Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application
A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton excha...
Saved in:
Published in | Applied thermal engineering Vol. 50; no. 1; pp. 268 - 274 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
10.01.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells.
► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system. |
---|---|
AbstractList | A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells.
► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system. |
Author | Wang, Xia Clement, Jason |
Author_xml | – sequence: 1 givenname: Jason surname: Clement fullname: Clement, Jason – sequence: 2 givenname: Xia surname: Wang fullname: Wang, Xia email: wang@oakland.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26742962$$DView record in Pascal Francis |
BookMark | eNqNkEFPAyEUhDnUxLb6HzjosSuwW7abeNGmVZMmXvRMWPbR0tBlA7Tqv5dt9aCnXiDkzcwbvhEatK4FhG4oySih_G6bya6zcQN-Jy2064wRyjLCM0LLARrSfFpNipzSSzQKYUvScFYWQ7RdfHbgzQ7aKC027QFCNGsZjWux07jb25Ae7RpvQEbcmQ5w0muXtrQK8IeJG-xhLX2Do8N6DxYrsOlwzva2vpRRx7wrdKGlDXD9c4_R-3LxNn-erF6fXuYPq4nKOYmT2bQoKl0o0ihW60o3Mi9VU9espIrJEqq8UpTVhBeal0xJxricSQ41q2nd5LN8jG5PuZ0MSlrtU1MTRJd-Kf2XYLwsWMVZ0j2edMq7EDxooUw8No1eGisoET1ZsRV_yYqerCBcJLIp5P5fyO-eM-3Lkx0SkIMBL4IykMg2xoOKonHmvKBvk32nDg |
CitedBy_id | crossref_primary_10_1016_j_renene_2023_119095 crossref_primary_10_1115_1_4041953 crossref_primary_10_1021_acs_energyfuels_0c02661 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124010 crossref_primary_10_1016_j_ijhydene_2023_04_232 crossref_primary_10_1016_j_ijhydene_2018_10_202 crossref_primary_10_1016_j_applthermaleng_2023_121363 crossref_primary_10_1016_j_apenergy_2021_116496 crossref_primary_10_1080_15435075_2024_2400543 crossref_primary_10_1016_j_applthermaleng_2019_113854 crossref_primary_10_1016_j_seta_2025_104230 crossref_primary_10_1016_j_ijft_2022_100199 crossref_primary_10_1016_j_applthermaleng_2021_117273 crossref_primary_10_1016_j_ijhydene_2023_09_045 crossref_primary_10_1016_j_enconman_2020_112830 crossref_primary_10_1016_j_ijhydene_2016_06_211 crossref_primary_10_1016_j_rser_2015_12_350 crossref_primary_10_1016_j_expthermflusci_2014_03_017 crossref_primary_10_1007_s00231_020_02998_4 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_075 crossref_primary_10_1016_j_ijft_2021_100064 crossref_primary_10_1016_j_applthermaleng_2023_121495 crossref_primary_10_2139_ssrn_4181179 crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_002 crossref_primary_10_3390_app6110321 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_032 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123066 crossref_primary_10_1080_15567036_2022_2058122 crossref_primary_10_1016_j_jpowsour_2018_07_030 crossref_primary_10_1016_j_applthermaleng_2016_08_187 crossref_primary_10_1038_s41598_024_67637_y crossref_primary_10_1016_j_jpowsour_2022_232133 crossref_primary_10_1016_j_energy_2016_05_061 crossref_primary_10_1016_j_apenergy_2024_122766 crossref_primary_10_1016_j_jpowsour_2016_04_108 crossref_primary_10_1080_15567036_2021_1968075 crossref_primary_10_1016_j_apenergy_2013_02_030 crossref_primary_10_1016_j_egypro_2015_07_665 crossref_primary_10_1016_j_applthermaleng_2020_115490 crossref_primary_10_1016_j_jpowsour_2020_229314 crossref_primary_10_1016_j_jpowsour_2012_11_126 crossref_primary_10_1007_s11630_017_0912_0 crossref_primary_10_1016_j_applthermaleng_2014_12_019 crossref_primary_10_1016_j_applthermaleng_2020_115813 crossref_primary_10_1016_j_est_2021_102847 crossref_primary_10_1016_j_apenergy_2022_119158 crossref_primary_10_1007_s40430_020_02618_6 crossref_primary_10_1016_j_expthermflusci_2016_01_003 crossref_primary_10_3390_en14175484 crossref_primary_10_1007_s12046_018_0954_3 crossref_primary_10_1016_j_applthermaleng_2022_118831 crossref_primary_10_1016_j_applthermaleng_2023_120999 crossref_primary_10_1080_14484846_2021_2024340 crossref_primary_10_1007_s00231_016_1958_3 crossref_primary_10_1016_j_enconman_2019_05_014 crossref_primary_10_1002_celc_202000588 crossref_primary_10_1016_j_applthermaleng_2020_115847 crossref_primary_10_3390_en11102553 crossref_primary_10_1016_j_enconman_2018_01_077 crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_040 crossref_primary_10_1002_er_7437 crossref_primary_10_1007_s00231_024_03491_y crossref_primary_10_1016_j_flowmeasinst_2024_102701 crossref_primary_10_1016_j_rser_2018_04_042 crossref_primary_10_1016_j_pecs_2021_100966 crossref_primary_10_1016_j_applthermaleng_2018_05_121 crossref_primary_10_1016_j_applthermaleng_2022_119238 crossref_primary_10_1016_j_expthermflusci_2016_04_005 crossref_primary_10_1016_j_icheatmasstransfer_2024_107915 crossref_primary_10_1016_j_expthermflusci_2016_11_040 crossref_primary_10_1016_j_matpr_2023_01_135 crossref_primary_10_1016_j_enconman_2019_112328 crossref_primary_10_1134_S0040579520010212 crossref_primary_10_1016_j_enconman_2023_116945 crossref_primary_10_1016_j_ijthermalsci_2015_10_033 crossref_primary_10_3390_en16031023 crossref_primary_10_1016_j_applthermaleng_2023_120338 crossref_primary_10_1016_j_applthermaleng_2023_121304 crossref_primary_10_1016_j_renene_2022_10_062 crossref_primary_10_48175_IJARSCT_3291 crossref_primary_10_1016_j_ijhydene_2022_08_069 crossref_primary_10_1016_j_applthermaleng_2020_115741 crossref_primary_10_1016_j_ijhydene_2015_12_194 crossref_primary_10_1016_j_jmmm_2024_171712 crossref_primary_10_1016_j_rser_2015_04_018 crossref_primary_10_3390_en15197391 crossref_primary_10_1016_j_enconman_2022_115566 crossref_primary_10_1016_j_renene_2025_122716 crossref_primary_10_1016_j_tsep_2021_101012 crossref_primary_10_1016_j_icheatmasstransfer_2024_107376 crossref_primary_10_3390_en11040915 crossref_primary_10_1080_15567036_2023_2208546 crossref_primary_10_1016_j_apenergy_2018_02_097 crossref_primary_10_1016_j_apenergy_2018_04_020 crossref_primary_10_1016_j_applthermaleng_2023_120468 crossref_primary_10_29137_umagd_878818 crossref_primary_10_1016_j_applthermaleng_2023_121718 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_070 crossref_primary_10_1051_e3sconf_202124801050 crossref_primary_10_1051_e3sconf_202124801051 crossref_primary_10_1016_j_enconman_2022_115970 crossref_primary_10_1016_j_apenergy_2020_115192 |
Cites_doi | 10.5098/fhp.v1.2.3003 10.1016/j.applthermaleng.2003.12.004 10.1016/S1359-4311(03)00159-5 10.1063/1.2192971 10.1080/10893950290098340 10.1134/S0018151X07050197 10.1080/01457630701677114 10.1016/j.applthermaleng.2007.01.033 10.1115/1.4000750 10.1108/09615530210434304 10.1080/01457630903547636 10.1016/j.applthermaleng.2005.01.009 10.1007/978-1-4020-8295-5_3 10.1007/s11630-011-0450-0 10.1016/S1359-4311(01)00063-1 10.1023/B:JOEP.0000003212.51653.4a 10.1016/S1359-4311(02)00237-5 10.4271/2004-01-2509 10.1016/j.apenergy.2006.09.010 10.1080/08916150490246546 10.1080/01457630701755902 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.applthermaleng.2012.06.017 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 274 |
ExternalDocumentID | 26742962 10_1016_j_applthermaleng_2012_06_017 S1359431112004383 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c360t-85449f4c0dc2bf9fda37cdbb271c2a7e939c12b064f672ca226a8a6eb2b1bd383 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Mon Jul 21 09:15:25 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Tue Jul 01 02:26:58 EDT 2025 Fri Feb 23 02:18:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Thermal management PHP PEM fuel cells Heat pipes Performance evaluation Cooling Heat pipe Experimental study Proton exchange membrane fuel cells |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-85449f4c0dc2bf9fda37cdbb271c2a7e939c12b064f672ca226a8a6eb2b1bd383 |
PageCount | 7 |
ParticipantIDs | pascalfrancis_primary_26742962 crossref_citationtrail_10_1016_j_applthermaleng_2012_06_017 crossref_primary_10_1016_j_applthermaleng_2012_06_017 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2012_06_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-10 |
PublicationDateYYYYMMDD | 2013-01-10 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Borgmeyer, Wilson, Winholtz, Ma, Jacobson, Hussey (bib19) 2010; 132 R.S. Gaugler, Heat transfer device, US Patent 2350348 (1944). Ma, Wilson, Borgmeyer, Park, Yu, Choi (bib14) 2006; 88 Yang, Khandekar, Groll (bib18) 2008; 28 Vasiliev (bib25) 2005; 25 Faghri, Guo (bib23) 2008; 29 Khandekar, Panigrahi, Lefèvre, Bonjour (bib4) 2010; 1 Tong, Wong, Ooi (bib21) 2001; 21 Dolgirev, Gerasimov, Melkikh (bib17) 2003; 76 R.R. Riehl, Characteristics of an open loop pulsating heat pipe, in: Proceedings of 34th International Conference on Environmental Systems, Colorado Springs, CO (2004). Rittidech, Pipatpaiboon, Terdtoon (bib8) 2007; 84 Dunn, Reay (bib2) 1973; 35 S. Khandekar, M. Groll, Insights into the performance modes of closed loop pulsating heat pipes and some design hints, in: Proceedings of 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, Guwahati, India (2006). F. Barbir, Fuel cell stack design principles with some design concepts of micro-mini fuel cells, in: NATO Science for Peace and Security Series (2008) 27–46. Khandekar, Dollinger, Groll (bib12) 2003; 23 Hu, Jia (bib6) 2011; 20 Shafii, Arabnejad, Saboohi, Jamshidi (bib13) 2010; 31 Dmitrin, Maidanik (bib20) 2007; 45 H. Akachi, F. Polášek, P. Štulc, Pulsating heat pipes, in: Proceedings of the Fifth International Heat Pipe Symposium, Melbourne, Australia (1996) 208–217. A. Faghri, Integrated bipolar plate heat pipe for fuel cell stacks, US Patent 2005/0037253 (2005). Zhang, Xu, Zhou (bib9) 2004; 17 Katpradit, Wongratanaphisan, Terdtoon, Kamonpet, Polchai, Akbarzadeh (bib11) 2005; 25 Zhang, Faghri (bib16) 2008; 29 Khandekar, Schneider, Schafer, Kulenovic, Groll (bib5) 2002; 6 Charoensawan (bib7) 2003; 23 Shafii, Faghri, Zhang (bib10) 2002; 12 Khandekar (10.1016/j.applthermaleng.2012.06.017_bib4) 2010; 1 Tong (10.1016/j.applthermaleng.2012.06.017_bib21) 2001; 21 Ma (10.1016/j.applthermaleng.2012.06.017_bib14) 2006; 88 10.1016/j.applthermaleng.2012.06.017_bib1 Dmitrin (10.1016/j.applthermaleng.2012.06.017_bib20) 2007; 45 10.1016/j.applthermaleng.2012.06.017_bib3 10.1016/j.applthermaleng.2012.06.017_bib26 Shafii (10.1016/j.applthermaleng.2012.06.017_bib13) 2010; 31 Hu (10.1016/j.applthermaleng.2012.06.017_bib6) 2011; 20 Yang (10.1016/j.applthermaleng.2012.06.017_bib18) 2008; 28 Charoensawan (10.1016/j.applthermaleng.2012.06.017_bib7) 2003; 23 Vasiliev (10.1016/j.applthermaleng.2012.06.017_bib25) 2005; 25 Dolgirev (10.1016/j.applthermaleng.2012.06.017_bib17) 2003; 76 Zhang (10.1016/j.applthermaleng.2012.06.017_bib9) 2004; 17 10.1016/j.applthermaleng.2012.06.017_bib15 Rittidech (10.1016/j.applthermaleng.2012.06.017_bib8) 2007; 84 Dunn (10.1016/j.applthermaleng.2012.06.017_bib2) 1973; 35 Katpradit (10.1016/j.applthermaleng.2012.06.017_bib11) 2005; 25 Borgmeyer (10.1016/j.applthermaleng.2012.06.017_bib19) 2010; 132 Khandekar (10.1016/j.applthermaleng.2012.06.017_bib5) 2002; 6 Zhang (10.1016/j.applthermaleng.2012.06.017_bib16) 2008; 29 Shafii (10.1016/j.applthermaleng.2012.06.017_bib10) 2002; 12 10.1016/j.applthermaleng.2012.06.017_bib24 Khandekar (10.1016/j.applthermaleng.2012.06.017_bib12) 2003; 23 10.1016/j.applthermaleng.2012.06.017_bib22 Faghri (10.1016/j.applthermaleng.2012.06.017_bib23) 2008; 29 |
References_xml | – reference: A. Faghri, Integrated bipolar plate heat pipe for fuel cell stacks, US Patent 2005/0037253 (2005). – volume: 12 start-page: 585 year: 2002 end-page: 609 ident: bib10 article-title: Analysis of heat transfer in unlooped and looped pulsating heat pipes publication-title: International Journal of Numerical Methods for Heat & Fluid Flow – reference: F. Barbir, Fuel cell stack design principles with some design concepts of micro-mini fuel cells, in: NATO Science for Peace and Security Series (2008) 27–46. – volume: 35 start-page: 172 year: 1973 end-page: 201 ident: bib2 article-title: The heat pipe publication-title: Physics in Technology – volume: 132 start-page: 061502 year: 2010 ident: bib19 article-title: Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes publication-title: Journal of Heat Transfer – volume: 17 start-page: 47 year: 2004 end-page: 67 ident: bib9 article-title: Experimental study of a pulsating heat pipe using Fc-72, ethanol, and water as working fluids publication-title: Experimental Heat Transfer – volume: 20 start-page: 150 year: 2011 end-page: 154 ident: bib6 article-title: Experimental study on the start up performance of flat plate pulsating heat pipe publication-title: Journal of Thermal Sciences – volume: 23 start-page: 707 year: 2003 end-page: 719 ident: bib12 article-title: Understanding operational regimes of closed loop pulsating heat pipes: an experimental study publication-title: Applied Thermal Engineering – volume: 29 start-page: 20 year: 2008 end-page: 44 ident: bib16 article-title: Advances and unsolved issues in pulsating heat pipes publication-title: Heat Transfer Engineering – reference: H. Akachi, F. Polášek, P. Štulc, Pulsating heat pipes, in: Proceedings of the Fifth International Heat Pipe Symposium, Melbourne, Australia (1996) 208–217. – volume: 25 start-page: 1 year: 2005 end-page: 19 ident: bib25 article-title: Heat pipes in modern heat exchangers publication-title: Applied Thermal Engineering – volume: 1 year: 2010 ident: bib4 article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review publication-title: Frontiers in Heat Pipes – volume: 28 start-page: 49 year: 2008 end-page: 59 ident: bib18 article-title: Operational limit of closed loop pulsating heat pipes publication-title: Applied Thermal Engineering – volume: 21 start-page: 1845 year: 2001 end-page: 1862 ident: bib21 article-title: Closed-loop pulsating heat pipe publication-title: Applied Thermal Engineering – volume: 29 start-page: 232 year: 2008 end-page: 238 ident: bib23 article-title: Integration of heat pipe into fuel cell Technology publication-title: Heat Transfer Engineering – reference: R.S. Gaugler, Heat transfer device, US Patent 2350348 (1944). – volume: 84 start-page: 565 year: 2007 end-page: 577 ident: bib8 article-title: Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves publication-title: Applied Energy – volume: 45 start-page: 703 year: 2007 end-page: 707 ident: bib20 article-title: Experimental investigations of a closed-loop oscillating heat pipe publication-title: High Temperature – reference: R.R. Riehl, Characteristics of an open loop pulsating heat pipe, in: Proceedings of 34th International Conference on Environmental Systems, Colorado Springs, CO (2004). – volume: 88 start-page: 143116 year: 2006 ident: bib14 article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe publication-title: Applied Physics Letters – volume: 31 start-page: 854 year: 2010 end-page: 861 ident: bib13 article-title: Experimental investigation of pulsating heat pipes and a proposed Correlation publication-title: Heat Transfer Engineering – volume: 25 start-page: 2138 year: 2005 end-page: 2151 ident: bib11 article-title: Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state publication-title: Applied Thermal Engineering – reference: S. Khandekar, M. Groll, Insights into the performance modes of closed loop pulsating heat pipes and some design hints, in: Proceedings of 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, Guwahati, India (2006). – volume: 23 start-page: 2009 year: 2003 end-page: 2020 ident: bib7 article-title: Closed loop pulsating heat pipes. Part A: parametric experimental investigations publication-title: Applied Thermal Engineering – volume: 76 start-page: 996 year: 2003 end-page: 1000 ident: bib17 article-title: Theoretical and experimental study of oscillating heat pipes with few turns publication-title: Journal of Engineering Physics and Thermophysics – volume: 6 start-page: 303 year: 2002 end-page: 317 ident: bib5 article-title: Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes publication-title: Microscale Thermophysical Engineering – volume: 1 year: 2010 ident: 10.1016/j.applthermaleng.2012.06.017_bib4 article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review publication-title: Frontiers in Heat Pipes doi: 10.5098/fhp.v1.2.3003 – volume: 25 start-page: 1 year: 2005 ident: 10.1016/j.applthermaleng.2012.06.017_bib25 article-title: Heat pipes in modern heat exchangers publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2003.12.004 – ident: 10.1016/j.applthermaleng.2012.06.017_bib3 – volume: 23 start-page: 2009 year: 2003 ident: 10.1016/j.applthermaleng.2012.06.017_bib7 article-title: Closed loop pulsating heat pipes. Part A: parametric experimental investigations publication-title: Applied Thermal Engineering doi: 10.1016/S1359-4311(03)00159-5 – volume: 88 start-page: 143116 year: 2006 ident: 10.1016/j.applthermaleng.2012.06.017_bib14 article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe publication-title: Applied Physics Letters doi: 10.1063/1.2192971 – volume: 6 start-page: 303 year: 2002 ident: 10.1016/j.applthermaleng.2012.06.017_bib5 article-title: Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes publication-title: Microscale Thermophysical Engineering doi: 10.1080/10893950290098340 – volume: 45 start-page: 703 year: 2007 ident: 10.1016/j.applthermaleng.2012.06.017_bib20 article-title: Experimental investigations of a closed-loop oscillating heat pipe publication-title: High Temperature doi: 10.1134/S0018151X07050197 – volume: 29 start-page: 20 year: 2008 ident: 10.1016/j.applthermaleng.2012.06.017_bib16 article-title: Advances and unsolved issues in pulsating heat pipes publication-title: Heat Transfer Engineering doi: 10.1080/01457630701677114 – volume: 28 start-page: 49 year: 2008 ident: 10.1016/j.applthermaleng.2012.06.017_bib18 article-title: Operational limit of closed loop pulsating heat pipes publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2007.01.033 – ident: 10.1016/j.applthermaleng.2012.06.017_bib26 – volume: 132 start-page: 061502 year: 2010 ident: 10.1016/j.applthermaleng.2012.06.017_bib19 article-title: Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes publication-title: Journal of Heat Transfer doi: 10.1115/1.4000750 – ident: 10.1016/j.applthermaleng.2012.06.017_bib24 – volume: 12 start-page: 585 year: 2002 ident: 10.1016/j.applthermaleng.2012.06.017_bib10 article-title: Analysis of heat transfer in unlooped and looped pulsating heat pipes publication-title: International Journal of Numerical Methods for Heat & Fluid Flow doi: 10.1108/09615530210434304 – volume: 31 start-page: 854 year: 2010 ident: 10.1016/j.applthermaleng.2012.06.017_bib13 article-title: Experimental investigation of pulsating heat pipes and a proposed Correlation publication-title: Heat Transfer Engineering doi: 10.1080/01457630903547636 – volume: 25 start-page: 2138 year: 2005 ident: 10.1016/j.applthermaleng.2012.06.017_bib11 article-title: Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2005.01.009 – ident: 10.1016/j.applthermaleng.2012.06.017_bib22 doi: 10.1007/978-1-4020-8295-5_3 – volume: 35 start-page: 172 year: 1973 ident: 10.1016/j.applthermaleng.2012.06.017_bib2 article-title: The heat pipe publication-title: Physics in Technology – volume: 20 start-page: 150 year: 2011 ident: 10.1016/j.applthermaleng.2012.06.017_bib6 article-title: Experimental study on the start up performance of flat plate pulsating heat pipe publication-title: Journal of Thermal Sciences doi: 10.1007/s11630-011-0450-0 – volume: 21 start-page: 1845 year: 2001 ident: 10.1016/j.applthermaleng.2012.06.017_bib21 article-title: Closed-loop pulsating heat pipe publication-title: Applied Thermal Engineering doi: 10.1016/S1359-4311(01)00063-1 – ident: 10.1016/j.applthermaleng.2012.06.017_bib1 – volume: 76 start-page: 996 year: 2003 ident: 10.1016/j.applthermaleng.2012.06.017_bib17 article-title: Theoretical and experimental study of oscillating heat pipes with few turns publication-title: Journal of Engineering Physics and Thermophysics doi: 10.1023/B:JOEP.0000003212.51653.4a – volume: 23 start-page: 707 year: 2003 ident: 10.1016/j.applthermaleng.2012.06.017_bib12 article-title: Understanding operational regimes of closed loop pulsating heat pipes: an experimental study publication-title: Applied Thermal Engineering doi: 10.1016/S1359-4311(02)00237-5 – ident: 10.1016/j.applthermaleng.2012.06.017_bib15 doi: 10.4271/2004-01-2509 – volume: 84 start-page: 565 year: 2007 ident: 10.1016/j.applthermaleng.2012.06.017_bib8 article-title: Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves publication-title: Applied Energy doi: 10.1016/j.apenergy.2006.09.010 – volume: 17 start-page: 47 year: 2004 ident: 10.1016/j.applthermaleng.2012.06.017_bib9 article-title: Experimental study of a pulsating heat pipe using Fc-72, ethanol, and water as working fluids publication-title: Experimental Heat Transfer doi: 10.1080/08916150490246546 – volume: 29 start-page: 232 year: 2008 ident: 10.1016/j.applthermaleng.2012.06.017_bib23 article-title: Integration of heat pipe into fuel cell Technology publication-title: Heat Transfer Engineering doi: 10.1080/01457630701755902 |
SSID | ssj0012874 |
Score | 2.4053783 |
Snippet | A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop.... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 268 |
SubjectTerms | Applied sciences Devices using thermal energy Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Heat pipes PEM fuel cells PHP Thermal management |
Title | Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2012.06.017 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DQRQRP_Fz5GGvdWuaJi0-yBjKVPRFBd9KkiZjY7ZFt1f_du_a7gt8GPhWSpOUu8vdJfnld4S0IglRlwfOk7zjPK6s8GIdCI8LhlQlJhIlT_fzi-i_88eP8KNBerO7MAirrH1_5dNLb12_adfSbBfDYfvVD0IYBeYqqwg38QY7l2jl1z9zmIePfO7loiuMPfx6i7QWGC88JMY861Nh2RIEerGSzbMsX_ZnmNot1DcIz1VVL5ZC0f0-2atzSNqtfvOANGx2SHaWmAWPyOhuibmfDhdkGnlGc0eL6RhRPNmAoi-mxbCwtFhcIaC4O0u_7ADMh05y6qZ2THGLn5oci_wM6NK59zF5v7976_W9uqyCZwLRmXhRyHnsuOmkhmkXu1QF0qRaM-kbpqSNg9j4TEOu4oRkRkGCpiIlYAmufZ2CoE_IRpZn9pTQMIXo3tHQT6Q4rG915HgauADyOm7h8YzczKSYmJpzHEtfjJMZuGyUrOogQR0kiLXz5RkJ562LintjzXa3M4UlK7aUQJhYs4fmip7nwzMhIYALdv7vIS7INisrayCi8JJsTL6m9grym4lulgbcJJvdh6f-yy_0mP_c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RrdQWVVVbqKBQ6gMc0904jpOoQhVqFy1l4QJI3ILt2KtFSxItu0K99E_1D3YmyX5JPSBV3KJI9kQee2YcP78HsB9HmHVF4LxIdJwnlJVeogPpCcmJqsTEsuLpPjuXvSvx8zq8XoM_s7swBKtsYn8d06to3bxpN6PZLofD9oUfhGgF1yqvCTcbZOWp_fWA-7b7w5Mf6OQDzo-7l997XiMt4JlAdiZeHAqROGE6meHaJS5TQWQyrXnkG64imwSJ8bnGfO1kxI3CIkXFSuI2VPs6Q2PY7zN4LjBckGzCl99zXIlPBPLVLi9MPPq8F7C_AJXRqTQVdneKdFIIWcYr-tBKL-2fefF1qe7RW66W2VjKfcdv4U1TtLKjelzewZrN38P6EpXhBtx2l6QC2HDB3lHkrHCsnI4INpQPGAV_Vg5Ly8rFnQVGv4PZ2A5wvrJJwdzUjhidKTBTkKrQgC0dtG_C1ZMM9gdo5UVut4CFGZYTHY39xErghlrHTmSBC7CQFBYft-HrbBRT05Cck9bGKJ2h2W7TVR-k5IOUwH1-tA3hvHVZk308st23mcPSlcmbYl56ZA97K36em-cywopB8o__beIzvOxdnvXT_sn56Q684pWsB8EZd6E1GU_tJyyuJnqvmswMbp569fwFIBs8sQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+pulsating+heat+pipe+performance+with+regard+to+fuel+cell+cooling+application&rft.jtitle=Applied+thermal+engineering&rft.au=Clement%2C+Jason&rft.au=Wang%2C+Xia&rft.date=2013-01-10&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=50&rft.issue=1&rft.spage=268&rft.epage=274&rft_id=info:doi/10.1016%2Fj.applthermaleng.2012.06.017&rft.externalDocID=S1359431112004383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |