Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes
Acoustic-vortex (AV) tweezers ensure stable particle trapping at a zero-pressure center, while particle assembly between two vortex cores is still prevented by the high-potential barrier. Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interfere...
Saved in:
Published in | Engineering (Beijing, China) Vol. 47; pp. 139 - 151 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acoustic-vortex (AV) tweezers ensure stable particle trapping at a zero-pressure center, while particle assembly between two vortex cores is still prevented by the high-potential barrier. Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams, it remains challenging to create two-dimensional (2D) neighboring vortexes using a source array in practical applications. In this paper, a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes (OA-AVs) with a preset radial offset is proposed based on a ring array of planar sources. By introducing initial vortex phase differences of −2π/M and +2π/M to the vortex array, low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs. Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs. The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach. The field evolution is certified by experimental field measurements for OA-AVs with different vortex numbers, initial vortex phase differences, and radial offsets using a ring array of 16 planar sources. The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon, a four-branched star, and a central AV in experiments. The three-step strategy paves a new way for 2D particle assembly based on the synchronized evolution of centrosymmetric OA-AVs using a simplified single-sided source array, exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications. |
---|---|
AbstractList | Acoustic-vortex (AV) tweezers ensure stable particle trapping at a zero-pressure center, while particle assembly between two vortex cores is still prevented by the high-potential barrier. Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams, it remains challenging to create two-dimensional (2D) neighboring vortexes using a source array in practical applications. In this paper, a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes (OA-AVs) with a preset radial offset is proposed based on a ring array of planar sources. By introducing initial vortex phase differences of −2π/M and +2π/M to the vortex array, low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs. Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs. The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach. The field evolution is certified by experimental field measurements for OA-AVs with different vortex numbers, initial vortex phase differences, and radial offsets using a ring array of 16 planar sources. The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon, a four-branched star, and a central AV in experiments. The three-step strategy paves a new way for 2D particle assembly based on the synchronized evolution of centrosymmetric OA-AVs using a simplified single-sided source array, exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications. |
Author | Guo, Gepu Zhang, Dong Tu, Juan Ding, Ning Ma, Qingyu |
Author_xml | – sequence: 1 givenname: Ning surname: Ding fullname: Ding, Ning organization: School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China – sequence: 2 givenname: Gepu surname: Guo fullname: Guo, Gepu email: guogepu@njnu.edu.cn organization: School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China – sequence: 3 givenname: Juan surname: Tu fullname: Tu, Juan organization: Institute of Acoustics, Nanjing University, Nanjing 210093, China – sequence: 4 givenname: Dong surname: Zhang fullname: Zhang, Dong organization: Institute of Acoustics, Nanjing University, Nanjing 210093, China – sequence: 5 givenname: Qingyu surname: Ma fullname: Ma, Qingyu email: maqingyu@njnu.edu.cn organization: School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China |
BookMark | eNp9kM1O3DAUhb2gEhR4AHZ-gYRrx86PWE2nlCIhgQTt1nLsa_AosSs7wEyfvqaDWLK60pG-T_ecr-QgxICEnDGoGbD2fFNjeKw5cFEDq6HhB-SIwyCrHobhkJzmvAEAJhl00B-R_PAaq-9-xpB9DHqidzot3kxIVznjPE47-k1ntDQGujwhvd8F85Ri8H9LdvkSp-elcDQ6usawpJh384xL8obeOlettj7TlYnPuTjp75gW3GI-IV-cnjKevt9j8uvH5cP6Z3Vze3W9Xt1UpmlhqXouOyFbJrXjYwcdh3aAVvQoRq47aYYWnRsss1q0ox35yC3AwIHZTuiRyeaYXO-9NuqN-pP8rNNORe3V_yCmR_VeVklmWdP0XGjLRQNyGJnpm7Z3shGI1hYX27tM6ZgTug8fA_U2vNqoMrx6G14BU2X4wlzsGSwlXzwmlY3HYND6hGYpX_hP6H9biY-Y |
Cites_doi | 10.1088/1758-5090/aa585e 10.1098/rspa.2012.0232 10.1063/5.0058213 10.1016/S0006-3495(95)80396-6 10.1103/PhysRevApplied.11.054044 10.1038/srep27238 10.1063/1.5035261 10.1063/5.0003379 10.1117/12.808814 10.1109/ACCESS.2020.2970451 10.3390/mi10080507 10.1088/1402-4896/ac2185 10.1063/5.0006703 10.1103/PhysRevApplied.7.024007 10.1109/ULTSYM.2019.8926200 10.1021/acs.nanolett.0c01464 10.1038/s42005-021-00617-0 10.1039/b910595f 10.1038/s41467-023-38814-w 10.1364/JOSAB.20.001169 10.1073/pnas.2023188118 10.1063/1.5135991 10.1016/j.apacoust.2019.06.008 10.1038/s41598-018-28451-5 10.1063/1.4798584 10.1039/B409139F 10.1016/j.ultras.2017.05.005 10.1038/ncomms10694 10.1080/09500340802167524 10.1103/PhysRevLett.116.024301 10.1063/1.4963185 10.1088/2399-6528/ac5089 10.1063/1.4801894 10.1063/1.5087636 10.1038/s41598-020-60836-3 10.1016/j.ijleo.2008.09.019 10.1364/OL.384899 10.34133/2021/9781394 10.1063/1.4989995 10.1121/1.428184 10.18287/2412-6179-CO-1086 10.1103/PhysRevApplied.12.024045 10.1038/s41598-017-07477-1 10.1063/1.5033971 10.1121/1.1643367 10.1364/JOSAA.4.000651 10.1103/PhysRevLett.124.143901 10.1063/1.4981122 10.3390/app13095672 10.1098/rspa.2011.0269 10.1364/OL.11.000288 10.1121/1.400907 10.1002/adfm.201606039 10.1038/ncomms9661 10.1039/c2lc40751e 10.1038/ncomms9686 10.1017/S0022112097007829 10.1073/pnas.1813047115 10.1063/1.4870489 |
ContentType | Journal Article |
Copyright | 2024 THE AUTHORS |
Copyright_xml | – notice: 2024 THE AUTHORS |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.eng.2024.01.032 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 151 |
ExternalDocumentID | oai_doaj_org_article_51d133824ad243059b1c8368f534eedd 10_1016_j_eng_2024_01_032 S2095809924006477 |
GroupedDBID | -SC -S~ 0R~ 1-T 5VR 6I. 92H 92I AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFJKZ AFTJW AFUIB AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEC CCEZO CEKLB EBS EJD FDB GROUPED_DOAJ IPNFZ M41 O9- OK1 Q-- RIG ROL SSZ TCJ TGT U1G U5M AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c360t-825745615af2b70720690648e4b2a75c96eff9d1da46bdb2b2d009201d74ab153 |
IEDL.DBID | DOA |
ISSN | 2095-8099 |
IngestDate | Wed Aug 27 01:21:34 EDT 2025 Tue Jul 01 05:05:31 EDT 2025 Sat May 03 15:57:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Particle assembly Initial phase difference Single-sided ring array Phase-reversal strategy Centrosymmetric array of off-axis acoustic vortexes |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-825745615af2b70720690648e4b2a75c96eff9d1da46bdb2b2d009201d74ab153 |
OpenAccessLink | https://doaj.org/article/51d133824ad243059b1c8368f534eedd |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_51d133824ad243059b1c8368f534eedd crossref_primary_10_1016_j_eng_2024_01_032 elsevier_sciencedirect_doi_10_1016_j_eng_2024_01_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationTitle | Engineering (Beijing, China) |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Blázquez-Castro (b0030) 2019; 10 Wu, Mao, Chen, Bachman, Chen, Rufo (b0055) 2017; 27 Petersson, Nilsson, Holm, Jönsson, Laurell (b0060) 2004; 129 Durnin (b0205) 1987; 4 Gong, Baudoin (b0200) 2019; 12 Li, Cao, Shi, Zhu, Geng, Feng (b0020) 2020; 124 Hong, Yin, Zhai, Yan, Wang, Zhang (b0155) 2017; 7 Wang, Szekerczes, Afanasev (b0255) 2022; 6 Li, Crivoi, Peng, Shen, Pu, Fan (b0275) 2021; 4 Liu, Liang, Yang, Yang, Cheng (b0085) 2020; 10 Lo, Fan, Ho, Lin, Yeh (b0280) 2021; 118 Liu, Cheng, Sonek, Berns, Chapman, Tromberg (b0025) 1995; 68 Marzo, Seah, Drinkwater, Sahoo, Long, Subramanian (b0130) 2015; 6 Grinenko, Wilcox, Courtney, Drinkwater (b0250) 2012; 468 Wang, Ke, Li, Yang, Qiu, Liu (b0210) 2016; 109 Silva, Lopes, Leão-Neto, Nichols, Drinkwater (b0125) 2019; 11 Baresch, Thomas, Marchiano (b0285) 2016; 116 Liu, Ming, Tan, Lin (b0090) 2019; 155 Gspan, Meyer, Bernet, Ritsch-Marte (b0145) 2004; 115 Chen, Yu, Wang, Lin (b0135) 2020; 8 Yang, Ma, Tu, Zhang (b0265) 2013; 113 Takatori, De Dier, Vermant, Brady (b0040) 2016; 7 Kalb DM, Galvez EJ. Composite vortices of displaced Laguerre–Gauss beams. In: Galvez EJ, Andrews DL, Glückstad J, editors. Proceedings volume 7227: complex light and optical forces III; 2009 Jan 28–29; San Jose, CA, USA. Bellingham: SPIE; 2009. p. 72270B. Li, Li, Ma, Guo, Tu, Zhang (b0230) 2020; 127 Zhou, Wang, Pu, Li, Guo, Chu (b0160) 2020; 128 Marzo, Drinkwater (b0165) 2019; 116 Cheng, Lü (b0195) 2010; 121 Watanabe, Hasegawa, Abe (b0070) 2018; 8 Marzo, Barnes, Drinkwater (b0100) 2017; 88 Hefner, Marston (b0140) 1999; 106 Yang, Ma, Li, Zhang, Huang, Liu (b0180) 2021; 2021 Courtney, Ong, Drinkwater, Bernassau, Wilcox, Cumming (b0095) 2012; 468 Collins, Morahan, Garcia-Bustos, Doerig, Plebanski, Neild (b0295) 2015; 6 Hwang, Kim, Park, Lee, Jung, Lee (b0045) 2016; 6 Zhou, Zhang, Ren, Xu, Liu (b0050) 2020; 116 Riaud, Baudoin, Bou Matar, Becerra, Thomas (b0290) 2017; 7 Courtney, Demore, Wu, Grinenko, Wilcox, Cochran (b0075) 2014; 104 Simon, Pailhas, Andrade, Reboud, Marques-Hueso, Desmulliez (b0110) 2018; 113 Li, Li, Ma, Guo, Tu, Zhang (b0175) 2018; 124 Ding, Ma, Li, Guo, Tu, Zhang (b0220) 2021; 130 Shi, Ahmed, Mao, Lin, Lawit, Huang (b0115) 2009; 9 Xu, Xu, Qian, Cheng, Liu (b0215) 2017; 80 Puranen T, Helander P, Meriläinen A, Maconi G, Penttilä A, Gritsevich M, et al. Multifrequency acoustic levitation. In: Proceedings of 2019 IEEE International Ultrasonics Symposium; 2019 Oct 6–9; Glasgow, UK. Piscataway: IEEE; 2019. p. 916–19. Kotlyar, Kovalev, Savelyeva (b0225) 2022; 46 Courtney, Drinkwater, Demore, Cochran, Grinenko, Wilcox (b0080) 2013; 102 Yang, Yang, Liu, Wang, Lu, Zhang (b0300) 2023; 14 Maleev, Swartzlander (b0185) 2003; 20 Naseer, Manbachi, Samandari, Walch, Gao, Zhang (b0120) 2017; 9 Zhang, Xie, Liu, Cheng, Chen, Tian (b0170) 2019; 114 Ding, Lin, Lapsley, Li, Guo, Chan (b0105) 2012; 12 Zhang, Wu, Yang, Li, Wen, Gu (b0245) 2021; 96 Wu (b0035) 1991; 89 Gor’kov LP (b0235) 1962; 6 Ashkin, Dziedzic, Bjorkholm, Chu (b0005) 1986; 11 Cheng, Lü (b0190) 2008; 55 Liu, Maccaferri, Shen, Li, Zaccaria, Zhang (b0010) 2020; 45 Yarin, Pfaffenlehner, Tropea (b0065) 1998; 356 Wang, Afanasev (b0260) 2023; 13 Shi, Zhao, Chin, Zhang, Yap, Ser (b0015) 2020; 20 Li, Guo, Ma, Tu, Zhang (b0240) 2017; 121 Gor’kov LP (10.1016/j.eng.2024.01.032_b0235) 1962; 6 Hwang (10.1016/j.eng.2024.01.032_b0045) 2016; 6 Cheng (10.1016/j.eng.2024.01.032_b0195) 2010; 121 Shi (10.1016/j.eng.2024.01.032_b0015) 2020; 20 Hong (10.1016/j.eng.2024.01.032_b0155) 2017; 7 Zhou (10.1016/j.eng.2024.01.032_b0050) 2020; 116 Simon (10.1016/j.eng.2024.01.032_b0110) 2018; 113 10.1016/j.eng.2024.01.032_b0150 10.1016/j.eng.2024.01.032_b0270 Liu (10.1016/j.eng.2024.01.032_b0010) 2020; 45 Marzo (10.1016/j.eng.2024.01.032_b0130) 2015; 6 Li (10.1016/j.eng.2024.01.032_b0275) 2021; 4 Liu (10.1016/j.eng.2024.01.032_b0090) 2019; 155 Ashkin (10.1016/j.eng.2024.01.032_b0005) 1986; 11 Courtney (10.1016/j.eng.2024.01.032_b0075) 2014; 104 Wu (10.1016/j.eng.2024.01.032_b0055) 2017; 27 Hefner (10.1016/j.eng.2024.01.032_b0140) 1999; 106 Wang (10.1016/j.eng.2024.01.032_b0255) 2022; 6 Shi (10.1016/j.eng.2024.01.032_b0115) 2009; 9 Zhou (10.1016/j.eng.2024.01.032_b0160) 2020; 128 Maleev (10.1016/j.eng.2024.01.032_b0185) 2003; 20 Grinenko (10.1016/j.eng.2024.01.032_b0250) 2012; 468 Ding (10.1016/j.eng.2024.01.032_b0105) 2012; 12 Wang (10.1016/j.eng.2024.01.032_b0210) 2016; 109 Xu (10.1016/j.eng.2024.01.032_b0215) 2017; 80 Durnin (10.1016/j.eng.2024.01.032_b0205) 1987; 4 Li (10.1016/j.eng.2024.01.032_b0175) 2018; 124 Baresch (10.1016/j.eng.2024.01.032_b0285) 2016; 116 Liu (10.1016/j.eng.2024.01.032_b0085) 2020; 10 Marzo (10.1016/j.eng.2024.01.032_b0165) 2019; 116 Chen (10.1016/j.eng.2024.01.032_b0135) 2020; 8 Zhang (10.1016/j.eng.2024.01.032_b0245) 2021; 96 Gong (10.1016/j.eng.2024.01.032_b0200) 2019; 12 Yarin (10.1016/j.eng.2024.01.032_b0065) 1998; 356 Courtney (10.1016/j.eng.2024.01.032_b0080) 2013; 102 Liu (10.1016/j.eng.2024.01.032_b0025) 1995; 68 Courtney (10.1016/j.eng.2024.01.032_b0095) 2012; 468 Wu (10.1016/j.eng.2024.01.032_b0035) 1991; 89 Marzo (10.1016/j.eng.2024.01.032_b0100) 2017; 88 Gspan (10.1016/j.eng.2024.01.032_b0145) 2004; 115 Li (10.1016/j.eng.2024.01.032_b0020) 2020; 124 Ding (10.1016/j.eng.2024.01.032_b0220) 2021; 130 Yang (10.1016/j.eng.2024.01.032_b0300) 2023; 14 Blázquez-Castro (10.1016/j.eng.2024.01.032_b0030) 2019; 10 Yang (10.1016/j.eng.2024.01.032_b0180) 2021; 2021 Collins (10.1016/j.eng.2024.01.032_b0295) 2015; 6 Lo (10.1016/j.eng.2024.01.032_b0280) 2021; 118 Riaud (10.1016/j.eng.2024.01.032_b0290) 2017; 7 Yang (10.1016/j.eng.2024.01.032_b0265) 2013; 113 Li (10.1016/j.eng.2024.01.032_b0230) 2020; 127 Wang (10.1016/j.eng.2024.01.032_b0260) 2023; 13 Li (10.1016/j.eng.2024.01.032_b0240) 2017; 121 Silva (10.1016/j.eng.2024.01.032_b0125) 2019; 11 Zhang (10.1016/j.eng.2024.01.032_b0170) 2019; 114 Takatori (10.1016/j.eng.2024.01.032_b0040) 2016; 7 Kotlyar (10.1016/j.eng.2024.01.032_b0225) 2022; 46 Watanabe (10.1016/j.eng.2024.01.032_b0070) 2018; 8 Petersson (10.1016/j.eng.2024.01.032_b0060) 2004; 129 Cheng (10.1016/j.eng.2024.01.032_b0190) 2008; 55 Naseer (10.1016/j.eng.2024.01.032_b0120) 2017; 9 |
References_xml | – volume: 356 start-page: 65 year: 1998 end-page: 91 ident: b0065 article-title: On the acoustic levitation of droplets publication-title: J Fluid Mech – volume: 11 year: 2019 ident: b0125 article-title: Particle patterning by ultrasonic standing waves in a rectangular cavity publication-title: Phys Rev Appl – volume: 4 start-page: 651 year: 1987 end-page: 654 ident: b0205 article-title: Exact solutions for nondiffracting beams. I. The scalar theory publication-title: J Opt Soc Am A – volume: 129 start-page: 938 year: 2004 end-page: 943 ident: b0060 article-title: Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels publication-title: Analyst – volume: 2021 year: 2021 ident: b0180 article-title: Self-navigated 3D acoustic tweezers in complex media based on time reversal publication-title: Research – volume: 113 year: 2018 ident: b0110 article-title: Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves publication-title: Appl Phys Lett – volume: 106 start-page: 3313 year: 1999 end-page: 3316 ident: b0140 article-title: An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems publication-title: J Acoust Soc Am – volume: 89 start-page: 2140 year: 1991 end-page: 2143 ident: b0035 article-title: Acoustical tweezers publication-title: J Acoust Soc Am – volume: 130 year: 2021 ident: b0220 article-title: Directional off-axis acoustic-vortex beams passing through a preassigned point publication-title: J Appl Phys – volume: 124 year: 2020 ident: b0020 article-title: Momentum-topology-induced optical pulling force publication-title: Phys Rev Lett – volume: 8 start-page: 24904 year: 2020 end-page: 24913 ident: b0135 article-title: Multichannel ultrasound focusing delay control method based on variable-length shift register for airborne ultrasound tactile feedback publication-title: IEEE Access – volume: 127 year: 2020 ident: b0230 article-title: Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays publication-title: J Appl Phys – volume: 14 start-page: 3297 year: 2023 ident: b0300 article-title: programmable acoustic manipulation of genetically engineered bacteria publication-title: Nat Commun – volume: 116 start-page: 84 year: 2019 end-page: 89 ident: b0165 article-title: Holographic acoustic tweezers publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 113 year: 2021 ident: b0275 article-title: Three dimensional acoustic tweezers with vortex streaming publication-title: Commun Phys – volume: 121 year: 2017 ident: b0240 article-title: Deep-level stereoscopic multiple traps of acoustic vortices publication-title: J Appl Phys – volume: 6 start-page: 8661 year: 2015 ident: b0130 article-title: Holographic acoustic elements for manipulation of levitated objects publication-title: Nat Commun – volume: 88 year: 2017 ident: b0100 article-title: TinyLev: a multi-emitter single-axis acoustic levitator publication-title: Rev Sci Instrum – volume: 6 year: 2022 ident: b0255 article-title: Electromagnetic vortex topologies from sparse circular phased arrays publication-title: J Phys Commun – volume: 9 start-page: 2890 year: 2009 end-page: 2895 ident: b0115 article-title: Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW) publication-title: Lab Chip – volume: 9 year: 2017 ident: b0120 article-title: Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels publication-title: Biofabrication – volume: 55 start-page: 2751 year: 2008 end-page: 2764 ident: b0190 article-title: Composite coherence vortexes in coherent and incoherent superpositions of two off-axis partially coherent vortex beams publication-title: J Mod Opt – volume: 6 start-page: 8686 year: 2015 ident: b0295 article-title: Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves publication-title: Nat Commun – volume: 13 start-page: 5672 year: 2023 ident: b0260 article-title: Topology and polarization of optical vortex fields from atomic phased arrays publication-title: Appl Sci – volume: 20 start-page: 5193 year: 2020 end-page: 5200 ident: b0015 article-title: Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale publication-title: Nano Lett – volume: 8 start-page: 10221 year: 2018 ident: b0070 article-title: Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation publication-title: Sci Rep – volume: 128 year: 2020 ident: b0160 article-title: Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation publication-title: J Appl Phys – volume: 68 start-page: 2137 year: 1995 end-page: 2144 ident: b0025 article-title: Evidence for localized cell heating induced by infrared optical tweezers publication-title: Biophys J – volume: 6 start-page: 773 year: 1962 end-page: 775 ident: b0235 article-title: On the forces acting on a small particle in an acoustical field in an ideal fluid publication-title: Sov Phys Dokl – volume: 113 year: 2013 ident: b0265 article-title: Phase-coded approach for controllable generation of acoustical vortices publication-title: J Appl Phys – volume: 109 year: 2016 ident: b0210 article-title: Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure publication-title: Appl Phys Lett – volume: 121 start-page: 589 year: 2010 end-page: 594 ident: b0195 article-title: Composite coherence vortexes and their propagation in free space publication-title: Optik – volume: 116 year: 2016 ident: b0285 article-title: Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers publication-title: Phys Rev Lett – volume: 102 year: 2013 ident: b0080 article-title: Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields publication-title: Appl Phys Lett – volume: 10 start-page: 3827 year: 2020 ident: b0085 article-title: Generation of non-aliased two-dimensional acoustic vortex with enclosed metasurface publication-title: Sci Rep – volume: 10 start-page: 507 year: 2019 ident: b0030 article-title: Optical tweezers: phototoxicity and thermal stress in cells and biomolecules publication-title: Micromachines – volume: 27 year: 2017 ident: b0055 article-title: Acoustic separation of nanoparticles in continuous flow publication-title: Adv Funct Mater – volume: 104 year: 2014 ident: b0075 article-title: Independent trapping and manipulation of microparticles using dexterous acoustic tweezers publication-title: Appl Phys Lett – volume: 46 start-page: 184 year: 2022 end-page: 188 ident: b0225 article-title: Topological charge of a superposition of identical parallel single-ringed Laguerre–Gaussian beams publication-title: Comput Opt – reference: Kalb DM, Galvez EJ. Composite vortices of displaced Laguerre–Gauss beams. In: Galvez EJ, Andrews DL, Glückstad J, editors. Proceedings volume 7227: complex light and optical forces III; 2009 Jan 28–29; San Jose, CA, USA. Bellingham: SPIE; 2009. p. 72270B. – volume: 6 start-page: 27238 year: 2016 ident: b0045 article-title: Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics publication-title: Sci Rep – volume: 12 start-page: 4228 year: 2012 end-page: 4231 ident: b0105 article-title: Standing surface acoustic wave (SSAW) based multichannel cell sorting publication-title: Lab Chip – volume: 114 year: 2019 ident: b0170 article-title: Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces publication-title: Appl Phys Lett – volume: 118 year: 2021 ident: b0280 article-title: Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles publication-title: Proc Natl Acad Sci USA – volume: 7 year: 2017 ident: b0290 article-title: Selective manipulation of microscopic particles with precursor swirling Rayleigh waves publication-title: Phys Rev Appl – volume: 7 start-page: 7093 year: 2017 ident: b0155 article-title: Dynamics of levitated objects in acoustic vortex fields publication-title: Sci Rep – volume: 45 start-page: 823 year: 2020 end-page: 826 ident: b0010 article-title: Particle trapping and beaming using a 3D nanotip excited with a plasmonic vortex publication-title: Opt Lett – volume: 12 year: 2019 ident: b0200 article-title: Particle assembly with synchronized acoustical tweezers publication-title: Phys Rev Appl – volume: 20 start-page: 1169 year: 2003 end-page: 1176 ident: b0185 article-title: Composite optical vortices publication-title: J Opt Soc Am B – volume: 115 start-page: 1142 year: 2004 end-page: 1146 ident: b0145 article-title: Optoacoustic generation of a helicoidal ultrasonic beam publication-title: J Acoust Soc Am – volume: 96 year: 2021 ident: b0245 article-title: Splitting, generation, and annihilation of phase singularities in non-coaxial interference of Bessel–Gaussian beams publication-title: Phys Scr – volume: 11 start-page: 288 year: 1986 end-page: 290 ident: b0005 article-title: Observation of a single-beam gradient force optical trap for dielectric particles publication-title: Opt Lett – volume: 124 year: 2018 ident: b0175 article-title: Regulation of multiple off-axis acoustic vortices with a centered quasi-plane wave publication-title: J Appl Phys – volume: 7 start-page: 10694 year: 2016 ident: b0040 article-title: Acoustic trapping of active matter publication-title: Nat Commun – volume: 468 start-page: 337 year: 2012 end-page: 360 ident: b0095 article-title: Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves publication-title: Proc R Soc A – reference: Puranen T, Helander P, Meriläinen A, Maconi G, Penttilä A, Gritsevich M, et al. Multifrequency acoustic levitation. In: Proceedings of 2019 IEEE International Ultrasonics Symposium; 2019 Oct 6–9; Glasgow, UK. Piscataway: IEEE; 2019. p. 916–19. – volume: 155 start-page: 216 year: 2019 end-page: 221 ident: b0090 article-title: Acoustic trapping with 3-D manipulation publication-title: Appl Acoust – volume: 116 year: 2020 ident: b0050 article-title: Multi-bottle beam generation using acoustic holographic lens publication-title: Appl Phys Lett – volume: 80 start-page: 66 year: 2017 end-page: 71 ident: b0215 article-title: A flat acoustic lens to generate a Bessel-like beam publication-title: Ultrasonics – volume: 468 start-page: 3571 year: 2012 end-page: 3586 ident: b0250 article-title: Proof of principle study of ultrasonic particle manipulation by a circular array device publication-title: Proc R Soc A – volume: 9 issue: 1 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0120 article-title: Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels publication-title: Biofabrication doi: 10.1088/1758-5090/aa585e – volume: 468 start-page: 3571 issue: 2147 year: 2012 ident: 10.1016/j.eng.2024.01.032_b0250 article-title: Proof of principle study of ultrasonic particle manipulation by a circular array device publication-title: Proc R Soc A doi: 10.1098/rspa.2012.0232 – volume: 130 issue: 14 year: 2021 ident: 10.1016/j.eng.2024.01.032_b0220 article-title: Directional off-axis acoustic-vortex beams passing through a preassigned point publication-title: J Appl Phys doi: 10.1063/5.0058213 – volume: 68 start-page: 2137 issue: 5 year: 1995 ident: 10.1016/j.eng.2024.01.032_b0025 article-title: Evidence for localized cell heating induced by infrared optical tweezers publication-title: Biophys J doi: 10.1016/S0006-3495(95)80396-6 – volume: 11 issue: 5 year: 2019 ident: 10.1016/j.eng.2024.01.032_b0125 article-title: Particle patterning by ultrasonic standing waves in a rectangular cavity publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.11.054044 – volume: 6 start-page: 27238 issue: 1 year: 2016 ident: 10.1016/j.eng.2024.01.032_b0045 article-title: Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics publication-title: Sci Rep doi: 10.1038/srep27238 – volume: 113 issue: 4 year: 2018 ident: 10.1016/j.eng.2024.01.032_b0110 article-title: Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves publication-title: Appl Phys Lett doi: 10.1063/1.5035261 – volume: 116 issue: 13 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0050 article-title: Multi-bottle beam generation using acoustic holographic lens publication-title: Appl Phys Lett doi: 10.1063/5.0003379 – ident: 10.1016/j.eng.2024.01.032_b0270 doi: 10.1117/12.808814 – volume: 8 start-page: 24904 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0135 article-title: Multichannel ultrasound focusing delay control method based on variable-length shift register for airborne ultrasound tactile feedback publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970451 – volume: 10 start-page: 507 issue: 8 year: 2019 ident: 10.1016/j.eng.2024.01.032_b0030 article-title: Optical tweezers: phototoxicity and thermal stress in cells and biomolecules publication-title: Micromachines doi: 10.3390/mi10080507 – volume: 96 issue: 12 year: 2021 ident: 10.1016/j.eng.2024.01.032_b0245 article-title: Splitting, generation, and annihilation of phase singularities in non-coaxial interference of Bessel–Gaussian beams publication-title: Phys Scr doi: 10.1088/1402-4896/ac2185 – volume: 128 issue: 8 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0160 article-title: Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation publication-title: J Appl Phys doi: 10.1063/5.0006703 – volume: 7 issue: 2 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0290 article-title: Selective manipulation of microscopic particles with precursor swirling Rayleigh waves publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.7.024007 – ident: 10.1016/j.eng.2024.01.032_b0150 doi: 10.1109/ULTSYM.2019.8926200 – volume: 20 start-page: 5193 issue: 7 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0015 article-title: Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c01464 – volume: 4 start-page: 113 issue: 1 year: 2021 ident: 10.1016/j.eng.2024.01.032_b0275 article-title: Three dimensional acoustic tweezers with vortex streaming publication-title: Commun Phys doi: 10.1038/s42005-021-00617-0 – volume: 9 start-page: 2890 issue: 20 year: 2009 ident: 10.1016/j.eng.2024.01.032_b0115 article-title: Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW) publication-title: Lab Chip doi: 10.1039/b910595f – volume: 14 start-page: 3297 issue: 1 year: 2023 ident: 10.1016/j.eng.2024.01.032_b0300 article-title: In-vivo programmable acoustic manipulation of genetically engineered bacteria publication-title: Nat Commun doi: 10.1038/s41467-023-38814-w – volume: 20 start-page: 1169 issue: 6 year: 2003 ident: 10.1016/j.eng.2024.01.032_b0185 article-title: Composite optical vortices publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.20.001169 – volume: 118 issue: 4 year: 2021 ident: 10.1016/j.eng.2024.01.032_b0280 article-title: Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2023188118 – volume: 127 issue: 12 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0230 article-title: Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays publication-title: J Appl Phys doi: 10.1063/1.5135991 – volume: 155 start-page: 216 year: 2019 ident: 10.1016/j.eng.2024.01.032_b0090 article-title: Acoustic trapping with 3-D manipulation publication-title: Appl Acoust doi: 10.1016/j.apacoust.2019.06.008 – volume: 8 start-page: 10221 issue: 1 year: 2018 ident: 10.1016/j.eng.2024.01.032_b0070 article-title: Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation publication-title: Sci Rep doi: 10.1038/s41598-018-28451-5 – volume: 102 issue: 12 year: 2013 ident: 10.1016/j.eng.2024.01.032_b0080 article-title: Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields publication-title: Appl Phys Lett doi: 10.1063/1.4798584 – volume: 6 start-page: 773 year: 1962 ident: 10.1016/j.eng.2024.01.032_b0235 article-title: On the forces acting on a small particle in an acoustical field in an ideal fluid publication-title: Sov Phys Dokl – volume: 129 start-page: 938 issue: 10 year: 2004 ident: 10.1016/j.eng.2024.01.032_b0060 article-title: Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels publication-title: Analyst doi: 10.1039/B409139F – volume: 80 start-page: 66 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0215 article-title: A flat acoustic lens to generate a Bessel-like beam publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.05.005 – volume: 7 start-page: 10694 issue: 1 year: 2016 ident: 10.1016/j.eng.2024.01.032_b0040 article-title: Acoustic trapping of active matter publication-title: Nat Commun doi: 10.1038/ncomms10694 – volume: 55 start-page: 2751 issue: 17 year: 2008 ident: 10.1016/j.eng.2024.01.032_b0190 article-title: Composite coherence vortexes in coherent and incoherent superpositions of two off-axis partially coherent vortex beams publication-title: J Mod Opt doi: 10.1080/09500340802167524 – volume: 116 issue: 2 year: 2016 ident: 10.1016/j.eng.2024.01.032_b0285 article-title: Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.116.024301 – volume: 109 issue: 12 year: 2016 ident: 10.1016/j.eng.2024.01.032_b0210 article-title: Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure publication-title: Appl Phys Lett doi: 10.1063/1.4963185 – volume: 6 issue: 2 year: 2022 ident: 10.1016/j.eng.2024.01.032_b0255 article-title: Electromagnetic vortex topologies from sparse circular phased arrays publication-title: J Phys Commun doi: 10.1088/2399-6528/ac5089 – volume: 113 issue: 15 year: 2013 ident: 10.1016/j.eng.2024.01.032_b0265 article-title: Phase-coded approach for controllable generation of acoustical vortices publication-title: J Appl Phys doi: 10.1063/1.4801894 – volume: 114 issue: 9 year: 2019 ident: 10.1016/j.eng.2024.01.032_b0170 article-title: Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces publication-title: Appl Phys Lett doi: 10.1063/1.5087636 – volume: 10 start-page: 3827 issue: 1 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0085 article-title: Generation of non-aliased two-dimensional acoustic vortex with enclosed metasurface publication-title: Sci Rep doi: 10.1038/s41598-020-60836-3 – volume: 121 start-page: 589 issue: 7 year: 2010 ident: 10.1016/j.eng.2024.01.032_b0195 article-title: Composite coherence vortexes and their propagation in free space publication-title: Optik doi: 10.1016/j.ijleo.2008.09.019 – volume: 45 start-page: 823 issue: 4 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0010 article-title: Particle trapping and beaming using a 3D nanotip excited with a plasmonic vortex publication-title: Opt Lett doi: 10.1364/OL.384899 – volume: 2021 year: 2021 ident: 10.1016/j.eng.2024.01.032_b0180 article-title: Self-navigated 3D acoustic tweezers in complex media based on time reversal publication-title: Research doi: 10.34133/2021/9781394 – volume: 88 issue: 8 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0100 article-title: TinyLev: a multi-emitter single-axis acoustic levitator publication-title: Rev Sci Instrum doi: 10.1063/1.4989995 – volume: 106 start-page: 3313 issue: 6 year: 1999 ident: 10.1016/j.eng.2024.01.032_b0140 article-title: An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems publication-title: J Acoust Soc Am doi: 10.1121/1.428184 – volume: 46 start-page: 184 issue: 2 year: 2022 ident: 10.1016/j.eng.2024.01.032_b0225 article-title: Topological charge of a superposition of identical parallel single-ringed Laguerre–Gaussian beams publication-title: Comput Opt doi: 10.18287/2412-6179-CO-1086 – volume: 12 issue: 2 year: 2019 ident: 10.1016/j.eng.2024.01.032_b0200 article-title: Particle assembly with synchronized acoustical tweezers publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.12.024045 – volume: 7 start-page: 7093 issue: 1 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0155 article-title: Dynamics of levitated objects in acoustic vortex fields publication-title: Sci Rep doi: 10.1038/s41598-017-07477-1 – volume: 124 issue: 11 year: 2018 ident: 10.1016/j.eng.2024.01.032_b0175 article-title: Regulation of multiple off-axis acoustic vortices with a centered quasi-plane wave publication-title: J Appl Phys doi: 10.1063/1.5033971 – volume: 115 start-page: 1142 issue: 3 year: 2004 ident: 10.1016/j.eng.2024.01.032_b0145 article-title: Optoacoustic generation of a helicoidal ultrasonic beam publication-title: J Acoust Soc Am doi: 10.1121/1.1643367 – volume: 4 start-page: 651 issue: 4 year: 1987 ident: 10.1016/j.eng.2024.01.032_b0205 article-title: Exact solutions for nondiffracting beams. I. The scalar theory publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.4.000651 – volume: 124 issue: 14 year: 2020 ident: 10.1016/j.eng.2024.01.032_b0020 article-title: Momentum-topology-induced optical pulling force publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.124.143901 – volume: 121 issue: 16 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0240 article-title: Deep-level stereoscopic multiple traps of acoustic vortices publication-title: J Appl Phys doi: 10.1063/1.4981122 – volume: 13 start-page: 5672 issue: 9 year: 2023 ident: 10.1016/j.eng.2024.01.032_b0260 article-title: Topology and polarization of optical vortex fields from atomic phased arrays publication-title: Appl Sci doi: 10.3390/app13095672 – volume: 468 start-page: 337 issue: 2138 year: 2012 ident: 10.1016/j.eng.2024.01.032_b0095 article-title: Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves publication-title: Proc R Soc A doi: 10.1098/rspa.2011.0269 – volume: 11 start-page: 288 issue: 5 year: 1986 ident: 10.1016/j.eng.2024.01.032_b0005 article-title: Observation of a single-beam gradient force optical trap for dielectric particles publication-title: Opt Lett doi: 10.1364/OL.11.000288 – volume: 89 start-page: 2140 issue: 5 year: 1991 ident: 10.1016/j.eng.2024.01.032_b0035 article-title: Acoustical tweezers publication-title: J Acoust Soc Am doi: 10.1121/1.400907 – volume: 27 issue: 14 year: 2017 ident: 10.1016/j.eng.2024.01.032_b0055 article-title: Acoustic separation of nanoparticles in continuous flow publication-title: Adv Funct Mater doi: 10.1002/adfm.201606039 – volume: 6 start-page: 8661 issue: 1 year: 2015 ident: 10.1016/j.eng.2024.01.032_b0130 article-title: Holographic acoustic elements for manipulation of levitated objects publication-title: Nat Commun doi: 10.1038/ncomms9661 – volume: 12 start-page: 4228 issue: 21 year: 2012 ident: 10.1016/j.eng.2024.01.032_b0105 article-title: Standing surface acoustic wave (SSAW) based multichannel cell sorting publication-title: Lab Chip doi: 10.1039/c2lc40751e – volume: 6 start-page: 8686 issue: 1 year: 2015 ident: 10.1016/j.eng.2024.01.032_b0295 article-title: Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves publication-title: Nat Commun doi: 10.1038/ncomms9686 – volume: 356 start-page: 65 year: 1998 ident: 10.1016/j.eng.2024.01.032_b0065 article-title: On the acoustic levitation of droplets publication-title: J Fluid Mech doi: 10.1017/S0022112097007829 – volume: 116 start-page: 84 issue: 1 year: 2019 ident: 10.1016/j.eng.2024.01.032_b0165 article-title: Holographic acoustic tweezers publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1813047115 – volume: 104 issue: 15 year: 2014 ident: 10.1016/j.eng.2024.01.032_b0075 article-title: Independent trapping and manipulation of microparticles using dexterous acoustic tweezers publication-title: Appl Phys Lett doi: 10.1063/1.4870489 |
SSID | ssj0001510708 |
Score | 2.2965674 |
Snippet | Acoustic-vortex (AV) tweezers ensure stable particle trapping at a zero-pressure center, while particle assembly between two vortex cores is still prevented by... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 139 |
SubjectTerms | Centrosymmetric array of off-axis acoustic vortexes Initial phase difference Particle assembly Phase-reversal strategy Single-sided ring array |
Title | Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes |
URI | https://dx.doi.org/10.1016/j.eng.2024.01.032 https://doaj.org/article/51d133824ad243059b1c8368f534eedd |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ET5xf5OBJKLZpkrbHTTeG4Ae4yW4laZoxca3YqZt_vS9JJ_UgXryG0qS_JO_9XvPyewid0UgA7Uh8T0see1SKAPYciT2lYhkmjDDJzOXkm1s-GNHrMRs3Sn2ZnDAnD-yAu2CBMmEUoUIRI0-VyCCLQx5rFlKw78pYX_B5jWDK3Q-GsMaVowMOAWY4SVZHmja5Ky8mEBsSaiU7Q_LDKVnt_oZvavib_hbarIki7rgBbqO1vNhBGw35wF1UDT9K78rI8ztpDXxffw42R7kz-bzEXXBSCpcFBp6HH5ZFZrVwP6Gt914vOlxqbP_xltVyNjMFtjJ8p7XXWUwr3MlKW-4LP5qk3EVe7aFRvze8HHh1EQUvC7k_9yACjAxJYkITGfkRsdLENM6pJCJiWcJzrRMVKEG5VJJIoowOkx-oiAoJ9nAftYqyyA8QNuEIJ0oJHQgqmBRJJGKeAdZRGKvMb6PzFYrpi9PKSFdJZE-wCyepgTz1gxQgb6Ouwfn7QSNzbRtg8tMarfSvyW8jupqltGYMjgnAq6a_9334H30foXViagHbLJ5j1Jq_vuUnQFDm8tSuxS-69-Be |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Particle+Assembly+Based+on+the+Synchronized+Evolution+of+Centrosymmetric+Off-Axis+Acoustic+Vortexes&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Ning+Ding&rft.au=Gepu+Guo&rft.au=Juan+Tu&rft.au=Dong+Zhang&rft.date=2025-04-01&rft.pub=Elsevier&rft.issn=2095-8099&rft.volume=47&rft.spage=139&rft.epage=151&rft_id=info:doi/10.1016%2Fj.eng.2024.01.032&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51d133824ad243059b1c8368f534eedd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8099&client=summon |