Optimal distribution feeder reconfiguration and generation scheduling for microgrid day-ahead operation in the presence of electric vehicles considering uncertainties

•Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable generations.•Modeling EVs as EES in the suggested framework to reduce the total cost.•Considering the DR program and the participation of customers in t...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 21; pp. 58 - 71
Main Authors Sedighizadeh, Mostafa, Shaghaghi-shahr, Gholamreza, Esmaili, Masoud, Aghamohammadi, Mohammad Reza
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text
ISSN2352-152X
2352-1538
DOI10.1016/j.est.2018.11.009

Cover

Abstract •Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable generations.•Modeling EVs as EES in the suggested framework to reduce the total cost.•Considering the DR program and the participation of customers in the operation of MG.•Modeling the charging pattern of EVs in controlled and uncontrolled patterns. Distribution Feeder Reconfiguration (DFR) and Optimal Generation Scheduling (OGS) are indispensable operation tasks that are used in Microgrids (MGs) to enhance efficiency as well as technical and economic features of MGs. The OGS problem usually minimizes the cost of energy assuming a fixed configuration of power systems. On the other hand, the DFR problem is done assuming a predefined generation of units. However, performing these two tasks separately may lose the optimal solution. In this paper, a framework is proposed to jointly perform OGS and optimal DFR on a day-ahead time frame. The total operation cost of MG is minimized subject to diverse technical and economic constraints. The Demand Response (DR) program offered by curtailable loads is considered as a Demand Side Management (DSM) tool. The Electric Vehicles (EVs) and non-dispatchable Distributed Generations (DGs) are modeled along with the uncertainty of MG components. The charging pattern of EVs is modeled in two ways including uncontrolled and controlled patterns. The objective function includes the cost of purchasing active/reactive power from the upstream grid as well as DGs, cost of switching in DFR, cost of DR, and cost of energy losses. MG profit from selling electric energy to the upstream grid is also incorporated in the objective function. The proposed model is formulated as a Mixed-Integer Second-Order Cone Programming (MISOCP) problem and solved by the GAMS software package. The efficacy of the proposed model is confirmed by examining it on the IEEE 33-bus distribution network.
AbstractList •Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable generations.•Modeling EVs as EES in the suggested framework to reduce the total cost.•Considering the DR program and the participation of customers in the operation of MG.•Modeling the charging pattern of EVs in controlled and uncontrolled patterns. Distribution Feeder Reconfiguration (DFR) and Optimal Generation Scheduling (OGS) are indispensable operation tasks that are used in Microgrids (MGs) to enhance efficiency as well as technical and economic features of MGs. The OGS problem usually minimizes the cost of energy assuming a fixed configuration of power systems. On the other hand, the DFR problem is done assuming a predefined generation of units. However, performing these two tasks separately may lose the optimal solution. In this paper, a framework is proposed to jointly perform OGS and optimal DFR on a day-ahead time frame. The total operation cost of MG is minimized subject to diverse technical and economic constraints. The Demand Response (DR) program offered by curtailable loads is considered as a Demand Side Management (DSM) tool. The Electric Vehicles (EVs) and non-dispatchable Distributed Generations (DGs) are modeled along with the uncertainty of MG components. The charging pattern of EVs is modeled in two ways including uncontrolled and controlled patterns. The objective function includes the cost of purchasing active/reactive power from the upstream grid as well as DGs, cost of switching in DFR, cost of DR, and cost of energy losses. MG profit from selling electric energy to the upstream grid is also incorporated in the objective function. The proposed model is formulated as a Mixed-Integer Second-Order Cone Programming (MISOCP) problem and solved by the GAMS software package. The efficacy of the proposed model is confirmed by examining it on the IEEE 33-bus distribution network.
Author Sedighizadeh, Mostafa
Esmaili, Masoud
Aghamohammadi, Mohammad Reza
Shaghaghi-shahr, Gholamreza
Author_xml – sequence: 1
  givenname: Mostafa
  surname: Sedighizadeh
  fullname: Sedighizadeh, Mostafa
  email: m_sedighi@sbu.ac.ir
  organization: Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran
– sequence: 2
  givenname: Gholamreza
  surname: Shaghaghi-shahr
  fullname: Shaghaghi-shahr, Gholamreza
  organization: Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran
– sequence: 3
  givenname: Masoud
  surname: Esmaili
  fullname: Esmaili, Masoud
  organization: Department of Electrical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 4
  givenname: Mohammad Reza
  surname: Aghamohammadi
  fullname: Aghamohammadi, Mohammad Reza
  organization: Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran
BookMark eNp9kMtKAzEUhoMoeH0Ad3mBGXMmnUyLKxFvILhRcBcyyUl7ypgpSSr4Qj6nqa0uXLjKhfOdn_87ZvthDMjYOYgaBKiLZY0p142AaQ1QCzHbY0eNbJsKWjnd_703r4fsLKWlEAVqAWbqiH0-rTK9mYE7SjlSv840Bu4RHUYe0Y7B03wdzfe3CY7PMeDumewC3XqgMOd-jPyNbBznkRx35qMyCzSOj6ufYQo8L5CvIiYMFvnoOQ5oS6bl77ggO2DiJS5RSd6sXJepmA2FTJhO2YE3Q8Kz3XnCXm5vnq_vq8enu4frq8fKSiVypaZT2UiLVliFTQcg-okSrjczYWQ_a71SRrbQWtEZK4Tp0Ur0re86p8A1E3nCYLu3VEkpoterWPTEDw1Cb1zrpS6u9ca1BtDFdWG6P4yl_F06R0PDv-TllsRS6Z0w6mRpY8dRUZ-1G-kf-gsCJKFd
CitedBy_id crossref_primary_10_1002_2050_7038_13108
crossref_primary_10_1049_rpg2_12648
crossref_primary_10_1007_s13369_020_04965_x
crossref_primary_10_1109_ACCESS_2020_3041709
crossref_primary_10_1016_j_segan_2021_100547
crossref_primary_10_1016_j_jclepro_2020_121562
crossref_primary_10_1016_j_rser_2024_114767
crossref_primary_10_3390_en15103808
crossref_primary_10_1002_er_6023
crossref_primary_10_1016_j_est_2020_101301
crossref_primary_10_1016_j_est_2021_103605
crossref_primary_10_1049_smc2_12029
crossref_primary_10_1016_j_rser_2022_112095
crossref_primary_10_1016_j_est_2020_102089
crossref_primary_10_1016_j_est_2021_103194
crossref_primary_10_1016_j_est_2022_105310
crossref_primary_10_1002_2050_7038_12302
crossref_primary_10_1016_j_renene_2020_07_136
crossref_primary_10_1016_j_seta_2021_101169
crossref_primary_10_1007_s10098_023_02660_7
crossref_primary_10_3233_JIFS_212397
crossref_primary_10_1080_15325008_2022_2049647
crossref_primary_10_1016_j_jclepro_2019_117841
crossref_primary_10_1016_j_est_2020_101512
crossref_primary_10_3233_JIFS_221363
crossref_primary_10_1016_j_segan_2019_100191
crossref_primary_10_3390_pr12020270
crossref_primary_10_1016_j_est_2022_105241
crossref_primary_10_1016_j_est_2022_104030
crossref_primary_10_1080_03772063_2020_1839360
crossref_primary_10_1109_TPWRS_2019_2959586
crossref_primary_10_3390_electronics10202484
crossref_primary_10_1007_s42835_023_01392_4
crossref_primary_10_1016_j_apenergy_2024_123850
crossref_primary_10_1088_1755_1315_675_1_012124
crossref_primary_10_1016_j_est_2023_108672
crossref_primary_10_1016_j_jclepro_2020_121629
crossref_primary_10_1016_j_segan_2024_101330
crossref_primary_10_1016_j_est_2021_102971
crossref_primary_10_1016_j_est_2021_102775
crossref_primary_10_1016_j_heliyon_2024_e31675
crossref_primary_10_1016_j_energy_2025_134567
crossref_primary_10_3390_su162310307
crossref_primary_10_1049_gtd2_13264
crossref_primary_10_3390_app14041428
crossref_primary_10_1016_j_ijepes_2024_109914
crossref_primary_10_1002_er_8058
crossref_primary_10_1016_j_est_2020_101858
crossref_primary_10_1007_s00202_024_02823_9
crossref_primary_10_1155_2024_5543500
crossref_primary_10_1016_j_est_2019_101057
crossref_primary_10_1016_j_apenergy_2023_121007
crossref_primary_10_1016_j_est_2019_03_019
crossref_primary_10_3390_app11167178
crossref_primary_10_3390_su16031212
crossref_primary_10_1016_j_energy_2020_119058
crossref_primary_10_3390_en16134983
crossref_primary_10_1016_j_ref_2019_12_001
crossref_primary_10_1080_0305215X_2019_1695790
Cites_doi 10.1016/j.enconman.2014.06.078
10.1016/j.jpowsour.2017.07.086
10.1109/61.25627
10.1016/j.ijepes.2015.11.077
10.1016/j.ijepes.2015.09.012
10.1016/j.energy.2016.02.152
10.1109/TSG.2016.2646779
10.1007/s10732-017-9355-8
10.1016/j.ijepes.2018.02.022
10.1016/j.ijepes.2018.01.044
10.1016/j.rser.2013.10.022
10.1016/j.energy.2017.10.083
10.1016/j.est.2018.08.023
10.1016/j.apenergy.2018.07.034
10.1109/TMECH.2017.2675920
10.1016/j.ijepes.2015.12.030
10.1016/j.ijepes.2017.11.037
10.1016/j.ijepes.2018.01.010
10.1049/iet-gtd.2016.0024
10.1049/iet-gtd.2013.0628
10.1016/j.ijepes.2014.07.065
10.1016/j.energy.2014.09.004
10.1109/TPWRS.2015.2457954
10.1109/TPWRS.2013.2255317
10.1109/TSG.2015.2468683
10.1016/j.jpowsour.2017.03.001
10.1109/TSG.2016.2606442
10.1016/j.asoc.2017.09.041
10.1016/j.est.2017.07.003
10.1016/j.rser.2015.07.105
10.1109/TPWRS.2007.907582
10.1109/TPWRS.2017.2650683
10.1002/etep.2425
10.1016/j.energy.2013.08.039
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2018.11.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
EndPage 71
ExternalDocumentID 10_1016_j_est_2018_11_009
S2352152X18303566
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c360t-688323cec0c6e27110b460dba90a3b95f66a3515c07ac00abec3ef5f77d61d243
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Tue Jul 01 03:34:13 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Fri Feb 23 02:21:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
RES
DG
PV
BM
PHEV
DR
DFR
SCIP
Optimal generation scheduling (OGS)
SH
Distribution feeder reconfiguration (DFR)
MG
WT
Electric vehicles (EV)
DSM
Demand response (DR)
GAMS
Microgrid
SOC
MT
EMS
G2V
V2G
GT
MICP
EV
EES
OGS
FC
Distributed generation (DG)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-688323cec0c6e27110b460dba90a3b95f66a3515c07ac00abec3ef5f77d61d243
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_est_2018_11_009
crossref_citationtrail_10_1016_j_est_2018_11_009
elsevier_sciencedirect_doi_10_1016_j_est_2018_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of energy storage
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hamida, Salah, Msahli (bib0105) 2018
Hu, Cao, Egardt (bib0160) 2018; 23
Nunna, Battula, Doolla (bib0070) 2018; 9
Tavakoli, Shokridehaki, Funsho Akorede (bib0090) 2018; 100
Mazidi, Zakariazadeh, Jadid (bib0175) 2014; 86
Model X | Tesla
de Faria, Resende, Ernst (bib0030) 2017; 23
Wu, Wu, Wu (bib0065) 2018; 143
Kaveh, Hooshmand, Madani (bib0125) 2018; 62
Baran, Wu (bib0135) 1989; 4
Esmaili, Rajabi (bib0150) 2014; 8
Singh, Misra (bib0170) 2007; 22
Esmaili, Shafiee, Aghaei (bib0020) 2018; 20
Nguyen, Truong, Phung (bib0035) 2016; 78
Fathabadi (bib0045) 2016; 78
Jabbari-Sabet, Moghaddas-Tafreshi, Mirhoseini (bib0095) 2016; 75
Esmaeili, Sedighizadeh, Esmaili (bib0115) 2016; 103
Gutiérrez-Alcaraz, Galván, González-Cabrera (bib0100) 2015; 52
Wang, Zhao, Pratt (bib0080) 2018; 228
Gazijahani, Salehi (bib0120) 2018; 99
Malekpour, Pahwa (bib0060) 2017; 32
Asrari, Lotfifard, Payam (bib0040) 2016; 7
Farivar, Low (bib0140) 2013; 28
Ah King, Marappa Naiken (bib0050) 2016
Li, Huang, Liaw (bib0155) 2017; 348
Sedighizadeh, Esmaili, Esmaeili (bib0110) 2014; 76
Dorostkar-Ghamsari, Fotuhi-Firuzabad, Lehtonen (bib0145) 2016; 31
.
Siano (bib0010) 2014; 30
Goroohi Sardou, Zare, Azad-Farsani (bib0085) 2018; 98
Wu, Hu, Yin (bib0005) 2018; 9
van Stiphout, Brijs, Belmans (bib0025) 2017; 13
López, De La Torre, Martín (bib0180) 2015; 64
Shukla, Das, Pant (bib0130) 2018; 99
Rosenthal (bib0185) 2018
Zarei, Zangeneh (bib0055) 2017; 27
Wu, Hu, Teng (bib0015) 2017; 363
Marzband, Javadi, Domínguez-García (bib0075) 2016; 10
Arslan, Karasan (bib0165) 2013; 60
Ah King (10.1016/j.est.2018.11.009_bib0050) 2016
Hamida (10.1016/j.est.2018.11.009_bib0105) 2018
Shukla (10.1016/j.est.2018.11.009_bib0130) 2018; 99
Zarei (10.1016/j.est.2018.11.009_bib0055) 2017; 27
Baran (10.1016/j.est.2018.11.009_bib0135) 1989; 4
de Faria (10.1016/j.est.2018.11.009_bib0030) 2017; 23
Esmaeili (10.1016/j.est.2018.11.009_bib0115) 2016; 103
Singh (10.1016/j.est.2018.11.009_bib0170) 2007; 22
Hu (10.1016/j.est.2018.11.009_bib0160) 2018; 23
Mazidi (10.1016/j.est.2018.11.009_bib0175) 2014; 86
10.1016/j.est.2018.11.009_bib0190
Dorostkar-Ghamsari (10.1016/j.est.2018.11.009_bib0145) 2016; 31
Jabbari-Sabet (10.1016/j.est.2018.11.009_bib0095) 2016; 75
Fathabadi (10.1016/j.est.2018.11.009_bib0045) 2016; 78
Wang (10.1016/j.est.2018.11.009_bib0080) 2018; 228
Nguyen (10.1016/j.est.2018.11.009_bib0035) 2016; 78
Arslan (10.1016/j.est.2018.11.009_bib0165) 2013; 60
Wu (10.1016/j.est.2018.11.009_bib0065) 2018; 143
Farivar (10.1016/j.est.2018.11.009_bib0140) 2013; 28
Gazijahani (10.1016/j.est.2018.11.009_bib0120) 2018; 99
Gutiérrez-Alcaraz (10.1016/j.est.2018.11.009_bib0100) 2015; 52
Sedighizadeh (10.1016/j.est.2018.11.009_bib0110) 2014; 76
Rosenthal (10.1016/j.est.2018.11.009_bib0185) 2018
Nunna (10.1016/j.est.2018.11.009_bib0070) 2018; 9
van Stiphout (10.1016/j.est.2018.11.009_bib0025) 2017; 13
Kaveh (10.1016/j.est.2018.11.009_bib0125) 2018; 62
López (10.1016/j.est.2018.11.009_bib0180) 2015; 64
Siano (10.1016/j.est.2018.11.009_bib0010) 2014; 30
Esmaili (10.1016/j.est.2018.11.009_bib0150) 2014; 8
Goroohi Sardou (10.1016/j.est.2018.11.009_bib0085) 2018; 98
Wu (10.1016/j.est.2018.11.009_bib0005) 2018; 9
Wu (10.1016/j.est.2018.11.009_bib0015) 2017; 363
Esmaili (10.1016/j.est.2018.11.009_bib0020) 2018; 20
Asrari (10.1016/j.est.2018.11.009_bib0040) 2016; 7
Tavakoli (10.1016/j.est.2018.11.009_bib0090) 2018; 100
Marzband (10.1016/j.est.2018.11.009_bib0075) 2016; 10
Malekpour (10.1016/j.est.2018.11.009_bib0060) 2017; 32
Li (10.1016/j.est.2018.11.009_bib0155) 2017; 348
References_xml – volume: 9
  start-page: 4004
  year: 2018
  end-page: 4016
  ident: bib0070
  article-title: Energy management in smart distribution systems with Vehicle-to-Grid Integrated Microgrids
  publication-title: IEEE Trans. Smart Grid
– volume: 100
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0090
  article-title: CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: Model X | Tesla,
– year: 2018
  ident: bib0105
  article-title: Optimal network reconfiguration and renewable DGs integration considering time sequence variation of load and DGs
  publication-title: Renew. Energy
– volume: 78
  start-page: 96
  year: 2016
  end-page: 107
  ident: bib0045
  article-title: Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (dFCM) clustering based ANN approach
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 10
  start-page: 2999
  year: 2016
  end-page: 3009
  ident: bib0075
  article-title: Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties
  publication-title: Iet Gener. Transm. Distrib.
– volume: 31
  start-page: 1879
  year: 2016
  end-page: 1888
  ident: bib0145
  article-title: Value of distribution network reconfiguration in presence of renewable energy resources
  publication-title: Ieee Trans. Power Syst.
– volume: 78
  start-page: 801
  year: 2016
  end-page: 815
  ident: bib0035
  article-title: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 99
  start-page: 121
  year: 2018
  end-page: 133
  ident: bib0130
  article-title: Stability constrained optimal distribution system reconfiguration considering uncertainties in correlated loads and distributed generations
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 28
  start-page: 2554
  year: 2013
  end-page: 2564
  ident: bib0140
  article-title: Branch flow model: relaxations and convexification—part I
  publication-title: Ieee Trans. Power Syst.
– volume: 103
  start-page: 86
  year: 2016
  end-page: 99
  ident: bib0115
  article-title: Multi-objective optimal reconfiguration and DG (distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty
  publication-title: Energy
– volume: 32
  start-page: 3681
  year: 2017
  end-page: 3693
  ident: bib0060
  article-title: Stochastic networked microgrid energy management with correlated wind generators
  publication-title: Ieee Trans. Power Syst.
– volume: 4
  start-page: 1401
  year: 1989
  end-page: 1407
  ident: bib0135
  article-title: Network reconfiguration in distribution systems for loss reduction and load balancing
  publication-title: Ieee Trans. Power Deliv.
– volume: 60
  start-page: 116
  year: 2013
  end-page: 124
  ident: bib0165
  article-title: Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks
  publication-title: Energy
– volume: 99
  start-page: 481
  year: 2018
  end-page: 492
  ident: bib0120
  article-title: Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2018
  ident: bib0185
  article-title: General Algebraic Modeling System (GAMS) User Guide
– volume: 348
  start-page: 281
  year: 2017
  end-page: 301
  ident: bib0155
  article-title: On state-of-charge determination for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 76
  start-page: 920
  year: 2014
  end-page: 930
  ident: bib0110
  article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems
  publication-title: Energy
– volume: 228
  start-page: 2407
  year: 2018
  end-page: 2421
  ident: bib0080
  article-title: Design of an advanced energy management system for microgrid control using a state machine
  publication-title: Appl. Energy
– volume: 62
  start-page: 1044
  year: 2018
  end-page: 1055
  ident: bib0125
  article-title: Simultaneous optimization of re-phasing, reconfiguration and DG placement in distribution networks using BF-SD algorithm
  publication-title: Appl. Soft Comput.
– volume: 30
  start-page: 461
  year: 2014
  end-page: 478
  ident: bib0010
  article-title: Demand response and smart grids—a survey
  publication-title: Renewable Sustainable Energy Rev.
– volume: 98
  start-page: 118
  year: 2018
  end-page: 132
  ident: bib0085
  article-title: Robust energy management of a microgrid with photovoltaic inverters in VAR compensation mode
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 22
  start-page: 2204
  year: 2007
  end-page: 2212
  ident: bib0170
  article-title: Effect of load models in distributed generation planning
  publication-title: Ieee Trans. Power Syst.
– volume: 23
  start-page: 167
  year: 2018
  end-page: 178
  ident: bib0160
  article-title: Condition monitoring in advanced battery management systems: moving horizon estimation using a reduced electrochemical model
  publication-title: Ieee/asme Trans. Mechatron.
– volume: 23
  start-page: 533
  year: 2017
  end-page: 550
  ident: bib0030
  article-title: A biased random key genetic algorithm applied to the electric distribution network reconfiguration problem
  publication-title: J. Heuristics
– volume: 75
  start-page: 328
  year: 2016
  end-page: 336
  ident: bib0095
  article-title: Microgrid operation and management using probabilistic reconfiguration and unit commitment
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 20
  start-page: 57
  year: 2018
  end-page: 66
  ident: bib0020
  article-title: Range anxiety of electric vehicles in energy management of microgrids with controllable loads
  publication-title: J. Energy Storage
– start-page: 144
  year: 2016
  end-page: 153
  ident: bib0050
  article-title: Voltage Stability Maximization by Distribution Network Reconfiguration Using a Hybrid Algorithm
– reference: .
– volume: 363
  start-page: 277
  year: 2017
  end-page: 283
  ident: bib0015
  article-title: Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle
  publication-title: J. Power Sources
– volume: 86
  start-page: 1118
  year: 2014
  end-page: 1127
  ident: bib0175
  article-title: Integrated scheduling of renewable generation and demand response programs in a microgrid
  publication-title: Energy Convers. Manage.
– volume: 9
  start-page: 2065
  year: 2018
  end-page: 2075
  ident: bib0005
  article-title: Stochastic optimal energy management of smart home with PEV energy storage
  publication-title: IEEE Trans. Smart Grid
– volume: 52
  start-page: 256
  year: 2015
  end-page: 264
  ident: bib0100
  article-title: Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption
  publication-title: Renewable Sustainable Energy Rev.
– volume: 64
  start-page: 689
  year: 2015
  end-page: 698
  ident: bib0180
  article-title: Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 143
  start-page: 323
  year: 2018
  end-page: 336
  ident: bib0065
  article-title: CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs
  publication-title: Energy
– volume: 8
  start-page: 583
  year: 2014
  end-page: 590
  ident: bib0150
  article-title: Optimal charging of plug-in electric vehicles observing power grid constraints
  publication-title: Iet Gener. Transm. Distrib.
– volume: 13
  start-page: 344
  year: 2017
  end-page: 358
  ident: bib0025
  article-title: Quantifying the importance of power system operation constraints in power system planning models: a case study for electricity storage
  publication-title: J. Energy Storage
– volume: 7
  start-page: 1401
  year: 2016
  end-page: 1410
  ident: bib0040
  article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration
  publication-title: IEEE Trans. Smart Grid
– volume: 27
  start-page: e2425
  year: 2017
  ident: bib0055
  article-title: Multi-objective optimization model for distribution network reconfiguration in the presence of distributed generations
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 86
  start-page: 1118
  year: 2014
  ident: 10.1016/j.est.2018.11.009_bib0175
  article-title: Integrated scheduling of renewable generation and demand response programs in a microgrid
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.06.078
– volume: 363
  start-page: 277
  year: 2017
  ident: 10.1016/j.est.2018.11.009_bib0015
  article-title: Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.086
– volume: 4
  start-page: 1401
  issue: 2
  year: 1989
  ident: 10.1016/j.est.2018.11.009_bib0135
  article-title: Network reconfiguration in distribution systems for loss reduction and load balancing
  publication-title: Ieee Trans. Power Deliv.
  doi: 10.1109/61.25627
– volume: 78
  start-page: 96
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0045
  article-title: Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (dFCM) clustering based ANN approach
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.11.077
– volume: 75
  start-page: 328
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0095
  article-title: Microgrid operation and management using probabilistic reconfiguration and unit commitment
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.09.012
– volume: 103
  start-page: 86
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0115
  article-title: Multi-objective optimal reconfiguration and DG (distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.152
– volume: 9
  start-page: 4004
  issue: 5
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0070
  article-title: Energy management in smart distribution systems with Vehicle-to-Grid Integrated Microgrids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2646779
– volume: 23
  start-page: 533
  issue: 6
  year: 2017
  ident: 10.1016/j.est.2018.11.009_bib0030
  article-title: A biased random key genetic algorithm applied to the electric distribution network reconfiguration problem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-017-9355-8
– ident: 10.1016/j.est.2018.11.009_bib0190
– volume: 100
  start-page: 1
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0090
  article-title: CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.02.022
– volume: 99
  start-page: 481
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0120
  article-title: Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.044
– volume: 30
  start-page: 461
  year: 2014
  ident: 10.1016/j.est.2018.11.009_bib0010
  article-title: Demand response and smart grids—a survey
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.10.022
– volume: 143
  start-page: 323
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0065
  article-title: CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.083
– volume: 20
  start-page: 57
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0020
  article-title: Range anxiety of electric vehicles in energy management of microgrids with controllable loads
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.08.023
– volume: 228
  start-page: 2407
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0080
  article-title: Design of an advanced energy management system for microgrid control using a state machine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.034
– year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0185
– volume: 23
  start-page: 167
  issue: 1
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0160
  article-title: Condition monitoring in advanced battery management systems: moving horizon estimation using a reduced electrochemical model
  publication-title: Ieee/asme Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2675920
– volume: 78
  start-page: 801
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0035
  article-title: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.12.030
– volume: 98
  start-page: 118
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0085
  article-title: Robust energy management of a microgrid with photovoltaic inverters in VAR compensation mode
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.11.037
– volume: 99
  start-page: 121
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0130
  article-title: Stability constrained optimal distribution system reconfiguration considering uncertainties in correlated loads and distributed generations
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.010
– volume: 10
  start-page: 2999
  issue: 12
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0075
  article-title: Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties
  publication-title: Iet Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.0024
– volume: 8
  start-page: 583
  issue: 4
  year: 2014
  ident: 10.1016/j.est.2018.11.009_bib0150
  article-title: Optimal charging of plug-in electric vehicles observing power grid constraints
  publication-title: Iet Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2013.0628
– volume: 64
  start-page: 689
  year: 2015
  ident: 10.1016/j.est.2018.11.009_bib0180
  article-title: Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.07.065
– volume: 76
  start-page: 920
  year: 2014
  ident: 10.1016/j.est.2018.11.009_bib0110
  article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.004
– volume: 31
  start-page: 1879
  issue: 3
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0145
  article-title: Value of distribution network reconfiguration in presence of renewable energy resources
  publication-title: Ieee Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2457954
– volume: 28
  start-page: 2554
  issue: 3
  year: 2013
  ident: 10.1016/j.est.2018.11.009_bib0140
  article-title: Branch flow model: relaxations and convexification—part I
  publication-title: Ieee Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2255317
– volume: 7
  start-page: 1401
  issue: 3
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0040
  article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2468683
– start-page: 144
  year: 2016
  ident: 10.1016/j.est.2018.11.009_bib0050
– volume: 348
  start-page: 281
  year: 2017
  ident: 10.1016/j.est.2018.11.009_bib0155
  article-title: On state-of-charge determination for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.001
– volume: 9
  start-page: 2065
  issue: 3
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0005
  article-title: Stochastic optimal energy management of smart home with PEV energy storage
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2606442
– volume: 62
  start-page: 1044
  year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0125
  article-title: Simultaneous optimization of re-phasing, reconfiguration and DG placement in distribution networks using BF-SD algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.041
– year: 2018
  ident: 10.1016/j.est.2018.11.009_bib0105
  article-title: Optimal network reconfiguration and renewable DGs integration considering time sequence variation of load and DGs
  publication-title: Renew. Energy
– volume: 13
  start-page: 344
  year: 2017
  ident: 10.1016/j.est.2018.11.009_bib0025
  article-title: Quantifying the importance of power system operation constraints in power system planning models: a case study for electricity storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.07.003
– volume: 52
  start-page: 256
  year: 2015
  ident: 10.1016/j.est.2018.11.009_bib0100
  article-title: Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.07.105
– volume: 22
  start-page: 2204
  issue: 4
  year: 2007
  ident: 10.1016/j.est.2018.11.009_bib0170
  article-title: Effect of load models in distributed generation planning
  publication-title: Ieee Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.907582
– volume: 32
  start-page: 3681
  issue: 5
  year: 2017
  ident: 10.1016/j.est.2018.11.009_bib0060
  article-title: Stochastic networked microgrid energy management with correlated wind generators
  publication-title: Ieee Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2650683
– volume: 27
  start-page: e2425
  issue: 12
  year: 2017
  ident: 10.1016/j.est.2018.11.009_bib0055
  article-title: Multi-objective optimization model for distribution network reconfiguration in the presence of distributed generations
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2425
– volume: 60
  start-page: 116
  year: 2013
  ident: 10.1016/j.est.2018.11.009_bib0165
  article-title: Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.039
SSID ssj0001651196
Score 2.3625338
Snippet •Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Demand response (DR)
Distributed generation (DG)
Distribution feeder reconfiguration (DFR)
Electric vehicles (EV)
Microgrid
Optimal generation scheduling (OGS)
Title Optimal distribution feeder reconfiguration and generation scheduling for microgrid day-ahead operation in the presence of electric vehicles considering uncertainties
URI https://dx.doi.org/10.1016/j.est.2018.11.009
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIrykgcmpFAnjp1mrCqqAqIMUKlb5NhOCaJpVLVI_CF-J2fH4SEBA6MjnxXlznfn-LvvEDqLmNKR4MwTkgZe6GvmxVnqg0LgfBEJIYWt4r8d8eE4vJ6wSQP161oYA6t0vr_y6dZbuycd9zU7ZZ537gPIHSD6TMAoCYWsZA21Ahpz1kSt3tXNcPT5q4Wby7KqzRwLPCNT329apBe4X4Px6l4YOk-DTPwpQn2JOoMttOnSRdyr3mgbNXSxgza-kAjuorc72PUzmKQMB65rX4UzbVgisD3vZvl0VSkai0LhqWWatkM42kKoMRXpGJJXPDPovOkiV1iJV0-An1Z4XtaT8wJDtohLW7AkNZ5nuGqik0v8oh8tvg5L1wDULAkhswIcGNLWPTQeXD70h57rvuBJysnS413Y7FRqSSTXQQRpQhpyolIRE0HTmGWcCwrZkASVSkIEGAPVGcuiSHFfBSHdR81iXugDhCVXypTk0tSXpumViAKSRlzEXZJKWKeNSP3FE-moyU2HjOekxqA9JaCkxCgJjiwJKKmNzj9EyoqX46_JYa3G5JtxJRA3fhc7_J_YEVqHUVxBu49Rc7lY6RPIXJbpqbPMd9vi8N0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvPDAhhbpx4jRjhUDh0TLQSt0ix3ZKEE0j1CLxh_idnBMHigQMjEnsKPKd7xF_9x3AaeArHQjuO0Iy1_Fa2nfCNGmhQDC_CISQoqzi7_Z4NPBuhv5wAS7qWhgDq7S2v7LppbW2d5p2NZtFljUfXIwd0PsMUSkpw6hkEZY8H7O9Bix1rm-j3tevFm4Oy6o2c77rmDn1-WaJ9ELzazBe7XND52mQiT95qDmvc7UOazZcJJ3qizZgQeebsDpHIrgF7_e468c4SBkOXNu-iqTasESQMt9Ns9GsEjQRuSKjkmm6vMTUFl2NqUgnGLySsUHnjV4yRZR4cwTaaUUmRT04ywlGi6QoC5akJpOUVE10Mkle9WOJryPSNgA1r0SXWQEODGnrNgyuLvsXkWO7LziScTp1eBs3O5NaUsm1G2CYkHicqkSEVLAk9FPOBcNoSKJIJaUClYHp1E-DQPGWcj22A418kutdIJIrZUpyWdKSpumVCFyaBFyEbZpIfM8e0HrFY2mpyU2HjOe4xqA9xSik2AgJU5YYhbQHZ59TioqX46_BXi3G-Jtyxeg3fp-2_79pJ7Ac9bt38d117_YAVvBJWMG8D6ExfZnpI4xipsmx1dIPTunzyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+distribution+feeder+reconfiguration+and+generation+scheduling+for+microgrid+day-ahead+operation+in+the+presence+of+electric+vehicles+considering+uncertainties&rft.jtitle=Journal+of+energy+storage&rft.au=Sedighizadeh%2C+Mostafa&rft.au=Shaghaghi-shahr%2C+Gholamreza&rft.au=Esmaili%2C+Masoud&rft.au=Aghamohammadi%2C+Mohammad+Reza&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=21&rft.spage=58&rft.epage=71&rft_id=info:doi/10.1016%2Fj.est.2018.11.009&rft.externalDocID=S2352152X18303566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon