubble interactions with a thermal lattice Boltzmann method publication-title: Ocean Eng. contributor: fullname: Zhang – year: 2015 ident: bib28 article-title: Multiphase Lattice Boltzmann Methods: Theory and Application contributor: fullname: Lu – volume: 47 start-page: 2831 year: 2004 end-page: 2840 ident: bib29 article-title: Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration publication-title: Int. J. Heat Mass Tran. contributor: fullname: Kang – volume: 102 year: 2020 ident: bib20 article-title: Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent multiphase lattice Boltzmann model publication-title: Phys. Rev. E contributor: fullname: Yang – volume: 34 year: 2022 ident: bib46 article-title: Mesoscopic modeling of vapor cavitation bubbles collapse and interaction in near-wall region with a pseudopotential lattice Boltzmann method publication-title: Phys. Fluids contributor: fullname: Peng – volume: 736 start-page: 44 year: 2013 end-page: 66 ident: bib13 article-title: Thermodynamic effects during growth and collapse of a single cavitation bubble publication-title: J. Fluid Mech. contributor: fullname: Coutier-Delgosha – volume: 10 year: 2020 ident: bib21 article-title: Study of cavitation bubble collapse near a rigid boundary with a multi-relaxation-time pseudo-potential lattice Boltzmann method publication-title: AIP Adv. contributor: fullname: Xu – volume: 15 start-page: 964 year: 2021 end-page: 984 ident: bib58 article-title: Double droplet splashing on a thin liquid film with a pseudopotential lattice Boltzmann method publication-title: Eng. Appl. Computat. Fluid Mech. contributor: fullname: He – volume: 17 start-page: S3603 year: 2005 ident: bib4 article-title: Cavitation on surfaces publication-title: J. Phys. Condens. Matter contributor: fullname: Ohl – volume: 22 start-page: 352 year: 2013 end-page: 358 ident: bib36 article-title: Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall publication-title: J. Therm. Sci. contributor: fullname: Li – volume: 34 year: 2022 ident: bib1 article-title: Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids publication-title: Case Stud. Therm. Eng. contributor: fullname: Abu-Nab – year: 2005 ident: bib51 article-title: Acoustic Cavitation Enhanced Boiling Heat Transfer and Mass Transfer in Osmotic Dehydration Process contributor: fullname: Sun – volume: 52 start-page: 62 year: 2016 end-page: 105 ident: bib34 article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer publication-title: Prog. Energy Combust. Sci. contributor: fullname: Kang – volume: 400–401 start-page: 111 year: 2018 end-page: 118 ident: bib14 article-title: Cavitation erosion in liquid nitrogen publication-title: Wear contributor: fullname: Petkovšek – volume: 8 year: 2022 ident: bib54 article-title: Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method publication-title: Heliyon contributor: fullname: Peng – volume: 29 year: 2017 ident: bib15 article-title: Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method publication-title: Phys. Fluids contributor: fullname: Ezzatneshan – volume: 137 start-page: 301 year: 2019 end-page: 317 ident: bib42 article-title: Simulation of multiple cavitation bubbles interaction with single-component multiphase Lattice Boltzmann method publication-title: Int. J. Heat Mass Tran. contributor: fullname: Li – volume: 428 start-page: 819 year: 2004 end-page: 820 ident: bib40 article-title: Deadly strike mechanism of a mantis shrimp publication-title: Nature contributor: fullname: Caldwell – volume: 361 start-page: 75 year: 1998 end-page: 116 ident: bib47 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid Mech. contributor: fullname: Lauterborn – volume: 140 year: 2023 ident: bib24 article-title: Wall wettability effects on the collapse of the attached vapor cavitation bubble with a thermal lattice Boltzmann method publication-title: Int. Commun. Heat Mass Tran. contributor: fullname: Zhang – volume: 87 year: 2013 ident: bib32 article-title: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model publication-title: Phys. Rev. E contributor: fullname: Li – volume: 28 start-page: 335 year: 2016 end-page: 358 ident: bib38 article-title: A review of cavitation in hydraulic machinery publication-title: Journal of Hydrodynamics, Ser B. contributor: fullname: Tsujimoto – year: 2021 ident: bib22 article-title: Non-condensable gas bubble dissolution with a modified tunable surface tension multicomponent lattice Boltzmann model publication-title: Comput. Fluid contributor: fullname: Peng – volume: 93 start-page: 158 year: 2017 end-page: 177 ident: bib30 article-title: Numerical investigation of bubble dynamics using tabulated data publication-title: Int. J. Multiphas. Flow contributor: fullname: Gavaises – volume: 69 start-page: 1 year: 2012 end-page: 19 ident: bib31 article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics publication-title: Comput. Fluid contributor: fullname: Hickel – volume: 90 start-page: 102 year: 2017 end-page: 117 ident: bib27 article-title: Multiscale tow-phase flow modeling of sheet and cloud cavitation publication-title: Int. J. Multiphas. Flow contributor: fullname: Chahine – volume: 18 year: 2006 ident: bib5 article-title: Interaction of cavitation bubbles on a wall publication-title: Phys. Fluids contributor: fullname: Dammer – volume: 217 year: 2021 ident: bib45 article-title: Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary publication-title: Comput. Fluid contributor: fullname: He – volume: 134 year: 2022 ident: bib55 article-title: Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method publication-title: Int. Commun. Heat Mass Tran. contributor: fullname: Su – volume: 29 start-page: 1973 year: 2009 end-page: 1982 ident: bib9 article-title: Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure publication-title: Appl. Therm. Eng. contributor: fullname: Yan – year: 2022 ident: bib52 article-title: Cavitation bubbles with a tunable-surface-tension thermal lattice Boltzmann model publication-title: Phys. Fluids contributor: fullname: He – volume: 29 year: 2017 ident: 10.1016/j.oceaneng.2023.114261_bib15 article-title: Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method publication-title: Phys. Fluids doi: 10.1063/1.4990876 contributor: fullname: Ezzatneshan – volume: 47 start-page: 2831 year: 2004 ident: 10.1016/j.oceaneng.2023.114261_bib29 article-title: Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2003.11.033 contributor: fullname: Kim – volume: 96 year: 2006 ident: 10.1016/j.oceaneng.2023.114261_bib6 article-title: Controlled multibubble surface cavitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.224501 contributor: fullname: Bremond – volume: 34 year: 2022 ident: 10.1016/j.oceaneng.2023.114261_bib1 article-title: Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102060 contributor: fullname: Abu-Bakr – volume: 22 start-page: 352 year: 2013 ident: 10.1016/j.oceaneng.2023.114261_bib36 article-title: Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall publication-title: J. Therm. Sci. doi: 10.1007/s11630-013-0635-9 contributor: fullname: Liu – volume: 98 year: 2007 ident: 10.1016/j.oceaneng.2023.114261_bib60 article-title: Controlled cavitation in microfluidic systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.254501 contributor: fullname: Zwaan – volume: 8 year: 2022 ident: 10.1016/j.oceaneng.2023.114261_bib54 article-title: Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12636 contributor: fullname: Yang – year: 2021 ident: 10.1016/j.oceaneng.2023.114261_bib22 article-title: Non-condensable gas bubble dissolution with a modified tunable surface tension multicomponent lattice Boltzmann model publication-title: Comput. Fluid contributor: fullname: He – volume: 96 year: 2017 ident: 10.1016/j.oceaneng.2023.114261_bib35 article-title: Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.063303 contributor: fullname: Li – volume: 42 start-page: 3195 year: 1999 ident: 10.1016/j.oceaneng.2023.114261_bib17 article-title: Estimation of thermal effects in cavitation of thermosensible liquids publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(99)00005-8 contributor: fullname: Fruman – volume: 149 year: 2020 ident: 10.1016/j.oceaneng.2023.114261_bib44 article-title: Simulation of laser-produced single cavitation bubbles with hybrid thermal Lattice Boltzmann method publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.119136 contributor: fullname: Peng – volume: 34 year: 2022 ident: 10.1016/j.oceaneng.2023.114261_bib46 article-title: Mesoscopic modeling of vapor cavitation bubbles collapse and interaction in near-wall region with a pseudopotential lattice Boltzmann method publication-title: Phys. Fluids doi: 10.1063/5.0099989 contributor: fullname: Peng – volume: 19 start-page: 99 year: 1987 ident: 10.1016/j.oceaneng.2023.114261_bib3 article-title: Cavitation bubbles near boundaries publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.19.010187.000531 contributor: fullname: Blake – volume: 62 start-page: 969 year: 1999 ident: 10.1016/j.oceaneng.2023.114261_bib2 article-title: Emulsions: basic principles publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/62/6/203 contributor: fullname: Bibette – volume: 78 start-page: 830 year: 2014 ident: 10.1016/j.oceaneng.2023.114261_bib37 article-title: Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2014.07.050 contributor: fullname: Liu – volume: 29 start-page: 1973 year: 2009 ident: 10.1016/j.oceaneng.2023.114261_bib9 article-title: Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.09.015 contributor: fullname: Cai – volume: 18 year: 2006 ident: 10.1016/j.oceaneng.2023.114261_bib57 article-title: Equations of state in a lattice Boltzmann model publication-title: Phys. Fluids doi: 10.1063/1.2187070 contributor: fullname: Yuan – volume: 70 year: 2004 ident: 10.1016/j.oceaneng.2023.114261_bib59 article-title: Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.056310 contributor: fullname: Zhang – volume: 29 start-page: 528 year: 2016 ident: 10.1016/j.oceaneng.2023.114261_bib11 article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.04.026 contributor: fullname: Chahine – year: 1982 ident: 10.1016/j.oceaneng.2023.114261_bib48 contributor: fullname: Rowlinson – volume: 10 year: 2020 ident: 10.1016/j.oceaneng.2023.114261_bib43 article-title: Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method publication-title: AIP Adv. doi: 10.1063/5.0005048 contributor: fullname: Peng – volume: 52 start-page: 62 year: 2016 ident: 10.1016/j.oceaneng.2023.114261_bib34 article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.10.001 contributor: fullname: Li – volume: 134 year: 2022 ident: 10.1016/j.oceaneng.2023.114261_bib55 article-title: Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2022.105988 contributor: fullname: Yang – volume: 17 start-page: S3603 year: 2005 ident: 10.1016/j.oceaneng.2023.114261_bib4 article-title: Cavitation on surfaces publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/17/45/054 contributor: fullname: Bremond – volume: 736 start-page: 44 year: 2013 ident: 10.1016/j.oceaneng.2023.114261_bib13 article-title: Thermodynamic effects during growth and collapse of a single cavitation bubble publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.525 contributor: fullname: Dular – volume: 55 start-page: 4923 year: 2012 ident: 10.1016/j.oceaneng.2023.114261_bib19 article-title: A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.04.037 contributor: fullname: Gong – volume: 111 start-page: 339 year: 2019 ident: 10.1016/j.oceaneng.2023.114261_bib18 article-title: A comparative study between numerical methods in simulation of cavitating bubbles publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2018.10.010 contributor: fullname: Ghahramani – volume: 217 year: 2021 ident: 10.1016/j.oceaneng.2023.114261_bib45 article-title: Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary publication-title: Comput. Fluid doi: 10.1016/j.compfluid.2020.104817 contributor: fullname: Peng – volume: 13 start-page: 685 year: 2013 ident: 10.1016/j.oceaneng.2023.114261_bib16 article-title: Lattice Boltzmann simulation of cavitating flows publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.291011.270112s contributor: fullname: Falcucci – volume: 5 year: 2015 ident: 10.1016/j.oceaneng.2023.114261_bib8 article-title: Cavitation in medicine publication-title: Interface Focus doi: 10.1098/rsfs.2015.0022 contributor: fullname: Brennen – volume: 90 year: 2014 ident: 10.1016/j.oceaneng.2023.114261_bib33 article-title: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.053301 contributor: fullname: Li – volume: 49 start-page: 2941 year: 1994 ident: 10.1016/j.oceaneng.2023.114261_bib50 article-title: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.2941 contributor: fullname: Shan – volume: 127 start-page: 267 year: 2005 ident: 10.1016/j.oceaneng.2023.114261_bib26 article-title: Numerical study of cavitation in cryogenic fluids publication-title: J. Fluid Eng. doi: 10.1115/1.1883238 contributor: fullname: Hosangadi – volume: 47 start-page: 1815 year: 1993 ident: 10.1016/j.oceaneng.2023.114261_bib49 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.1815 contributor: fullname: Shan – volume: 83 start-page: 648 year: 1961 ident: 10.1016/j.oceaneng.2023.114261_bib39 article-title: On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary publication-title: Journal of Basic Engineering doi: 10.1115/1.3662286 contributor: fullname: Naude – volume: 119 start-page: 420 year: 1997 ident: 10.1016/j.oceaneng.2023.114261_bib12 article-title: Numerical modeling of the thermodynamic effects of cavitation publication-title: J. Fluid Eng. doi: 10.1115/1.2819150 contributor: fullname: Deshpande – volume: 82 year: 2010 ident: 10.1016/j.oceaneng.2023.114261_bib56 article-title: Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.046708 contributor: fullname: Yu – volume: 93 start-page: 158 year: 2017 ident: 10.1016/j.oceaneng.2023.114261_bib30 article-title: Numerical investigation of bubble dynamics using tabulated data publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2017.04.004 contributor: fullname: Kyriazis – volume: 10 year: 2020 ident: 10.1016/j.oceaneng.2023.114261_bib21 article-title: Study of cavitation bubble collapse near a rigid boundary with a multi-relaxation-time pseudo-potential lattice Boltzmann method publication-title: AIP Adv. doi: 10.1063/1.5142243 contributor: fullname: He – volume: 90 start-page: 102 year: 2017 ident: 10.1016/j.oceaneng.2023.114261_bib27 article-title: Multiscale tow-phase flow modeling of sheet and cloud cavitation publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2016.12.007 contributor: fullname: Hsiao – volume: 98 year: 2018 ident: 10.1016/j.oceaneng.2023.114261_bib41 article-title: Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.023305 contributor: fullname: Peng – volume: 18 year: 2006 ident: 10.1016/j.oceaneng.2023.114261_bib5 article-title: Interaction of cavitation bubbles on a wall publication-title: Phys. Fluids doi: 10.1063/1.2396922 contributor: fullname: Bremond – volume: 252 year: 2023 ident: 10.1016/j.oceaneng.2023.114261_bib25 article-title: Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method publication-title: Comput. Fluid doi: 10.1016/j.compfluid.2022.105771 contributor: fullname: He – year: 2022 ident: 10.1016/j.oceaneng.2023.114261_bib52 article-title: Cavitation bubbles with a tunable-surface-tension thermal lattice Boltzmann model publication-title: Phys. Fluids contributor: fullname: Wang – volume: 140 year: 2023 ident: 10.1016/j.oceaneng.2023.114261_bib24 article-title: Wall wettability effects on the collapse of the attached vapor cavitation bubble with a thermal lattice Boltzmann method publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2022.106529 contributor: fullname: He – volume: 361 start-page: 75 year: 1998 ident: 10.1016/j.oceaneng.2023.114261_bib47 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid Mech. doi: 10.1017/S0022112098008738 contributor: fullname: Philipp – volume: 15 start-page: 964 year: 2021 ident: 10.1016/j.oceaneng.2023.114261_bib58 article-title: Double droplet splashing on a thin liquid film with a pseudopotential lattice Boltzmann method publication-title: Eng. Appl. Computat. Fluid Mech. contributor: fullname: Yuan – volume: 266 year: 2022 ident: 10.1016/j.oceaneng.2023.114261_bib23 article-title: Multiple vapor cavitation bubble interactions with a thermal lattice Boltzmann method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113058 contributor: fullname: He – volume: 400–401 start-page: 111 year: 2018 ident: 10.1016/j.oceaneng.2023.114261_bib14 article-title: Cavitation erosion in liquid nitrogen publication-title: Wear doi: 10.1016/j.wear.2018.01.003 contributor: fullname: Dular – year: 2014 ident: 10.1016/j.oceaneng.2023.114261_bib10 contributor: fullname: Chahine – volume: 28 start-page: 335 year: 2016 ident: 10.1016/j.oceaneng.2023.114261_bib38 article-title: A review of cavitation in hydraulic machinery publication-title: Journal of Hydrodynamics, Ser B. doi: 10.1016/S1001-6058(16)60638-8 contributor: fullname: Luo – volume: 428 start-page: 819 year: 2004 ident: 10.1016/j.oceaneng.2023.114261_bib40 article-title: Deadly strike mechanism of a mantis shrimp publication-title: Nature doi: 10.1038/428819a contributor: fullname: Patek – year: 2005 ident: 10.1016/j.oceaneng.2023.114261_bib51 contributor: fullname: Sun – volume: 62 year: 2020 ident: 10.1016/j.oceaneng.2023.114261_bib53 article-title: Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104873 contributor: fullname: Yang – volume: 87 year: 2013 ident: 10.1016/j.oceaneng.2023.114261_bib32 article-title: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.053301 contributor: fullname: Li – year: 1995 ident: 10.1016/j.oceaneng.2023.114261_bib7 contributor: fullname: Brennen – volume: 102 year: 2020 ident: 10.1016/j.oceaneng.2023.114261_bib20 article-title: Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent multiphase lattice Boltzmann model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.063306 contributor: fullname: He – volume: 69 start-page: 1 year: 2012 ident: 10.1016/j.oceaneng.2023.114261_bib31 article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics publication-title: Comput. Fluid doi: 10.1016/j.compfluid.2012.07.020 contributor: fullname: Lauer – volume: 137 start-page: 301 year: 2019 ident: 10.1016/j.oceaneng.2023.114261_bib42 article-title: Simulation of multiple cavitation bubbles interaction with single-component multiphase Lattice Boltzmann method publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.03.096 contributor: fullname: Peng – year: 2015 ident: 10.1016/j.oceaneng.2023.114261_bib28 contributor: fullname: Huang |
SSID | ssj0006603 |
Score | 2.4550056 |
Snippet | A thermal lattice Boltzmann method is used to examine the heat flux characteristics of the growth and collapse of wall-attached cavitation bubbles under... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 114261 |
SubjectTerms | Heat flux Lattice Boltzmann method Wall temperature Wall wettability Wall-attached cavitation bubble |
Title | Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: A lattice Boltzmann study |
URI | https://dx.doi.org/10.1016/j.oceaneng.2023.114261 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXAAJwQAxHpMPXLu1a9o13AYCDRBwAYlblTQJD5VuYh0DDvwJ_jB2H2JISBw4to2jKnY_O439mbF9FWktOKcvjQuHB0HPUSJRTo_ovRKMUSNJBc4Xl-Hghp_dBrdz7KiuhaG0ygr7S0wv0Lq606lWszN6eKAa365AfKWTIiJdo0JzIttCm25_fKd5hKHr12keNHqmSvixjS5CZia7a1MTcaLN7Ybe7w5qxumcrLKVKlqEfvlCa2zOZA22NMMh2GDLVzR7RTy9zj4HCK5g08krJD-5mKGsSIQ73Hjn9yAzDYURjMYGhhamMk0dmedE8IxP5EtF3g1qolRqxkB_bKHup5IX42FqUKBIr307gD6kKI_AA4fDNH9_klkGBXvtBrs5Ob4-GjhV4wUn8UM3d4Try5Cb4kiW6y5uWD0j3SQKuBW4X3KltDbiNnAT7XMppMKgRHtChtaqXtdof5PNZ8PMbDFAxLCaa8-POE7leTIQCUaVPgaaPHFD0WSderXjUcmvEdeJZ49xrZ-Y9BOX-mkyUSsl_mEpMTqBP2S3_yG7wxbpijIHvGCXzefPE7OHAUmuWoXFtdhC__R8cPkF7m_iRg |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ReqAgoUKLeLZz4JrdZONkY26AQNuWxwUkbpEd2zwUsis2ywKH_on-YWbyEItUqYdeY48VeSbfjOOZbwB2dWKMFIK_NCE9EUV9T8tMe32m98ooRk0UFzifnsWDS_HzKrqag8O2FobTKhvsrzG9QuvmSbfZze7o9pZrfHuS8JVviph0LfoAHwXzZ5FRd36_5XnEsR-2eR48faZM-K5DPkIVtrjucBdx5s3txcHfPdSM1zn-DMtNuIj79RutwJwtVmFxhkRwFZbOefWGefoL_BkQuqLLJ0-YvSdjxrokEa_p5F3eoCoMVlYwGlscOpyqPPdUWTLDM42ox4a9G_VE69yOkX_ZYttQpazm49SSQJVf-7yH-5iTPCEPHgzz8uVeFQVW9LVf4fL46OJw4DWdF7wsjP3Sk36oYmGrO1lhenRiDazysyQSTtKByVfKuUS4yM9MKJRUmqISE0gVO6f7PWvCNZgvhoVdByTIcEaYIEwELRUEKpIZhZUhRZoi82O5Ad12t9NRTbCRtplnd2mrn5T1k9b62QDZKiV9ZyopeYF_yG7-h-x3WBhcnJ6kJz_Ofm3BJx7hNIIg2ob58mFidyg6KfW3yvpeAWD24-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+flux+characteristics+during+growth+and+collapse+of+wall-attached+cavitation+bubbles+with+different+wall+wettability%3A+A+lattice+Boltzmann+study&rft.jtitle=Ocean+engineering&rft.au=He%2C+Xiaolong&rft.au=Song%2C+Xiang&rft.au=Peng%2C+Haonan&rft.au=Huang%2C+Wei&rft.date=2023-05-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=276&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.114261&rft.externalDocID=S0029801823006455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |