Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton excha...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 50; no. 1; pp. 268 - 274
Main Authors Clement, Jason, Wang, Xia
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 10.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.
AbstractList A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.
Author Wang, Xia
Clement, Jason
Author_xml – sequence: 1
  givenname: Jason
  surname: Clement
  fullname: Clement, Jason
– sequence: 2
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  email: wang@oakland.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26742962$$DView record in Pascal Francis
BookMark eNqNkEFPAyEUhDnUxLb6HzjosSuwW7abeNGmVZMmXvRMWPbR0tBlA7Tqv5dt9aCnXiDkzcwbvhEatK4FhG4oySih_G6bya6zcQN-Jy2064wRyjLCM0LLARrSfFpNipzSSzQKYUvScFYWQ7RdfHbgzQ7aKC027QFCNGsZjWux07jb25Ae7RpvQEbcmQ5w0muXtrQK8IeJG-xhLX2Do8N6DxYrsOlwzva2vpRRx7wrdKGlDXD9c4_R-3LxNn-erF6fXuYPq4nKOYmT2bQoKl0o0ihW60o3Mi9VU9espIrJEqq8UpTVhBeal0xJxricSQ41q2nd5LN8jG5PuZ0MSlrtU1MTRJd-Kf2XYLwsWMVZ0j2edMq7EDxooUw8No1eGisoET1ZsRV_yYqerCBcJLIp5P5fyO-eM-3Lkx0SkIMBL4IykMg2xoOKonHmvKBvk32nDg
CitedBy_id crossref_primary_10_1016_j_renene_2023_119095
crossref_primary_10_1115_1_4041953
crossref_primary_10_1021_acs_energyfuels_0c02661
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124010
crossref_primary_10_1016_j_ijhydene_2023_04_232
crossref_primary_10_1016_j_ijhydene_2018_10_202
crossref_primary_10_1016_j_applthermaleng_2023_121363
crossref_primary_10_1016_j_apenergy_2021_116496
crossref_primary_10_1080_15435075_2024_2400543
crossref_primary_10_1016_j_applthermaleng_2019_113854
crossref_primary_10_1016_j_seta_2025_104230
crossref_primary_10_1016_j_ijft_2022_100199
crossref_primary_10_1016_j_applthermaleng_2021_117273
crossref_primary_10_1016_j_ijhydene_2023_09_045
crossref_primary_10_1016_j_enconman_2020_112830
crossref_primary_10_1016_j_ijhydene_2016_06_211
crossref_primary_10_1016_j_rser_2015_12_350
crossref_primary_10_1016_j_expthermflusci_2014_03_017
crossref_primary_10_1007_s00231_020_02998_4
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_075
crossref_primary_10_1016_j_ijft_2021_100064
crossref_primary_10_1016_j_applthermaleng_2023_121495
crossref_primary_10_2139_ssrn_4181179
crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_002
crossref_primary_10_3390_app6110321
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_032
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123066
crossref_primary_10_1080_15567036_2022_2058122
crossref_primary_10_1016_j_jpowsour_2018_07_030
crossref_primary_10_1016_j_applthermaleng_2016_08_187
crossref_primary_10_1038_s41598_024_67637_y
crossref_primary_10_1016_j_jpowsour_2022_232133
crossref_primary_10_1016_j_energy_2016_05_061
crossref_primary_10_1016_j_apenergy_2024_122766
crossref_primary_10_1016_j_jpowsour_2016_04_108
crossref_primary_10_1080_15567036_2021_1968075
crossref_primary_10_1016_j_apenergy_2013_02_030
crossref_primary_10_1016_j_egypro_2015_07_665
crossref_primary_10_1016_j_applthermaleng_2020_115490
crossref_primary_10_1016_j_jpowsour_2020_229314
crossref_primary_10_1016_j_jpowsour_2012_11_126
crossref_primary_10_1007_s11630_017_0912_0
crossref_primary_10_1016_j_applthermaleng_2014_12_019
crossref_primary_10_1016_j_applthermaleng_2020_115813
crossref_primary_10_1016_j_est_2021_102847
crossref_primary_10_1016_j_apenergy_2022_119158
crossref_primary_10_1007_s40430_020_02618_6
crossref_primary_10_1016_j_expthermflusci_2016_01_003
crossref_primary_10_3390_en14175484
crossref_primary_10_1007_s12046_018_0954_3
crossref_primary_10_1016_j_applthermaleng_2022_118831
crossref_primary_10_1016_j_applthermaleng_2023_120999
crossref_primary_10_1080_14484846_2021_2024340
crossref_primary_10_1007_s00231_016_1958_3
crossref_primary_10_1016_j_enconman_2019_05_014
crossref_primary_10_1002_celc_202000588
crossref_primary_10_1016_j_applthermaleng_2020_115847
crossref_primary_10_3390_en11102553
crossref_primary_10_1016_j_enconman_2018_01_077
crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_040
crossref_primary_10_1002_er_7437
crossref_primary_10_1007_s00231_024_03491_y
crossref_primary_10_1016_j_flowmeasinst_2024_102701
crossref_primary_10_1016_j_rser_2018_04_042
crossref_primary_10_1016_j_pecs_2021_100966
crossref_primary_10_1016_j_applthermaleng_2018_05_121
crossref_primary_10_1016_j_applthermaleng_2022_119238
crossref_primary_10_1016_j_expthermflusci_2016_04_005
crossref_primary_10_1016_j_icheatmasstransfer_2024_107915
crossref_primary_10_1016_j_expthermflusci_2016_11_040
crossref_primary_10_1016_j_matpr_2023_01_135
crossref_primary_10_1016_j_enconman_2019_112328
crossref_primary_10_1134_S0040579520010212
crossref_primary_10_1016_j_enconman_2023_116945
crossref_primary_10_1016_j_ijthermalsci_2015_10_033
crossref_primary_10_3390_en16031023
crossref_primary_10_1016_j_applthermaleng_2023_120338
crossref_primary_10_1016_j_applthermaleng_2023_121304
crossref_primary_10_1016_j_renene_2022_10_062
crossref_primary_10_48175_IJARSCT_3291
crossref_primary_10_1016_j_ijhydene_2022_08_069
crossref_primary_10_1016_j_applthermaleng_2020_115741
crossref_primary_10_1016_j_ijhydene_2015_12_194
crossref_primary_10_1016_j_jmmm_2024_171712
crossref_primary_10_1016_j_rser_2015_04_018
crossref_primary_10_3390_en15197391
crossref_primary_10_1016_j_enconman_2022_115566
crossref_primary_10_1016_j_renene_2025_122716
crossref_primary_10_1016_j_tsep_2021_101012
crossref_primary_10_1016_j_icheatmasstransfer_2024_107376
crossref_primary_10_3390_en11040915
crossref_primary_10_1080_15567036_2023_2208546
crossref_primary_10_1016_j_apenergy_2018_02_097
crossref_primary_10_1016_j_apenergy_2018_04_020
crossref_primary_10_1016_j_applthermaleng_2023_120468
crossref_primary_10_29137_umagd_878818
crossref_primary_10_1016_j_applthermaleng_2023_121718
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_070
crossref_primary_10_1051_e3sconf_202124801050
crossref_primary_10_1051_e3sconf_202124801051
crossref_primary_10_1016_j_enconman_2022_115970
crossref_primary_10_1016_j_apenergy_2020_115192
Cites_doi 10.5098/fhp.v1.2.3003
10.1016/j.applthermaleng.2003.12.004
10.1016/S1359-4311(03)00159-5
10.1063/1.2192971
10.1080/10893950290098340
10.1134/S0018151X07050197
10.1080/01457630701677114
10.1016/j.applthermaleng.2007.01.033
10.1115/1.4000750
10.1108/09615530210434304
10.1080/01457630903547636
10.1016/j.applthermaleng.2005.01.009
10.1007/978-1-4020-8295-5_3
10.1007/s11630-011-0450-0
10.1016/S1359-4311(01)00063-1
10.1023/B:JOEP.0000003212.51653.4a
10.1016/S1359-4311(02)00237-5
10.4271/2004-01-2509
10.1016/j.apenergy.2006.09.010
10.1080/08916150490246546
10.1080/01457630701755902
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.applthermaleng.2012.06.017
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 274
ExternalDocumentID 26742962
10_1016_j_applthermaleng_2012_06_017
S1359431112004383
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c360t-85449f4c0dc2bf9fda37cdbb271c2a7e939c12b064f672ca226a8a6eb2b1bd383
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Mon Jul 21 09:15:25 EDT 2025
Thu Apr 24 22:50:07 EDT 2025
Tue Jul 01 02:26:58 EDT 2025
Fri Feb 23 02:18:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Thermal management
PHP
PEM fuel cells
Heat pipes
Performance evaluation
Cooling
Heat pipe
Experimental study
Proton exchange membrane fuel cells
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-85449f4c0dc2bf9fda37cdbb271c2a7e939c12b064f672ca226a8a6eb2b1bd383
PageCount 7
ParticipantIDs pascalfrancis_primary_26742962
crossref_citationtrail_10_1016_j_applthermaleng_2012_06_017
crossref_primary_10_1016_j_applthermaleng_2012_06_017
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2012_06_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-10
PublicationDateYYYYMMDD 2013-01-10
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-10
  day: 10
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied thermal engineering
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Borgmeyer, Wilson, Winholtz, Ma, Jacobson, Hussey (bib19) 2010; 132
R.S. Gaugler, Heat transfer device, US Patent 2350348 (1944).
Ma, Wilson, Borgmeyer, Park, Yu, Choi (bib14) 2006; 88
Yang, Khandekar, Groll (bib18) 2008; 28
Vasiliev (bib25) 2005; 25
Faghri, Guo (bib23) 2008; 29
Khandekar, Panigrahi, Lefèvre, Bonjour (bib4) 2010; 1
Tong, Wong, Ooi (bib21) 2001; 21
Dolgirev, Gerasimov, Melkikh (bib17) 2003; 76
R.R. Riehl, Characteristics of an open loop pulsating heat pipe, in: Proceedings of 34th International Conference on Environmental Systems, Colorado Springs, CO (2004).
Rittidech, Pipatpaiboon, Terdtoon (bib8) 2007; 84
Dunn, Reay (bib2) 1973; 35
S. Khandekar, M. Groll, Insights into the performance modes of closed loop pulsating heat pipes and some design hints, in: Proceedings of 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, Guwahati, India (2006).
F. Barbir, Fuel cell stack design principles with some design concepts of micro-mini fuel cells, in: NATO Science for Peace and Security Series (2008) 27–46.
Khandekar, Dollinger, Groll (bib12) 2003; 23
Hu, Jia (bib6) 2011; 20
Shafii, Arabnejad, Saboohi, Jamshidi (bib13) 2010; 31
Dmitrin, Maidanik (bib20) 2007; 45
H. Akachi, F. Polášek, P. Štulc, Pulsating heat pipes, in: Proceedings of the Fifth International Heat Pipe Symposium, Melbourne, Australia (1996) 208–217.
A. Faghri, Integrated bipolar plate heat pipe for fuel cell stacks, US Patent 2005/0037253 (2005).
Zhang, Xu, Zhou (bib9) 2004; 17
Katpradit, Wongratanaphisan, Terdtoon, Kamonpet, Polchai, Akbarzadeh (bib11) 2005; 25
Zhang, Faghri (bib16) 2008; 29
Khandekar, Schneider, Schafer, Kulenovic, Groll (bib5) 2002; 6
Charoensawan (bib7) 2003; 23
Shafii, Faghri, Zhang (bib10) 2002; 12
Khandekar (10.1016/j.applthermaleng.2012.06.017_bib4) 2010; 1
Tong (10.1016/j.applthermaleng.2012.06.017_bib21) 2001; 21
Ma (10.1016/j.applthermaleng.2012.06.017_bib14) 2006; 88
10.1016/j.applthermaleng.2012.06.017_bib1
Dmitrin (10.1016/j.applthermaleng.2012.06.017_bib20) 2007; 45
10.1016/j.applthermaleng.2012.06.017_bib3
10.1016/j.applthermaleng.2012.06.017_bib26
Shafii (10.1016/j.applthermaleng.2012.06.017_bib13) 2010; 31
Hu (10.1016/j.applthermaleng.2012.06.017_bib6) 2011; 20
Yang (10.1016/j.applthermaleng.2012.06.017_bib18) 2008; 28
Charoensawan (10.1016/j.applthermaleng.2012.06.017_bib7) 2003; 23
Vasiliev (10.1016/j.applthermaleng.2012.06.017_bib25) 2005; 25
Dolgirev (10.1016/j.applthermaleng.2012.06.017_bib17) 2003; 76
Zhang (10.1016/j.applthermaleng.2012.06.017_bib9) 2004; 17
10.1016/j.applthermaleng.2012.06.017_bib15
Rittidech (10.1016/j.applthermaleng.2012.06.017_bib8) 2007; 84
Dunn (10.1016/j.applthermaleng.2012.06.017_bib2) 1973; 35
Katpradit (10.1016/j.applthermaleng.2012.06.017_bib11) 2005; 25
Borgmeyer (10.1016/j.applthermaleng.2012.06.017_bib19) 2010; 132
Khandekar (10.1016/j.applthermaleng.2012.06.017_bib5) 2002; 6
Zhang (10.1016/j.applthermaleng.2012.06.017_bib16) 2008; 29
Shafii (10.1016/j.applthermaleng.2012.06.017_bib10) 2002; 12
10.1016/j.applthermaleng.2012.06.017_bib24
Khandekar (10.1016/j.applthermaleng.2012.06.017_bib12) 2003; 23
10.1016/j.applthermaleng.2012.06.017_bib22
Faghri (10.1016/j.applthermaleng.2012.06.017_bib23) 2008; 29
References_xml – reference: A. Faghri, Integrated bipolar plate heat pipe for fuel cell stacks, US Patent 2005/0037253 (2005).
– volume: 12
  start-page: 585
  year: 2002
  end-page: 609
  ident: bib10
  article-title: Analysis of heat transfer in unlooped and looped pulsating heat pipes
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
– reference: F. Barbir, Fuel cell stack design principles with some design concepts of micro-mini fuel cells, in: NATO Science for Peace and Security Series (2008) 27–46.
– volume: 35
  start-page: 172
  year: 1973
  end-page: 201
  ident: bib2
  article-title: The heat pipe
  publication-title: Physics in Technology
– volume: 132
  start-page: 061502
  year: 2010
  ident: bib19
  article-title: Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes
  publication-title: Journal of Heat Transfer
– volume: 17
  start-page: 47
  year: 2004
  end-page: 67
  ident: bib9
  article-title: Experimental study of a pulsating heat pipe using Fc-72, ethanol, and water as working fluids
  publication-title: Experimental Heat Transfer
– volume: 20
  start-page: 150
  year: 2011
  end-page: 154
  ident: bib6
  article-title: Experimental study on the start up performance of flat plate pulsating heat pipe
  publication-title: Journal of Thermal Sciences
– volume: 23
  start-page: 707
  year: 2003
  end-page: 719
  ident: bib12
  article-title: Understanding operational regimes of closed loop pulsating heat pipes: an experimental study
  publication-title: Applied Thermal Engineering
– volume: 29
  start-page: 20
  year: 2008
  end-page: 44
  ident: bib16
  article-title: Advances and unsolved issues in pulsating heat pipes
  publication-title: Heat Transfer Engineering
– reference: H. Akachi, F. Polášek, P. Štulc, Pulsating heat pipes, in: Proceedings of the Fifth International Heat Pipe Symposium, Melbourne, Australia (1996) 208–217.
– volume: 25
  start-page: 1
  year: 2005
  end-page: 19
  ident: bib25
  article-title: Heat pipes in modern heat exchangers
  publication-title: Applied Thermal Engineering
– volume: 1
  year: 2010
  ident: bib4
  article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review
  publication-title: Frontiers in Heat Pipes
– volume: 28
  start-page: 49
  year: 2008
  end-page: 59
  ident: bib18
  article-title: Operational limit of closed loop pulsating heat pipes
  publication-title: Applied Thermal Engineering
– volume: 21
  start-page: 1845
  year: 2001
  end-page: 1862
  ident: bib21
  article-title: Closed-loop pulsating heat pipe
  publication-title: Applied Thermal Engineering
– volume: 29
  start-page: 232
  year: 2008
  end-page: 238
  ident: bib23
  article-title: Integration of heat pipe into fuel cell Technology
  publication-title: Heat Transfer Engineering
– reference: R.S. Gaugler, Heat transfer device, US Patent 2350348 (1944).
– volume: 84
  start-page: 565
  year: 2007
  end-page: 577
  ident: bib8
  article-title: Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves
  publication-title: Applied Energy
– volume: 45
  start-page: 703
  year: 2007
  end-page: 707
  ident: bib20
  article-title: Experimental investigations of a closed-loop oscillating heat pipe
  publication-title: High Temperature
– reference: R.R. Riehl, Characteristics of an open loop pulsating heat pipe, in: Proceedings of 34th International Conference on Environmental Systems, Colorado Springs, CO (2004).
– volume: 88
  start-page: 143116
  year: 2006
  ident: bib14
  article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe
  publication-title: Applied Physics Letters
– volume: 31
  start-page: 854
  year: 2010
  end-page: 861
  ident: bib13
  article-title: Experimental investigation of pulsating heat pipes and a proposed Correlation
  publication-title: Heat Transfer Engineering
– volume: 25
  start-page: 2138
  year: 2005
  end-page: 2151
  ident: bib11
  article-title: Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state
  publication-title: Applied Thermal Engineering
– reference: S. Khandekar, M. Groll, Insights into the performance modes of closed loop pulsating heat pipes and some design hints, in: Proceedings of 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, Guwahati, India (2006).
– volume: 23
  start-page: 2009
  year: 2003
  end-page: 2020
  ident: bib7
  article-title: Closed loop pulsating heat pipes. Part A: parametric experimental investigations
  publication-title: Applied Thermal Engineering
– volume: 76
  start-page: 996
  year: 2003
  end-page: 1000
  ident: bib17
  article-title: Theoretical and experimental study of oscillating heat pipes with few turns
  publication-title: Journal of Engineering Physics and Thermophysics
– volume: 6
  start-page: 303
  year: 2002
  end-page: 317
  ident: bib5
  article-title: Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes
  publication-title: Microscale Thermophysical Engineering
– volume: 1
  year: 2010
  ident: 10.1016/j.applthermaleng.2012.06.017_bib4
  article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review
  publication-title: Frontiers in Heat Pipes
  doi: 10.5098/fhp.v1.2.3003
– volume: 25
  start-page: 1
  year: 2005
  ident: 10.1016/j.applthermaleng.2012.06.017_bib25
  article-title: Heat pipes in modern heat exchangers
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2003.12.004
– ident: 10.1016/j.applthermaleng.2012.06.017_bib3
– volume: 23
  start-page: 2009
  year: 2003
  ident: 10.1016/j.applthermaleng.2012.06.017_bib7
  article-title: Closed loop pulsating heat pipes. Part A: parametric experimental investigations
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(03)00159-5
– volume: 88
  start-page: 143116
  year: 2006
  ident: 10.1016/j.applthermaleng.2012.06.017_bib14
  article-title: Effect of nanofluid on the heat transport capability in an oscillating heat pipe
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2192971
– volume: 6
  start-page: 303
  year: 2002
  ident: 10.1016/j.applthermaleng.2012.06.017_bib5
  article-title: Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes
  publication-title: Microscale Thermophysical Engineering
  doi: 10.1080/10893950290098340
– volume: 45
  start-page: 703
  year: 2007
  ident: 10.1016/j.applthermaleng.2012.06.017_bib20
  article-title: Experimental investigations of a closed-loop oscillating heat pipe
  publication-title: High Temperature
  doi: 10.1134/S0018151X07050197
– volume: 29
  start-page: 20
  year: 2008
  ident: 10.1016/j.applthermaleng.2012.06.017_bib16
  article-title: Advances and unsolved issues in pulsating heat pipes
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630701677114
– volume: 28
  start-page: 49
  year: 2008
  ident: 10.1016/j.applthermaleng.2012.06.017_bib18
  article-title: Operational limit of closed loop pulsating heat pipes
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2007.01.033
– ident: 10.1016/j.applthermaleng.2012.06.017_bib26
– volume: 132
  start-page: 061502
  year: 2010
  ident: 10.1016/j.applthermaleng.2012.06.017_bib19
  article-title: Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.4000750
– ident: 10.1016/j.applthermaleng.2012.06.017_bib24
– volume: 12
  start-page: 585
  year: 2002
  ident: 10.1016/j.applthermaleng.2012.06.017_bib10
  article-title: Analysis of heat transfer in unlooped and looped pulsating heat pipes
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
  doi: 10.1108/09615530210434304
– volume: 31
  start-page: 854
  year: 2010
  ident: 10.1016/j.applthermaleng.2012.06.017_bib13
  article-title: Experimental investigation of pulsating heat pipes and a proposed Correlation
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630903547636
– volume: 25
  start-page: 2138
  year: 2005
  ident: 10.1016/j.applthermaleng.2012.06.017_bib11
  article-title: Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2005.01.009
– ident: 10.1016/j.applthermaleng.2012.06.017_bib22
  doi: 10.1007/978-1-4020-8295-5_3
– volume: 35
  start-page: 172
  year: 1973
  ident: 10.1016/j.applthermaleng.2012.06.017_bib2
  article-title: The heat pipe
  publication-title: Physics in Technology
– volume: 20
  start-page: 150
  year: 2011
  ident: 10.1016/j.applthermaleng.2012.06.017_bib6
  article-title: Experimental study on the start up performance of flat plate pulsating heat pipe
  publication-title: Journal of Thermal Sciences
  doi: 10.1007/s11630-011-0450-0
– volume: 21
  start-page: 1845
  year: 2001
  ident: 10.1016/j.applthermaleng.2012.06.017_bib21
  article-title: Closed-loop pulsating heat pipe
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(01)00063-1
– ident: 10.1016/j.applthermaleng.2012.06.017_bib1
– volume: 76
  start-page: 996
  year: 2003
  ident: 10.1016/j.applthermaleng.2012.06.017_bib17
  article-title: Theoretical and experimental study of oscillating heat pipes with few turns
  publication-title: Journal of Engineering Physics and Thermophysics
  doi: 10.1023/B:JOEP.0000003212.51653.4a
– volume: 23
  start-page: 707
  year: 2003
  ident: 10.1016/j.applthermaleng.2012.06.017_bib12
  article-title: Understanding operational regimes of closed loop pulsating heat pipes: an experimental study
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(02)00237-5
– ident: 10.1016/j.applthermaleng.2012.06.017_bib15
  doi: 10.4271/2004-01-2509
– volume: 84
  start-page: 565
  year: 2007
  ident: 10.1016/j.applthermaleng.2012.06.017_bib8
  article-title: Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2006.09.010
– volume: 17
  start-page: 47
  year: 2004
  ident: 10.1016/j.applthermaleng.2012.06.017_bib9
  article-title: Experimental study of a pulsating heat pipe using Fc-72, ethanol, and water as working fluids
  publication-title: Experimental Heat Transfer
  doi: 10.1080/08916150490246546
– volume: 29
  start-page: 232
  year: 2008
  ident: 10.1016/j.applthermaleng.2012.06.017_bib23
  article-title: Integration of heat pipe into fuel cell Technology
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630701755902
SSID ssj0012874
Score 2.4053783
Snippet A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 268
SubjectTerms Applied sciences
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Heat pipes
PEM fuel cells
PHP
Thermal management
Title Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application
URI https://dx.doi.org/10.1016/j.applthermaleng.2012.06.017
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DQRQRP_Fz5GGvdWuaJi0-yBjKVPRFBd9KkiZjY7ZFt1f_du_a7gt8GPhWSpOUu8vdJfnld4S0IglRlwfOk7zjPK6s8GIdCI8LhlQlJhIlT_fzi-i_88eP8KNBerO7MAirrH1_5dNLb12_adfSbBfDYfvVD0IYBeYqqwg38QY7l2jl1z9zmIePfO7loiuMPfx6i7QWGC88JMY861Nh2RIEerGSzbMsX_ZnmNot1DcIz1VVL5ZC0f0-2atzSNqtfvOANGx2SHaWmAWPyOhuibmfDhdkGnlGc0eL6RhRPNmAoi-mxbCwtFhcIaC4O0u_7ADMh05y6qZ2THGLn5oci_wM6NK59zF5v7976_W9uqyCZwLRmXhRyHnsuOmkhmkXu1QF0qRaM-kbpqSNg9j4TEOu4oRkRkGCpiIlYAmufZ2CoE_IRpZn9pTQMIXo3tHQT6Q4rG915HgauADyOm7h8YzczKSYmJpzHEtfjJMZuGyUrOogQR0kiLXz5RkJ562LintjzXa3M4UlK7aUQJhYs4fmip7nwzMhIYALdv7vIS7INisrayCi8JJsTL6m9grym4lulgbcJJvdh6f-yy_0mP_c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RrdQWVVVbqKBQ6gMc0904jpOoQhVqFy1l4QJI3ILt2KtFSxItu0K99E_1D3YmyX5JPSBV3KJI9kQee2YcP78HsB9HmHVF4LxIdJwnlJVeogPpCcmJqsTEsuLpPjuXvSvx8zq8XoM_s7swBKtsYn8d06to3bxpN6PZLofD9oUfhGgF1yqvCTcbZOWp_fWA-7b7w5Mf6OQDzo-7l997XiMt4JlAdiZeHAqROGE6meHaJS5TQWQyrXnkG64imwSJ8bnGfO1kxI3CIkXFSuI2VPs6Q2PY7zN4LjBckGzCl99zXIlPBPLVLi9MPPq8F7C_AJXRqTQVdneKdFIIWcYr-tBKL-2fefF1qe7RW66W2VjKfcdv4U1TtLKjelzewZrN38P6EpXhBtx2l6QC2HDB3lHkrHCsnI4INpQPGAV_Vg5Ly8rFnQVGv4PZ2A5wvrJJwdzUjhidKTBTkKrQgC0dtG_C1ZMM9gdo5UVut4CFGZYTHY39xErghlrHTmSBC7CQFBYft-HrbBRT05Cck9bGKJ2h2W7TVR-k5IOUwH1-tA3hvHVZk308st23mcPSlcmbYl56ZA97K36em-cywopB8o__beIzvOxdnvXT_sn56Q684pWsB8EZd6E1GU_tJyyuJnqvmswMbp569fwFIBs8sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+pulsating+heat+pipe+performance+with+regard+to+fuel+cell+cooling+application&rft.jtitle=Applied+thermal+engineering&rft.au=Clement%2C+Jason&rft.au=Wang%2C+Xia&rft.date=2013-01-10&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=50&rft.issue=1&rft.spage=268&rft.epage=274&rft_id=info:doi/10.1016%2Fj.applthermaleng.2012.06.017&rft.externalDocID=S1359431112004383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon