Influence of inelastic collisions with hydrogen atoms on the non-local thermodynamic equilibrium line formation for Fe I and Fe II in the 1D model atmospheres of late-type stars
Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe II lines. T...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 631; p. A43 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe II lines. The main source of the uncertainties in the non-LTE (NLTE) calculations for cool atmospheres is a treatment of inelastic collisions with hydrogen atoms. Aims. Our aim is to investigate the effect of Fe I + H I and Fe II + H I collisions and their different treatments on the Fe I/Fe II ionisation equilibrium and iron abundance determinations for three Galactic halo benchmark stars (HD 84937, HD 122563, and HD 140283) and a sample of 38 very metal-poor giants in the dwarf galaxies with well known distances. Methods. We performed the NLTE calculations for Fe I–Fe II by applying quantum-mechanical rate coefficients for collisions with H I from recent papers. Results. We find that collisions with H I serve as efficient thermalisation processes for Fe II, to an extent that the NLTE abundance corrections for Fe II lines do not exceed 0.02 dex, in absolute value, for [Fe/H] ≳−3, and reach +0.06 dex at [Fe/H] ~−4. For a given star, different treatments of Fe I + H I collisions lead to similar average NLTE abundances from the Fe I lines, although discrepancies in the NLTE abundance corrections exist for individual lines. By using quantum-mechanical collisional data and the Gaia-based surface gravity, we obtain consistent abundances from the two ionisation stages, Fe I and Fe II, for red giant HD 122563. For turn-off star HD 84937, and subgiant HD 140283, we analyse the iron lines in the visible and the ultra-violet (UV, 1968–2990 Å) ranges. For either Fe I or Fe II, abundances from the visible and UV lines are found to be consistent in each star. The NLTE abundances from the two ionisation stages agree within 0.10 dex and 0.13 dex for two different treatments of Fe I + H I collisions. The Fe I/Fe II ionisation equilibrium is achieved for each star of our stellar sample in the dwarf galaxies, with the exception of stars at [Fe/H] ≲−3.7. |
---|---|
AbstractList | Context.
Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe
I
are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe
II
lines. The main source of the uncertainties in the non-LTE (NLTE) calculations for cool atmospheres is a treatment of inelastic collisions with hydrogen atoms.
Aims.
Our aim is to investigate the effect of Fe
I
+ H
I
and Fe
II
+ H
I
collisions and their different treatments on the Fe
I
/Fe
II
ionisation equilibrium and iron abundance determinations for three Galactic halo benchmark stars (HD 84937, HD 122563, and HD 140283) and a sample of 38 very metal-poor giants in the dwarf galaxies with well known distances.
Methods.
We performed the NLTE calculations for Fe
I
–Fe
II
by applying quantum-mechanical rate coefficients for collisions with H
I
from recent papers.
Results.
We find that collisions with H
I
serve as efficient thermalisation processes for Fe
II
, to an extent that the NLTE abundance corrections for Fe
II
lines do not exceed 0.02 dex, in absolute value, for [Fe/H] ≳−3, and reach +0.06 dex at [Fe/H] ~−4. For a given star, different treatments of Fe
I
+ H
I
collisions lead to similar average NLTE abundances from the Fe
I
lines, although discrepancies in the NLTE abundance corrections exist for individual lines. By using quantum-mechanical collisional data and the
Gaia
-based surface gravity, we obtain consistent abundances from the two ionisation stages, Fe
I
and Fe
II
, for red giant HD 122563. For turn-off star HD 84937, and subgiant HD 140283, we analyse the iron lines in the visible and the ultra-violet (UV, 1968–2990 Å) ranges. For either Fe
I
or Fe
II
, abundances from the visible and UV lines are found to be consistent in each star. The NLTE abundances from the two ionisation stages agree within 0.10 dex and 0.13 dex for two different treatments of Fe
I
+ H
I
collisions. The Fe
I
/Fe
II
ionisation equilibrium is achieved for each star of our stellar sample in the dwarf galaxies, with the exception of stars at [Fe/H] ≲−3.7. Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to the departures from local thermodynamic equilibrium (LTE). In contrast, one believes that LTE is a realistic approximation for Fe II lines. The main source of the uncertainties in the non-LTE (NLTE) calculations for cool atmospheres is a treatment of inelastic collisions with hydrogen atoms. Aims. Our aim is to investigate the effect of Fe I + H I and Fe II + H I collisions and their different treatments on the Fe I/Fe II ionisation equilibrium and iron abundance determinations for three Galactic halo benchmark stars (HD 84937, HD 122563, and HD 140283) and a sample of 38 very metal-poor giants in the dwarf galaxies with well known distances. Methods. We performed the NLTE calculations for Fe I–Fe II by applying quantum-mechanical rate coefficients for collisions with H I from recent papers. Results. We find that collisions with H I serve as efficient thermalisation processes for Fe II, to an extent that the NLTE abundance corrections for Fe II lines do not exceed 0.02 dex, in absolute value, for [Fe/H] ≳−3, and reach +0.06 dex at [Fe/H] ~−4. For a given star, different treatments of Fe I + H I collisions lead to similar average NLTE abundances from the Fe I lines, although discrepancies in the NLTE abundance corrections exist for individual lines. By using quantum-mechanical collisional data and the Gaia-based surface gravity, we obtain consistent abundances from the two ionisation stages, Fe I and Fe II, for red giant HD 122563. For turn-off star HD 84937, and subgiant HD 140283, we analyse the iron lines in the visible and the ultra-violet (UV, 1968–2990 Å) ranges. For either Fe I or Fe II, abundances from the visible and UV lines are found to be consistent in each star. The NLTE abundances from the two ionisation stages agree within 0.10 dex and 0.13 dex for two different treatments of Fe I + H I collisions. The Fe I/Fe II ionisation equilibrium is achieved for each star of our stellar sample in the dwarf galaxies, with the exception of stars at [Fe/H] ≲−3.7. |
Author | Mashonkina, L. Sitnova, T. Yakovleva, S. A. Belyaev, A. K. |
Author_xml | – sequence: 1 givenname: L. surname: Mashonkina fullname: Mashonkina, L. organization: Institute of Astronomy, Russian Academy of Sciences, 119017 Moscow, Russia – sequence: 2 givenname: T. surname: Sitnova fullname: Sitnova, T. organization: Institute of Astronomy, Russian Academy of Sciences, 119017 Moscow, Russia – sequence: 3 givenname: S. A. surname: Yakovleva fullname: Yakovleva, S. A. organization: Department of Theoretical Physics and Astronomy, Herzen University, St. Petersburg 191186, Russia – sequence: 4 givenname: A. K. surname: Belyaev fullname: Belyaev, A. K. organization: Department of Theoretical Physics and Astronomy, Herzen University, St. Petersburg 191186, Russia |
BookMark | eNqFkc9u1DAQxi3USmxbnoCLJc6h_pM48RG1dLtVERcQ3CxvMmZdHHtrO4K99Y166gvxJDjdag9cOM2MNN_vG31zgo588IDQW0reU9LQc0JIXQku6DkjVPKmbfgrtKA1ZxVpa3GEFoeN1-gkpbsyMtrxBXpaeeMm8D3gYLD14HTKtsd9cM4mG3zCv2ze4M1uiOEHeKxzGBMOHucN4HJG5UKv3TzFMQw7r8eihvvJOruOdhqxK1BsQhx1Lri5w1fw5-FxhbUfXtpVcX4G0ktcKOCKzRjStkAhzYc5naHKuy3glHVMZ-jYaJfgzUs9RV-vPn65uK5uPy9XFx9uq54Lkqt2LQZWD0aSlg60Y3JNjF4bTbhhICRQKiiVrC2xcKJl13DTdHVngPas7VjDT9G7PXcbw_0EKau7MEVfLBWrO9EILmtStvh-q48hpQhGbaMdddwpStT8HzWnr-b01eE_RSX_UfU2P2eUo7buP9pqr7Upw--DnY4_lWh526iOfFM3bPnpu7y5VEv-Fx4qqUE |
CitedBy_id | crossref_primary_10_1093_mnras_stac1813 crossref_primary_10_1134_S1063773720010041 crossref_primary_10_1051_0004_6361_202244542 crossref_primary_10_1051_0004_6361_202038805 crossref_primary_10_1051_0004_6361_202349049 crossref_primary_10_3847_1538_4357_acf5e1 crossref_primary_10_1093_mnras_stab786 crossref_primary_10_1051_0004_6361_202450981 crossref_primary_10_1093_mnras_stad3141 crossref_primary_10_1103_PhysRevLett_130_029901 crossref_primary_10_1093_mnras_staa2582 crossref_primary_10_1051_0004_6361_201937110 crossref_primary_10_1093_mnras_stad2114 crossref_primary_10_1051_0004_6361_202142971 crossref_primary_10_1093_mnras_stz3546 crossref_primary_10_3847_1538_4357_ac46fd crossref_primary_10_3847_1538_4357_ab736f |
Cites_doi | 10.1051/0004-6361/200912302 10.1111/j.1365-2966.2012.21686.x 10.1016/j.chemphys.2018.08.012 10.1111/j.1365-2966.2012.21687.x 10.1051/0004-6361/201833051 10.1051/0004-6361/201730779 10.1051/0004-6361/201834721 10.1051/0004-6361/201322631 10.1086/192079 10.1364/JOSAB.8.001185 10.1051/0004-6361/201423456 10.1007/BF01379963 10.1051/0004-6361/201935811 10.1088/0953-4075/24/5/004 10.1088/0004-637X/808/2/148 10.3847/0004-637X/817/1/53 10.1051/0004-6361:20030907 10.1086/305061 10.3847/1538-4357/aa8cd3 10.3847/1538-3881/aacb21 10.1051/0004-6361:200809724 10.1093/mnras/stz626 10.3847/1538-4357/aac6df 10.1093/mnras/stx2580 10.1103/PhysRevA.93.042705 10.1051/aas:1997327 10.1093/mnras/sts319 10.1088/0031-8949/90/5/054005 10.1093/mnras/stw2077 10.1007/BF01392775 10.1086/319789 10.1088/0067-0049/215/2/23 10.1093/mnras/stu780 10.1093/mnras/sty3371 10.1093/mnras/stx673 10.1051/0004-6361/200811508 10.1093/mnrasl/sly010 10.1007/BF01005745 10.1051/0004-6361/201731232 10.1051/0004-6361:20000287 10.1051/0004-6361/201015336 10.1051/0004-6361/201219651 10.1051/0004-6361/201732365 |
ContentType | Journal Article |
Copyright | Copyright EDP Sciences Nov 2019 |
Copyright_xml | – notice: Copyright EDP Sciences Nov 2019 |
DBID | BSCLL AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/201935753 |
DatabaseName | Istex CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_201935753 ark_67375_80W_J2GMX9JD_G |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c360t-7b6d24df9071d1829b0fabfa03f2e69e1161192736130a9853f5848fe1c278253 |
ISSN | 0004-6361 |
IngestDate | Mon Jun 30 03:54:21 EDT 2025 Thu Apr 24 22:55:03 EDT 2025 Tue Jul 01 03:59:22 EDT 2025 Wed Oct 30 09:39:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c360t-7b6d24df9071d1829b0fabfa03f2e69e1161192736130a9853f5848fe1c278253 |
Notes | e-mail: lima@inasan.ru publisher-ID:aa35753-19 ark:/67375/80W-J2GMX9JD-G href:https://www.aanda.org/articles/aa/abs/2019/11/aa35753-19/aa35753-19.html istex:C799E5D27E5A68BDE434A0B49B91F4B2C82C87B9 Full Tables 2 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/631/A43 bibcode:2019A%26A...631A..43M dkey:10.1051/0004-6361/201935753 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2019/11/aa35753-19.pdf |
PQID | 2486563940 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2486563940 crossref_primary_10_1051_0004_6361_201935753 crossref_citationtrail_10_1051_0004_6361_201935753 istex_primary_ark_67375_80W_J2GMX9JD_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2019 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Bagnulo (R2) 2003; 114 Belmonte (R11) 2017; 848 Kurucz (R36) 1992; 23 Drawin (R22) 1968; 211 Amarsi (R1) 2016; 463 Bergemann (R14) 2014; 565 Pauls (R47) 1990; 231 Yakovleva (R63) 2019; 483 Steenbock (R58) 1984; 130 Barklem (R4) 2016; 93 Kroll (R35) 1987; 67 Ruffoni (R51) 2014; 441 Creevey (R20) 2019; 625 Pakhomov (R46) 2019; 45 Ryabchikova (R52) 2015; 90 Brown (R25) 2018; 616 Grevesse (R29) 1999; 347 Bensby (R12) 2014; 562 Lind (R39) 2017; 468 Sneden (R57) 2016; 817 Bautista (R10) 2017; 606 Mashonkina (R40) 2011; 528 Moity (R43) 1983; 52 R5 Grupp (R30) 2009; 503 Den Hartog (R21) 2014; 215 Kaulakys (R33) 1991; 24 Sitnova (R55) 2015; 808 Gehren (R26) 2001; 366 Shchukina (R54) 2001; 550 Barklem (R6) 2018; 612 R37 O’Brian (R45) 1991; 8 Gratton (R28) 1999; 350 Zhang (R64) 1995; 293 Bergemann (R13) 2012; 427 Bautista (R7) 1997; 122 Fuhr (R24) 1988; 17 Roederer (R49) 2018; 860 Nave (R44) 1994; 94 Gigas (R27) 1986; 165 Gustafsson (R31) 2008; 486 Korn (R34) 2003; 407 Tsymbal (R60) 2019; 518 Mashonkina (R41) 2017; 604 Drawin (R23) 1969; 225 Raassen (R48) 1998; 340 Yakovleva (R61) 2018; 515 Yakovleva (R62) 2018; 473 Creevey (R19) 2012; 545 Meléndez (R42) 2009; 497 Bautista (R9) 1998; 492 Karovicova (R32) 2018; 475 Ruchti (R50) 2013; 429 Boyarchuk (R16) 1985; 22 Tanaka (R59) 1971; 23 Bailer-Jones (R3) 2018; 156 R53 Lind (R38) 2012; 427 Bautista (R8) 1996; 115 R15 R18 R17 Sitnova (R56) 2019; 485 |
References_xml | – volume: 503 start-page: 177 year: 2009 ident: R30 publication-title: A&A doi: 10.1051/0004-6361/200912302 – volume: 427 start-page: 50 year: 2012 ident: R38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21686.x – volume: 515 start-page: 369 year: 2018 ident: R61 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.08.012 – volume: 130 start-page: 319 year: 1984 ident: R58 publication-title: A&A – volume: 427 start-page: 27 year: 2012 ident: R13 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21687.x – volume: 616 start-page: A1 year: 2018 ident: R25 publication-title: A&A doi: 10.1051/0004-6361/201833051 – volume: 17 start-page: 504 year: 1988 ident: R24 publication-title: J. Phys. Chem. Ref. Data – volume: 604 start-page: A129 year: 2017 ident: R41 publication-title: A&A doi: 10.1051/0004-6361/201730779 – volume: 625 start-page: A33 year: 2019 ident: R20 publication-title: A&A doi: 10.1051/0004-6361/201834721 – volume: 45 start-page: 303 year: 2019 ident: R46 publication-title: Astron. Lett. – volume: 562 start-page: A71 year: 2014 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/201322631 – volume: 94 start-page: 221 year: 1994 ident: R44 publication-title: ApJS doi: 10.1086/192079 – volume: 8 start-page: 1185 year: 1991 ident: R45 publication-title: J. Opt. Soc. Am. B Opt. Phys. doi: 10.1364/JOSAB.8.001185 – volume: 565 start-page: A89 year: 2014 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201423456 – ident: R5 – volume: 347 start-page: 348 year: 1999 ident: R29 publication-title: A&A – volume: 211 start-page: 404 year: 1968 ident: R22 publication-title: Z. Phys. doi: 10.1007/BF01379963 – volume: 340 start-page: 300 year: 1998 ident: R48 publication-title: A&A – volume: 52 start-page: 37 year: 1983 ident: R43 publication-title: A&AS – ident: R15 doi: 10.1051/0004-6361/201935811 – volume: 24 start-page: L127 year: 1991 ident: R33 publication-title: J. Phys. B At. Mol. Phys. doi: 10.1088/0953-4075/24/5/004 – volume: 808 start-page: 148 year: 2015 ident: R55 publication-title: ApJ doi: 10.1088/0004-637X/808/2/148 – volume: 817 start-page: 53 year: 2016 ident: R57 publication-title: ApJ doi: 10.3847/0004-637X/817/1/53 – volume: 407 start-page: 691 year: 2003 ident: R34 publication-title: A&A doi: 10.1051/0004-6361:20030907 – volume: 492 start-page: 650 year: 1998 ident: R9 publication-title: ApJ doi: 10.1086/305061 – volume: 231 start-page: 536 year: 1990 ident: R47 publication-title: A&A – volume: 848 start-page: 125 year: 2017 ident: R11 publication-title: ApJ doi: 10.3847/1538-4357/aa8cd3 – volume: 156 start-page: 58 year: 2018 ident: R3 publication-title: AJ doi: 10.3847/1538-3881/aacb21 – volume: 486 start-page: 951 year: 2008 ident: R31 publication-title: A&A doi: 10.1051/0004-6361:200809724 – volume: 485 start-page: 3527 year: 2019 ident: R56 publication-title: MNRAS doi: 10.1093/mnras/stz626 – volume: 67 start-page: 225 year: 1987 ident: R35 publication-title: A&AS – volume: 860 start-page: 125 year: 2018 ident: R49 publication-title: ApJ doi: 10.3847/1538-4357/aac6df – ident: R53 – volume: 23 start-page: 217 year: 1971 ident: R59 publication-title: PASJ – volume: 473 start-page: 3810 year: 2018 ident: R62 publication-title: MNRAS doi: 10.1093/mnras/stx2580 – volume: 93 start-page: 042705 year: 2016 ident: R4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.042705 – volume: 350 start-page: 955 year: 1999 ident: R28 publication-title: A&A – volume: 122 start-page: 167 year: 1997 ident: R7 publication-title: A&AS doi: 10.1051/aas:1997327 – volume: 429 start-page: 126 year: 2013 ident: R50 publication-title: MNRAS doi: 10.1093/mnras/sts319 – volume: 114 start-page: 10 year: 2003 ident: R2 publication-title: The Messenger – volume: 293 start-page: 953 year: 1995 ident: R64 publication-title: A&A – volume: 90 start-page: 054005 year: 2015 ident: R52 publication-title: Phys. Scr. doi: 10.1088/0031-8949/90/5/054005 – volume: 463 start-page: 1518 year: 2016 ident: R1 publication-title: MNRAS doi: 10.1093/mnras/stw2077 – volume: 225 start-page: 483 year: 1969 ident: R23 publication-title: Z. Phys. doi: 10.1007/BF01392775 – volume: 23 start-page: 181 year: 1992 ident: R36 publication-title: Rev. Mex. Astron. Astrofis. – volume: 550 start-page: 970 year: 2001 ident: R54 publication-title: ApJ doi: 10.1086/319789 – volume: 215 start-page: 23 year: 2014 ident: R21 publication-title: ApJS doi: 10.1088/0067-0049/215/2/23 – volume: 441 start-page: 3127 year: 2014 ident: R51 publication-title: MNRAS doi: 10.1093/mnras/stu780 – volume: 483 start-page: 5105 year: 2019 ident: R63 publication-title: MNRAS doi: 10.1093/mnras/sty3371 – volume: 468 start-page: 4311 year: 2017 ident: R39 publication-title: MNRAS doi: 10.1093/mnras/stx673 – ident: R18 – ident: R37 – volume: 165 start-page: 170 year: 1986 ident: R27 publication-title: A&A – volume: 497 start-page: 611 year: 2009 ident: R42 publication-title: A&A doi: 10.1051/0004-6361/200811508 – volume: 475 start-page: L81 year: 2018 ident: R32 publication-title: MNRAS doi: 10.1093/mnrasl/sly010 – volume: 22 start-page: 203 year: 1985 ident: R16 publication-title: Astrophysics doi: 10.1007/BF01005745 – volume: 606 start-page: A127 year: 2017 ident: R10 publication-title: A&A doi: 10.1051/0004-6361/201731232 – volume: 366 start-page: 981 year: 2001 ident: R26 publication-title: A&A doi: 10.1051/0004-6361:20000287 – volume: 528 start-page: A87 year: 2011 ident: R40 publication-title: A&A doi: 10.1051/0004-6361/201015336 – volume: 545 start-page: A17 year: 2012 ident: R19 publication-title: A&A doi: 10.1051/0004-6361/201219651 – volume: 518 start-page: 247 year: 2019 ident: R60 publication-title: ASP Conf. Ser. – volume: 612 start-page: A90 year: 2018 ident: R6 publication-title: A&A doi: 10.1051/0004-6361/201732365 – volume: 115 start-page: 551 year: 1996 ident: R8 publication-title: A&AS – ident: R17 |
SSID | ssj0002183 |
Score | 2.4211714 |
Snippet | Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to... Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to... Context. Iron plays a crucial role in studies of late-type stars. In their atmospheres, neutral iron is the minority species, and lines of Fe I are subject to... |
SourceID | proquest crossref istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | A43 |
SubjectTerms | Abundance atomic processes Dwarf galaxies Galactic halos Hydrogen atoms Inelastic collisions Ionization Iron line: formation Local thermodynamic equilibrium One dimensional models Red giant stars Stars & galaxies stars: abundances stars: atmospheres stars: late-type |
Title | Influence of inelastic collisions with hydrogen atoms on the non-local thermodynamic equilibrium line formation for Fe I and Fe II in the 1D model atmospheres of late-type stars |
URI | https://api.istex.fr/ark:/67375/80W-J2GMX9JD-G/fulltext.pdf https://www.proquest.com/docview/2486563940 |
Volume | 631 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEBRQAwXNAfUS3NretR0fK9KkDm2pRCrCyfJjrVZNasgDUQ78J478O2Z27Y2jogq4OOuNs5tkPu9-M54HY69xT0USnKOaGmTCEl7oW10uUtRS0tznuaT0Q-RtceofnYvh2Bu3Wr8aXkvLRbqXff9jXMn_SBX7UK4UJfsPkjWDYge2Ub54RAnj8a9kHNUVRnTiB4lMmPKvkmxVyHgVunZxk89KHKSDCva0fjzQQb3fUjsZnc2mZa5r03fkl-WlCgRYTjuKg5r4RuWS2JedSD1xoEZUu0k6PV1TB6eYlnNKVaCT2U6QylrKzIsstHpwVOe8nZMVvpzqBFAJnWkzi7ID6zRcDTvFSTK_KKnOQ7KKlSDL0OWCyrquuXt_Sq7KrxOpez80rLVycpPgf6yWw3dNe4cTVoF_xgjXO6uXvfnawi4sn-u87ntSr-WCk2NtZeGsFntf7zm3Ng5cm7SnpR6G4mRwbo5klq92yto74PR93D8_Po5Hh-PRPbbpooZCxTMG0Q9DAoh5as1LD1gnvPKcfdO3b6ZYI0WbdH9_u8UNFOEZPWIPK00FDjTsHrOWvN5i20ZqsAsHDZltsftnuvWE_TS4hLIAg0tY4RIIl1DjEhQuobwGhBIYXMIaLqGBSyBcgsEltaAvIQJEkmpEOKsazOmBwiU0cElfyuASFC6fsvP-4ejtkVWVBrEy7tsLK0j93BV5ESJDzlFFDlO7SNIisXnhSj-UDioyqLsEnNTjJEROWiDT7hbSyVzkxB5_xjbw58htBnaCFD6RmY9MXDj4EgR-Fjgpt4VMkUa0mVvLJs6qvPlUvmUSK_8NzyH_DRGTQGMj0DZ7Yz70WaeNufvyXSV0c20yuyKPy8CLu_bHeOgOTsbhsBcP2mynRkVcLUTz2BVd1Mp4KOznd7_9gj1Y3VE7bGMxW8qXyKkX6SuF3t9ZzMrq |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+inelastic+collisions+with+hydrogen+atoms+on+the+non-local+thermodynamic+equilibrium+line+formation+for+Fe+I+and+Fe+II+in+the+1D+model+atmospheres+of+late-type+stars&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Mashonkina%2C+L&rft.au=Sitnova%2C+T&rft.au=Yakovleva%2C+S+A&rft.au=Belyaev%2C+A+K&rft.date=2019-11-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=631&rft_id=info:doi/10.1051%2F0004-6361%2F201935753&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |