Influence of inelastic collisions with hydrogen atoms on the non-local thermodynamic equilibrium line formation for Fe I and Fe II in the 1D model atmospheres of late-type stars

Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe II lines. T...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 631; p. A43
Main Authors Mashonkina, L., Sitnova, T., Yakovleva, S. A., Belyaev, A. K.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe II lines. The main source of the uncertainties in the non-LTE (NLTE) calculations for cool atmospheres is a treatment of inelastic collisions with hydrogen atoms. Aims. Our aim is to investigate the effect of Fe I + H I and Fe II + H I collisions and their different treatments on the Fe I/Fe II ionisation equilibrium and iron abundance determinations for three Galactic halo benchmark stars (HD 84937, HD 122563, and HD 140283) and a sample of 38 very metal-poor giants in the dwarf galaxies with well known distances. Methods. We performed the NLTE calculations for Fe I–Fe II by applying quantum-mechanical rate coefficients for collisions with H I from recent papers. Results. We find that collisions with H I serve as efficient thermalisation processes for Fe II, to an extent that the NLTE abundance corrections for Fe II lines do not exceed 0.02 dex, in absolute value, for [Fe/H] ≳−3, and reach +0.06 dex at [Fe/H] ~−4. For a given star, different treatments of Fe I + H I collisions lead to similar average NLTE abundances from the Fe I lines, although discrepancies in the NLTE abundance corrections exist for individual lines. By using quantum-mechanical collisional data and the Gaia-based surface gravity, we obtain consistent abundances from the two ionisation stages, Fe I and Fe II, for red giant HD 122563. For turn-off star HD 84937, and subgiant HD 140283, we analyse the iron lines in the visible and the ultra-violet (UV, 1968–2990 Å) ranges. For either Fe I or Fe II, abundances from the visible and UV lines are found to be consistent in each star. The NLTE abundances from the two ionisation stages agree within 0.10 dex and 0.13 dex for two different treatments of Fe I + H I collisions. The Fe I/Fe II ionisation equilibrium is achieved for each star of our stellar sample in the dwarf galaxies, with the exception of stars at [Fe/H] ≲−3.7.
AbstractList Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe  I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe  II lines. The main source of the uncertainties in the non-LTE (NLTE) calculations for cool atmospheres is a treatment of inelastic collisions with hydrogen atoms. Aims. Our aim is to investigate the effect of Fe  I + H  I and Fe  II + H  I collisions and their different treatments on the Fe  I /Fe  II ionisation equilibrium and iron abundance determinations for three Galactic halo benchmark stars (HD 84937, HD 122563, and HD 140283) and a sample of 38 very metal-poor giants in the dwarf galaxies with well known distances. Methods. We performed the NLTE calculations for Fe  I –Fe  II by applying quantum-mechanical rate coefficients for collisions with H  I from recent papers. Results. We find that collisions with H  I serve as efficient thermalisation processes for Fe  II , to an extent that the NLTE abundance corrections for Fe  II lines do not exceed 0.02 dex, in absolute value, for [Fe/H] ≳−3, and reach +0.06 dex at [Fe/H] ~−4. For a given star, different treatments of Fe  I + H  I collisions lead to similar average NLTE abundances from the Fe  I lines, although discrepancies in the NLTE abundance corrections exist for individual lines. By using quantum-mechanical collisional data and the Gaia -based surface gravity, we obtain consistent abundances from the two ionisation stages, Fe  I and Fe  II , for red giant HD 122563. For turn-off star HD 84937, and subgiant HD 140283, we analyse the iron lines in the visible and the ultra-violet (UV, 1968–2990 Å) ranges. For either Fe  I or Fe  II , abundances from the visible and UV lines are found to be consistent in each star. The NLTE abundances from the two ionisation stages agree within 0.10 dex and 0.13 dex for two different treatments of Fe  I + H  I collisions. The Fe  I /Fe  II ionisation equilibrium is achieved for each star of our stellar sample in the dwarf galaxies, with the exception of stars at [Fe/H] ≲−3.7.
Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe II lines. The main source of the uncertainties in the non-LTE (NLTE) calculations for cool atmospheres is a treatment of inelastic collisions with hydrogen atoms. Aims. Our aim is to investigate the effect of Fe I + H I and Fe II + H I collisions and their different treatments on the Fe I/Fe II ionisation equilibrium and iron abundance determinations for three Galactic halo benchmark stars (HD 84937, HD 122563, and HD 140283) and a sample of 38 very metal-poor giants in the dwarf galaxies with well known distances. Methods. We performed the NLTE calculations for Fe I–Fe II by applying quantum-mechanical rate coefficients for collisions with H I from recent papers. Results. We find that collisions with H I serve as efficient thermalisation processes for Fe II, to an extent that the NLTE abundance corrections for Fe II lines do not exceed 0.02 dex, in absolute value, for [Fe/H] ≳−3, and reach +0.06 dex at [Fe/H] ~−4. For a given star, different treatments of Fe I + H I collisions lead to similar average NLTE abundances from the Fe I lines, although discrepancies in the NLTE abundance corrections exist for individual lines. By using quantum-mechanical collisional data and the Gaia-based surface gravity, we obtain consistent abundances from the two ionisation stages, Fe I and Fe II, for red giant HD 122563. For turn-off star HD 84937, and subgiant HD 140283, we analyse the iron lines in the visible and the ultra-violet (UV, 1968–2990 Å) ranges. For either Fe I or Fe II, abundances from the visible and UV lines are found to be consistent in each star. The NLTE abundances from the two ionisation stages agree within 0.10 dex and 0.13 dex for two different treatments of Fe I + H I collisions. The Fe I/Fe II ionisation equilibrium is achieved for each star of our stellar sample in the dwarf galaxies, with the exception of stars at [Fe/H] ≲−3.7.
Author Mashonkina, L.
Sitnova, T.
Yakovleva, S. A.
Belyaev, A. K.
Author_xml – sequence: 1
  givenname: L.
  surname: Mashonkina
  fullname: Mashonkina, L.
  organization: Institute of Astronomy, Russian Academy of Sciences, 119017 Moscow, Russia
– sequence: 2
  givenname: T.
  surname: Sitnova
  fullname: Sitnova, T.
  organization: Institute of Astronomy, Russian Academy of Sciences, 119017 Moscow, Russia
– sequence: 3
  givenname: S. A.
  surname: Yakovleva
  fullname: Yakovleva, S. A.
  organization: Department of Theoretical Physics and Astronomy, Herzen University, St. Petersburg 191186, Russia
– sequence: 4
  givenname: A. K.
  surname: Belyaev
  fullname: Belyaev, A. K.
  organization: Department of Theoretical Physics and Astronomy, Herzen University, St. Petersburg 191186, Russia
BookMark eNqFkc9u1DAQxi3USmxbnoCLJc6h_pM48RG1dLtVERcQ3CxvMmZdHHtrO4K99Y166gvxJDjdag9cOM2MNN_vG31zgo588IDQW0reU9LQc0JIXQku6DkjVPKmbfgrtKA1ZxVpa3GEFoeN1-gkpbsyMtrxBXpaeeMm8D3gYLD14HTKtsd9cM4mG3zCv2ze4M1uiOEHeKxzGBMOHucN4HJG5UKv3TzFMQw7r8eihvvJOruOdhqxK1BsQhx1Lri5w1fw5-FxhbUfXtpVcX4G0ktcKOCKzRjStkAhzYc5naHKuy3glHVMZ-jYaJfgzUs9RV-vPn65uK5uPy9XFx9uq54Lkqt2LQZWD0aSlg60Y3JNjF4bTbhhICRQKiiVrC2xcKJl13DTdHVngPas7VjDT9G7PXcbw_0EKau7MEVfLBWrO9EILmtStvh-q48hpQhGbaMdddwpStT8HzWnr-b01eE_RSX_UfU2P2eUo7buP9pqr7Upw--DnY4_lWh526iOfFM3bPnpu7y5VEv-Fx4qqUE
CitedBy_id crossref_primary_10_1093_mnras_stac1813
crossref_primary_10_1134_S1063773720010041
crossref_primary_10_1051_0004_6361_202244542
crossref_primary_10_1051_0004_6361_202038805
crossref_primary_10_1051_0004_6361_202349049
crossref_primary_10_3847_1538_4357_acf5e1
crossref_primary_10_1093_mnras_stab786
crossref_primary_10_1051_0004_6361_202450981
crossref_primary_10_1093_mnras_stad3141
crossref_primary_10_1103_PhysRevLett_130_029901
crossref_primary_10_1093_mnras_staa2582
crossref_primary_10_1051_0004_6361_201937110
crossref_primary_10_1093_mnras_stad2114
crossref_primary_10_1051_0004_6361_202142971
crossref_primary_10_1093_mnras_stz3546
crossref_primary_10_3847_1538_4357_ac46fd
crossref_primary_10_3847_1538_4357_ab736f
Cites_doi 10.1051/0004-6361/200912302
10.1111/j.1365-2966.2012.21686.x
10.1016/j.chemphys.2018.08.012
10.1111/j.1365-2966.2012.21687.x
10.1051/0004-6361/201833051
10.1051/0004-6361/201730779
10.1051/0004-6361/201834721
10.1051/0004-6361/201322631
10.1086/192079
10.1364/JOSAB.8.001185
10.1051/0004-6361/201423456
10.1007/BF01379963
10.1051/0004-6361/201935811
10.1088/0953-4075/24/5/004
10.1088/0004-637X/808/2/148
10.3847/0004-637X/817/1/53
10.1051/0004-6361:20030907
10.1086/305061
10.3847/1538-4357/aa8cd3
10.3847/1538-3881/aacb21
10.1051/0004-6361:200809724
10.1093/mnras/stz626
10.3847/1538-4357/aac6df
10.1093/mnras/stx2580
10.1103/PhysRevA.93.042705
10.1051/aas:1997327
10.1093/mnras/sts319
10.1088/0031-8949/90/5/054005
10.1093/mnras/stw2077
10.1007/BF01392775
10.1086/319789
10.1088/0067-0049/215/2/23
10.1093/mnras/stu780
10.1093/mnras/sty3371
10.1093/mnras/stx673
10.1051/0004-6361/200811508
10.1093/mnrasl/sly010
10.1007/BF01005745
10.1051/0004-6361/201731232
10.1051/0004-6361:20000287
10.1051/0004-6361/201015336
10.1051/0004-6361/201219651
10.1051/0004-6361/201732365
ContentType Journal Article
Copyright Copyright EDP Sciences Nov 2019
Copyright_xml – notice: Copyright EDP Sciences Nov 2019
DBID BSCLL
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/201935753
DatabaseName Istex
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_201935753
ark_67375_80W_J2GMX9JD_G
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c360t-7b6d24df9071d1829b0fabfa03f2e69e1161192736130a9853f5848fe1c278253
ISSN 0004-6361
IngestDate Mon Jun 30 03:54:21 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
Tue Jul 01 03:59:22 EDT 2025
Wed Oct 30 09:39:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c360t-7b6d24df9071d1829b0fabfa03f2e69e1161192736130a9853f5848fe1c278253
Notes e-mail: lima@inasan.ru
publisher-ID:aa35753-19
ark:/67375/80W-J2GMX9JD-G
href:https://www.aanda.org/articles/aa/abs/2019/11/aa35753-19/aa35753-19.html
istex:C799E5D27E5A68BDE434A0B49B91F4B2C82C87B9
Full Tables 2 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/631/A43
bibcode:2019A%26A...631A..43M
dkey:10.1051/0004-6361/201935753
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2019/11/aa35753-19.pdf
PQID 2486563940
PQPubID 1796397
ParticipantIDs proquest_journals_2486563940
crossref_primary_10_1051_0004_6361_201935753
crossref_citationtrail_10_1051_0004_6361_201935753
istex_primary_ark_67375_80W_J2GMX9JD_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2019
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Bagnulo (R2) 2003; 114
Belmonte (R11) 2017; 848
Kurucz (R36) 1992; 23
Drawin (R22) 1968; 211
Amarsi (R1) 2016; 463
Bergemann (R14) 2014; 565
Pauls (R47) 1990; 231
Yakovleva (R63) 2019; 483
Steenbock (R58) 1984; 130
Barklem (R4) 2016; 93
Kroll (R35) 1987; 67
Ruffoni (R51) 2014; 441
Creevey (R20) 2019; 625
Pakhomov (R46) 2019; 45
Ryabchikova (R52) 2015; 90
Brown (R25) 2018; 616
Grevesse (R29) 1999; 347
Bensby (R12) 2014; 562
Lind (R39) 2017; 468
Sneden (R57) 2016; 817
Bautista (R10) 2017; 606
Mashonkina (R40) 2011; 528
Moity (R43) 1983; 52
R5
Grupp (R30) 2009; 503
Den Hartog (R21) 2014; 215
Kaulakys (R33) 1991; 24
Sitnova (R55) 2015; 808
Gehren (R26) 2001; 366
Shchukina (R54) 2001; 550
Barklem (R6) 2018; 612
R37
O’Brian (R45) 1991; 8
Gratton (R28) 1999; 350
Zhang (R64) 1995; 293
Bergemann (R13) 2012; 427
Bautista (R7) 1997; 122
Fuhr (R24) 1988; 17
Roederer (R49) 2018; 860
Nave (R44) 1994; 94
Gigas (R27) 1986; 165
Gustafsson (R31) 2008; 486
Korn (R34) 2003; 407
Tsymbal (R60) 2019; 518
Mashonkina (R41) 2017; 604
Drawin (R23) 1969; 225
Raassen (R48) 1998; 340
Yakovleva (R61) 2018; 515
Yakovleva (R62) 2018; 473
Creevey (R19) 2012; 545
Meléndez (R42) 2009; 497
Bautista (R9) 1998; 492
Karovicova (R32) 2018; 475
Ruchti (R50) 2013; 429
Boyarchuk (R16) 1985; 22
Tanaka (R59) 1971; 23
Bailer-Jones (R3) 2018; 156
R53
Lind (R38) 2012; 427
Bautista (R8) 1996; 115
R15
R18
R17
Sitnova (R56) 2019; 485
References_xml – volume: 503
  start-page: 177
  year: 2009
  ident: R30
  publication-title: A&A
  doi: 10.1051/0004-6361/200912302
– volume: 427
  start-page: 50
  year: 2012
  ident: R38
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21686.x
– volume: 515
  start-page: 369
  year: 2018
  ident: R61
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.08.012
– volume: 130
  start-page: 319
  year: 1984
  ident: R58
  publication-title: A&A
– volume: 427
  start-page: 27
  year: 2012
  ident: R13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21687.x
– volume: 616
  start-page: A1
  year: 2018
  ident: R25
  publication-title: A&A
  doi: 10.1051/0004-6361/201833051
– volume: 17
  start-page: 504
  year: 1988
  ident: R24
  publication-title: J. Phys. Chem. Ref. Data
– volume: 604
  start-page: A129
  year: 2017
  ident: R41
  publication-title: A&A
  doi: 10.1051/0004-6361/201730779
– volume: 625
  start-page: A33
  year: 2019
  ident: R20
  publication-title: A&A
  doi: 10.1051/0004-6361/201834721
– volume: 45
  start-page: 303
  year: 2019
  ident: R46
  publication-title: Astron. Lett.
– volume: 562
  start-page: A71
  year: 2014
  ident: R12
  publication-title: A&A
  doi: 10.1051/0004-6361/201322631
– volume: 94
  start-page: 221
  year: 1994
  ident: R44
  publication-title: ApJS
  doi: 10.1086/192079
– volume: 8
  start-page: 1185
  year: 1991
  ident: R45
  publication-title: J. Opt. Soc. Am. B Opt. Phys.
  doi: 10.1364/JOSAB.8.001185
– volume: 565
  start-page: A89
  year: 2014
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201423456
– ident: R5
– volume: 347
  start-page: 348
  year: 1999
  ident: R29
  publication-title: A&A
– volume: 211
  start-page: 404
  year: 1968
  ident: R22
  publication-title: Z. Phys.
  doi: 10.1007/BF01379963
– volume: 340
  start-page: 300
  year: 1998
  ident: R48
  publication-title: A&A
– volume: 52
  start-page: 37
  year: 1983
  ident: R43
  publication-title: A&AS
– ident: R15
  doi: 10.1051/0004-6361/201935811
– volume: 24
  start-page: L127
  year: 1991
  ident: R33
  publication-title: J. Phys. B At. Mol. Phys.
  doi: 10.1088/0953-4075/24/5/004
– volume: 808
  start-page: 148
  year: 2015
  ident: R55
  publication-title: ApJ
  doi: 10.1088/0004-637X/808/2/148
– volume: 817
  start-page: 53
  year: 2016
  ident: R57
  publication-title: ApJ
  doi: 10.3847/0004-637X/817/1/53
– volume: 407
  start-page: 691
  year: 2003
  ident: R34
  publication-title: A&A
  doi: 10.1051/0004-6361:20030907
– volume: 492
  start-page: 650
  year: 1998
  ident: R9
  publication-title: ApJ
  doi: 10.1086/305061
– volume: 231
  start-page: 536
  year: 1990
  ident: R47
  publication-title: A&A
– volume: 848
  start-page: 125
  year: 2017
  ident: R11
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8cd3
– volume: 156
  start-page: 58
  year: 2018
  ident: R3
  publication-title: AJ
  doi: 10.3847/1538-3881/aacb21
– volume: 486
  start-page: 951
  year: 2008
  ident: R31
  publication-title: A&A
  doi: 10.1051/0004-6361:200809724
– volume: 485
  start-page: 3527
  year: 2019
  ident: R56
  publication-title: MNRAS
  doi: 10.1093/mnras/stz626
– volume: 67
  start-page: 225
  year: 1987
  ident: R35
  publication-title: A&AS
– volume: 860
  start-page: 125
  year: 2018
  ident: R49
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac6df
– ident: R53
– volume: 23
  start-page: 217
  year: 1971
  ident: R59
  publication-title: PASJ
– volume: 473
  start-page: 3810
  year: 2018
  ident: R62
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2580
– volume: 93
  start-page: 042705
  year: 2016
  ident: R4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.042705
– volume: 350
  start-page: 955
  year: 1999
  ident: R28
  publication-title: A&A
– volume: 122
  start-page: 167
  year: 1997
  ident: R7
  publication-title: A&AS
  doi: 10.1051/aas:1997327
– volume: 429
  start-page: 126
  year: 2013
  ident: R50
  publication-title: MNRAS
  doi: 10.1093/mnras/sts319
– volume: 114
  start-page: 10
  year: 2003
  ident: R2
  publication-title: The Messenger
– volume: 293
  start-page: 953
  year: 1995
  ident: R64
  publication-title: A&A
– volume: 90
  start-page: 054005
  year: 2015
  ident: R52
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/90/5/054005
– volume: 463
  start-page: 1518
  year: 2016
  ident: R1
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2077
– volume: 225
  start-page: 483
  year: 1969
  ident: R23
  publication-title: Z. Phys.
  doi: 10.1007/BF01392775
– volume: 23
  start-page: 181
  year: 1992
  ident: R36
  publication-title: Rev. Mex. Astron. Astrofis.
– volume: 550
  start-page: 970
  year: 2001
  ident: R54
  publication-title: ApJ
  doi: 10.1086/319789
– volume: 215
  start-page: 23
  year: 2014
  ident: R21
  publication-title: ApJS
  doi: 10.1088/0067-0049/215/2/23
– volume: 441
  start-page: 3127
  year: 2014
  ident: R51
  publication-title: MNRAS
  doi: 10.1093/mnras/stu780
– volume: 483
  start-page: 5105
  year: 2019
  ident: R63
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3371
– volume: 468
  start-page: 4311
  year: 2017
  ident: R39
  publication-title: MNRAS
  doi: 10.1093/mnras/stx673
– ident: R18
– ident: R37
– volume: 165
  start-page: 170
  year: 1986
  ident: R27
  publication-title: A&A
– volume: 497
  start-page: 611
  year: 2009
  ident: R42
  publication-title: A&A
  doi: 10.1051/0004-6361/200811508
– volume: 475
  start-page: L81
  year: 2018
  ident: R32
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly010
– volume: 22
  start-page: 203
  year: 1985
  ident: R16
  publication-title: Astrophysics
  doi: 10.1007/BF01005745
– volume: 606
  start-page: A127
  year: 2017
  ident: R10
  publication-title: A&A
  doi: 10.1051/0004-6361/201731232
– volume: 366
  start-page: 981
  year: 2001
  ident: R26
  publication-title: A&A
  doi: 10.1051/0004-6361:20000287
– volume: 528
  start-page: A87
  year: 2011
  ident: R40
  publication-title: A&A
  doi: 10.1051/0004-6361/201015336
– volume: 545
  start-page: A17
  year: 2012
  ident: R19
  publication-title: A&A
  doi: 10.1051/0004-6361/201219651
– volume: 518
  start-page: 247
  year: 2019
  ident: R60
  publication-title: ASP Conf. Ser.
– volume: 612
  start-page: A90
  year: 2018
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361/201732365
– volume: 115
  start-page: 551
  year: 1996
  ident: R8
  publication-title: A&AS
– ident: R17
SSID ssj0002183
Score 2.4211714
Snippet Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to...
Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe  I are subject to...
Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage A43
SubjectTerms Abundance
atomic processes
Dwarf galaxies
Galactic halos
Hydrogen atoms
Inelastic collisions
Ionization
Iron
line: formation
Local thermodynamic equilibrium
One dimensional models
Red giant stars
Stars & galaxies
stars: abundances
stars: atmospheres
stars: late-type
Title Influence of inelastic collisions with hydrogen atoms on the non-local thermodynamic equilibrium line formation for Fe I and Fe II in the 1D model atmospheres of late-type stars
URI https://api.istex.fr/ark:/67375/80W-J2GMX9JD-G/fulltext.pdf
https://www.proquest.com/docview/2486563940
Volume 631
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEBRQAwXNAfUS3NretR0fK9KkDm2pRCrCyfJjrVZNasgDUQ78J478O2Z27Y2jogq4OOuNs5tkPu9-M54HY69xT0USnKOaGmTCEl7oW10uUtRS0tznuaT0Q-RtceofnYvh2Bu3Wr8aXkvLRbqXff9jXMn_SBX7UK4UJfsPkjWDYge2Ub54RAnj8a9kHNUVRnTiB4lMmPKvkmxVyHgVunZxk89KHKSDCva0fjzQQb3fUjsZnc2mZa5r03fkl-WlCgRYTjuKg5r4RuWS2JedSD1xoEZUu0k6PV1TB6eYlnNKVaCT2U6QylrKzIsstHpwVOe8nZMVvpzqBFAJnWkzi7ID6zRcDTvFSTK_KKnOQ7KKlSDL0OWCyrquuXt_Sq7KrxOpez80rLVycpPgf6yWw3dNe4cTVoF_xgjXO6uXvfnawi4sn-u87ntSr-WCk2NtZeGsFntf7zm3Ng5cm7SnpR6G4mRwbo5klq92yto74PR93D8_Po5Hh-PRPbbpooZCxTMG0Q9DAoh5as1LD1gnvPKcfdO3b6ZYI0WbdH9_u8UNFOEZPWIPK00FDjTsHrOWvN5i20ZqsAsHDZltsftnuvWE_TS4hLIAg0tY4RIIl1DjEhQuobwGhBIYXMIaLqGBSyBcgsEltaAvIQJEkmpEOKsazOmBwiU0cElfyuASFC6fsvP-4ejtkVWVBrEy7tsLK0j93BV5ESJDzlFFDlO7SNIisXnhSj-UDioyqLsEnNTjJEROWiDT7hbSyVzkxB5_xjbw58htBnaCFD6RmY9MXDj4EgR-Fjgpt4VMkUa0mVvLJs6qvPlUvmUSK_8NzyH_DRGTQGMj0DZ7Yz70WaeNufvyXSV0c20yuyKPy8CLu_bHeOgOTsbhsBcP2mynRkVcLUTz2BVd1Mp4KOznd7_9gj1Y3VE7bGMxW8qXyKkX6SuF3t9ZzMrq
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+inelastic+collisions+with+hydrogen+atoms+on+the+non-local+thermodynamic+equilibrium+line+formation+for+Fe+I+and+Fe+II+in+the+1D+model+atmospheres+of+late-type+stars&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Mashonkina%2C+L&rft.au=Sitnova%2C+T&rft.au=Yakovleva%2C+S+A&rft.au=Belyaev%2C+A+K&rft.date=2019-11-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=631&rft_id=info:doi/10.1051%2F0004-6361%2F201935753&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon