Optimal distribution feeder reconfiguration and generation scheduling for microgrid day-ahead operation in the presence of electric vehicles considering uncertainties
•Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable generations.•Modeling EVs as EES in the suggested framework to reduce the total cost.•Considering the DR program and the participation of customers in t...
Saved in:
Published in | Journal of energy storage Vol. 21; pp. 58 - 71 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-152X 2352-1538 |
DOI | 10.1016/j.est.2018.11.009 |
Cover
Abstract | •Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable generations.•Modeling EVs as EES in the suggested framework to reduce the total cost.•Considering the DR program and the participation of customers in the operation of MG.•Modeling the charging pattern of EVs in controlled and uncontrolled patterns.
Distribution Feeder Reconfiguration (DFR) and Optimal Generation Scheduling (OGS) are indispensable operation tasks that are used in Microgrids (MGs) to enhance efficiency as well as technical and economic features of MGs. The OGS problem usually minimizes the cost of energy assuming a fixed configuration of power systems. On the other hand, the DFR problem is done assuming a predefined generation of units. However, performing these two tasks separately may lose the optimal solution. In this paper, a framework is proposed to jointly perform OGS and optimal DFR on a day-ahead time frame. The total operation cost of MG is minimized subject to diverse technical and economic constraints. The Demand Response (DR) program offered by curtailable loads is considered as a Demand Side Management (DSM) tool. The Electric Vehicles (EVs) and non-dispatchable Distributed Generations (DGs) are modeled along with the uncertainty of MG components. The charging pattern of EVs is modeled in two ways including uncontrolled and controlled patterns. The objective function includes the cost of purchasing active/reactive power from the upstream grid as well as DGs, cost of switching in DFR, cost of DR, and cost of energy losses. MG profit from selling electric energy to the upstream grid is also incorporated in the objective function. The proposed model is formulated as a Mixed-Integer Second-Order Cone Programming (MISOCP) problem and solved by the GAMS software package. The efficacy of the proposed model is confirmed by examining it on the IEEE 33-bus distribution network. |
---|---|
AbstractList | •Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable generations.•Modeling EVs as EES in the suggested framework to reduce the total cost.•Considering the DR program and the participation of customers in the operation of MG.•Modeling the charging pattern of EVs in controlled and uncontrolled patterns.
Distribution Feeder Reconfiguration (DFR) and Optimal Generation Scheduling (OGS) are indispensable operation tasks that are used in Microgrids (MGs) to enhance efficiency as well as technical and economic features of MGs. The OGS problem usually minimizes the cost of energy assuming a fixed configuration of power systems. On the other hand, the DFR problem is done assuming a predefined generation of units. However, performing these two tasks separately may lose the optimal solution. In this paper, a framework is proposed to jointly perform OGS and optimal DFR on a day-ahead time frame. The total operation cost of MG is minimized subject to diverse technical and economic constraints. The Demand Response (DR) program offered by curtailable loads is considered as a Demand Side Management (DSM) tool. The Electric Vehicles (EVs) and non-dispatchable Distributed Generations (DGs) are modeled along with the uncertainty of MG components. The charging pattern of EVs is modeled in two ways including uncontrolled and controlled patterns. The objective function includes the cost of purchasing active/reactive power from the upstream grid as well as DGs, cost of switching in DFR, cost of DR, and cost of energy losses. MG profit from selling electric energy to the upstream grid is also incorporated in the objective function. The proposed model is formulated as a Mixed-Integer Second-Order Cone Programming (MISOCP) problem and solved by the GAMS software package. The efficacy of the proposed model is confirmed by examining it on the IEEE 33-bus distribution network. |
Author | Sedighizadeh, Mostafa Esmaili, Masoud Aghamohammadi, Mohammad Reza Shaghaghi-shahr, Gholamreza |
Author_xml | – sequence: 1 givenname: Mostafa surname: Sedighizadeh fullname: Sedighizadeh, Mostafa email: m_sedighi@sbu.ac.ir organization: Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran – sequence: 2 givenname: Gholamreza surname: Shaghaghi-shahr fullname: Shaghaghi-shahr, Gholamreza organization: Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran – sequence: 3 givenname: Masoud surname: Esmaili fullname: Esmaili, Masoud organization: Department of Electrical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran – sequence: 4 givenname: Mohammad Reza surname: Aghamohammadi fullname: Aghamohammadi, Mohammad Reza organization: Faculty of Electrical Engineering, Shahid Beheshti University, Evin, Tehran, Iran |
BookMark | eNp9kMtKAzEUhoMoeH0Ad3mBGXMmnUyLKxFvILhRcBcyyUl7ypgpSSr4Qj6nqa0uXLjKhfOdn_87ZvthDMjYOYgaBKiLZY0p142AaQ1QCzHbY0eNbJsKWjnd_703r4fsLKWlEAVqAWbqiH0-rTK9mYE7SjlSv840Bu4RHUYe0Y7B03wdzfe3CY7PMeDumewC3XqgMOd-jPyNbBznkRx35qMyCzSOj6ufYQo8L5CvIiYMFvnoOQ5oS6bl77ggO2DiJS5RSd6sXJepmA2FTJhO2YE3Q8Kz3XnCXm5vnq_vq8enu4frq8fKSiVypaZT2UiLVliFTQcg-okSrjczYWQ_a71SRrbQWtEZK4Tp0Ur0re86p8A1E3nCYLu3VEkpoterWPTEDw1Cb1zrpS6u9ca1BtDFdWG6P4yl_F06R0PDv-TllsRS6Z0w6mRpY8dRUZ-1G-kf-gsCJKFd |
CitedBy_id | crossref_primary_10_1002_2050_7038_13108 crossref_primary_10_1049_rpg2_12648 crossref_primary_10_1007_s13369_020_04965_x crossref_primary_10_1109_ACCESS_2020_3041709 crossref_primary_10_1016_j_segan_2021_100547 crossref_primary_10_1016_j_jclepro_2020_121562 crossref_primary_10_1016_j_rser_2024_114767 crossref_primary_10_3390_en15103808 crossref_primary_10_1002_er_6023 crossref_primary_10_1016_j_est_2020_101301 crossref_primary_10_1016_j_est_2021_103605 crossref_primary_10_1049_smc2_12029 crossref_primary_10_1016_j_rser_2022_112095 crossref_primary_10_1016_j_est_2020_102089 crossref_primary_10_1016_j_est_2021_103194 crossref_primary_10_1016_j_est_2022_105310 crossref_primary_10_1002_2050_7038_12302 crossref_primary_10_1016_j_renene_2020_07_136 crossref_primary_10_1016_j_seta_2021_101169 crossref_primary_10_1007_s10098_023_02660_7 crossref_primary_10_3233_JIFS_212397 crossref_primary_10_1080_15325008_2022_2049647 crossref_primary_10_1016_j_jclepro_2019_117841 crossref_primary_10_1016_j_est_2020_101512 crossref_primary_10_3233_JIFS_221363 crossref_primary_10_1016_j_segan_2019_100191 crossref_primary_10_3390_pr12020270 crossref_primary_10_1016_j_est_2022_105241 crossref_primary_10_1016_j_est_2022_104030 crossref_primary_10_1080_03772063_2020_1839360 crossref_primary_10_1109_TPWRS_2019_2959586 crossref_primary_10_3390_electronics10202484 crossref_primary_10_1007_s42835_023_01392_4 crossref_primary_10_1016_j_apenergy_2024_123850 crossref_primary_10_1088_1755_1315_675_1_012124 crossref_primary_10_1016_j_est_2023_108672 crossref_primary_10_1016_j_jclepro_2020_121629 crossref_primary_10_1016_j_segan_2024_101330 crossref_primary_10_1016_j_est_2021_102971 crossref_primary_10_1016_j_est_2021_102775 crossref_primary_10_1016_j_heliyon_2024_e31675 crossref_primary_10_1016_j_energy_2025_134567 crossref_primary_10_3390_su162310307 crossref_primary_10_1049_gtd2_13264 crossref_primary_10_3390_app14041428 crossref_primary_10_1016_j_ijepes_2024_109914 crossref_primary_10_1002_er_8058 crossref_primary_10_1016_j_est_2020_101858 crossref_primary_10_1007_s00202_024_02823_9 crossref_primary_10_1155_2024_5543500 crossref_primary_10_1016_j_est_2019_101057 crossref_primary_10_1016_j_apenergy_2023_121007 crossref_primary_10_1016_j_est_2019_03_019 crossref_primary_10_3390_app11167178 crossref_primary_10_3390_su16031212 crossref_primary_10_1016_j_energy_2020_119058 crossref_primary_10_3390_en16134983 crossref_primary_10_1016_j_ref_2019_12_001 crossref_primary_10_1080_0305215X_2019_1695790 |
Cites_doi | 10.1016/j.enconman.2014.06.078 10.1016/j.jpowsour.2017.07.086 10.1109/61.25627 10.1016/j.ijepes.2015.11.077 10.1016/j.ijepes.2015.09.012 10.1016/j.energy.2016.02.152 10.1109/TSG.2016.2646779 10.1007/s10732-017-9355-8 10.1016/j.ijepes.2018.02.022 10.1016/j.ijepes.2018.01.044 10.1016/j.rser.2013.10.022 10.1016/j.energy.2017.10.083 10.1016/j.est.2018.08.023 10.1016/j.apenergy.2018.07.034 10.1109/TMECH.2017.2675920 10.1016/j.ijepes.2015.12.030 10.1016/j.ijepes.2017.11.037 10.1016/j.ijepes.2018.01.010 10.1049/iet-gtd.2016.0024 10.1049/iet-gtd.2013.0628 10.1016/j.ijepes.2014.07.065 10.1016/j.energy.2014.09.004 10.1109/TPWRS.2015.2457954 10.1109/TPWRS.2013.2255317 10.1109/TSG.2015.2468683 10.1016/j.jpowsour.2017.03.001 10.1109/TSG.2016.2606442 10.1016/j.asoc.2017.09.041 10.1016/j.est.2017.07.003 10.1016/j.rser.2015.07.105 10.1109/TPWRS.2007.907582 10.1109/TPWRS.2017.2650683 10.1002/etep.2425 10.1016/j.energy.2013.08.039 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.est.2018.11.009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-1538 |
EndPage | 71 |
ExternalDocumentID | 10_1016_j_est_2018_11_009 S2352152X18303566 |
GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c360t-688323cec0c6e27110b460dba90a3b95f66a3515c07ac00abec3ef5f77d61d243 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Tue Jul 01 03:34:13 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Fri Feb 23 02:21:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ANN RES DG PV BM PHEV DR DFR SCIP Optimal generation scheduling (OGS) SH Distribution feeder reconfiguration (DFR) MG WT Electric vehicles (EV) DSM Demand response (DR) GAMS Microgrid SOC MT EMS G2V V2G GT MICP EV EES OGS FC Distributed generation (DG) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-688323cec0c6e27110b460dba90a3b95f66a3515c07ac00abec3ef5f77d61d243 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_est_2018_11_009 crossref_citationtrail_10_1016_j_est_2018_11_009 elsevier_sciencedirect_doi_10_1016_j_est_2018_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hamida, Salah, Msahli (bib0105) 2018 Hu, Cao, Egardt (bib0160) 2018; 23 Nunna, Battula, Doolla (bib0070) 2018; 9 Tavakoli, Shokridehaki, Funsho Akorede (bib0090) 2018; 100 Mazidi, Zakariazadeh, Jadid (bib0175) 2014; 86 Model X | Tesla de Faria, Resende, Ernst (bib0030) 2017; 23 Wu, Wu, Wu (bib0065) 2018; 143 Kaveh, Hooshmand, Madani (bib0125) 2018; 62 Baran, Wu (bib0135) 1989; 4 Esmaili, Rajabi (bib0150) 2014; 8 Singh, Misra (bib0170) 2007; 22 Esmaili, Shafiee, Aghaei (bib0020) 2018; 20 Nguyen, Truong, Phung (bib0035) 2016; 78 Fathabadi (bib0045) 2016; 78 Jabbari-Sabet, Moghaddas-Tafreshi, Mirhoseini (bib0095) 2016; 75 Esmaeili, Sedighizadeh, Esmaili (bib0115) 2016; 103 Gutiérrez-Alcaraz, Galván, González-Cabrera (bib0100) 2015; 52 Wang, Zhao, Pratt (bib0080) 2018; 228 Gazijahani, Salehi (bib0120) 2018; 99 Malekpour, Pahwa (bib0060) 2017; 32 Asrari, Lotfifard, Payam (bib0040) 2016; 7 Farivar, Low (bib0140) 2013; 28 Ah King, Marappa Naiken (bib0050) 2016 Li, Huang, Liaw (bib0155) 2017; 348 Sedighizadeh, Esmaili, Esmaeili (bib0110) 2014; 76 Dorostkar-Ghamsari, Fotuhi-Firuzabad, Lehtonen (bib0145) 2016; 31 . Siano (bib0010) 2014; 30 Goroohi Sardou, Zare, Azad-Farsani (bib0085) 2018; 98 Wu, Hu, Yin (bib0005) 2018; 9 van Stiphout, Brijs, Belmans (bib0025) 2017; 13 López, De La Torre, Martín (bib0180) 2015; 64 Shukla, Das, Pant (bib0130) 2018; 99 Rosenthal (bib0185) 2018 Zarei, Zangeneh (bib0055) 2017; 27 Wu, Hu, Teng (bib0015) 2017; 363 Marzband, Javadi, Domínguez-García (bib0075) 2016; 10 Arslan, Karasan (bib0165) 2013; 60 Ah King (10.1016/j.est.2018.11.009_bib0050) 2016 Hamida (10.1016/j.est.2018.11.009_bib0105) 2018 Shukla (10.1016/j.est.2018.11.009_bib0130) 2018; 99 Zarei (10.1016/j.est.2018.11.009_bib0055) 2017; 27 Baran (10.1016/j.est.2018.11.009_bib0135) 1989; 4 de Faria (10.1016/j.est.2018.11.009_bib0030) 2017; 23 Esmaeili (10.1016/j.est.2018.11.009_bib0115) 2016; 103 Singh (10.1016/j.est.2018.11.009_bib0170) 2007; 22 Hu (10.1016/j.est.2018.11.009_bib0160) 2018; 23 Mazidi (10.1016/j.est.2018.11.009_bib0175) 2014; 86 10.1016/j.est.2018.11.009_bib0190 Dorostkar-Ghamsari (10.1016/j.est.2018.11.009_bib0145) 2016; 31 Jabbari-Sabet (10.1016/j.est.2018.11.009_bib0095) 2016; 75 Fathabadi (10.1016/j.est.2018.11.009_bib0045) 2016; 78 Wang (10.1016/j.est.2018.11.009_bib0080) 2018; 228 Nguyen (10.1016/j.est.2018.11.009_bib0035) 2016; 78 Arslan (10.1016/j.est.2018.11.009_bib0165) 2013; 60 Wu (10.1016/j.est.2018.11.009_bib0065) 2018; 143 Farivar (10.1016/j.est.2018.11.009_bib0140) 2013; 28 Gazijahani (10.1016/j.est.2018.11.009_bib0120) 2018; 99 Gutiérrez-Alcaraz (10.1016/j.est.2018.11.009_bib0100) 2015; 52 Sedighizadeh (10.1016/j.est.2018.11.009_bib0110) 2014; 76 Rosenthal (10.1016/j.est.2018.11.009_bib0185) 2018 Nunna (10.1016/j.est.2018.11.009_bib0070) 2018; 9 van Stiphout (10.1016/j.est.2018.11.009_bib0025) 2017; 13 Kaveh (10.1016/j.est.2018.11.009_bib0125) 2018; 62 López (10.1016/j.est.2018.11.009_bib0180) 2015; 64 Siano (10.1016/j.est.2018.11.009_bib0010) 2014; 30 Esmaili (10.1016/j.est.2018.11.009_bib0150) 2014; 8 Goroohi Sardou (10.1016/j.est.2018.11.009_bib0085) 2018; 98 Wu (10.1016/j.est.2018.11.009_bib0005) 2018; 9 Wu (10.1016/j.est.2018.11.009_bib0015) 2017; 363 Esmaili (10.1016/j.est.2018.11.009_bib0020) 2018; 20 Asrari (10.1016/j.est.2018.11.009_bib0040) 2016; 7 Tavakoli (10.1016/j.est.2018.11.009_bib0090) 2018; 100 Marzband (10.1016/j.est.2018.11.009_bib0075) 2016; 10 Malekpour (10.1016/j.est.2018.11.009_bib0060) 2017; 32 Li (10.1016/j.est.2018.11.009_bib0155) 2017; 348 |
References_xml | – volume: 9 start-page: 4004 year: 2018 end-page: 4016 ident: bib0070 article-title: Energy management in smart distribution systems with Vehicle-to-Grid Integrated Microgrids publication-title: IEEE Trans. Smart Grid – volume: 100 start-page: 1 year: 2018 end-page: 9 ident: bib0090 article-title: CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids publication-title: Int. J. Electr. Power Energy Syst. – reference: Model X | Tesla, – year: 2018 ident: bib0105 article-title: Optimal network reconfiguration and renewable DGs integration considering time sequence variation of load and DGs publication-title: Renew. Energy – volume: 78 start-page: 96 year: 2016 end-page: 107 ident: bib0045 article-title: Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (dFCM) clustering based ANN approach publication-title: Int. J. Electr. Power Energy Syst. – volume: 10 start-page: 2999 year: 2016 end-page: 3009 ident: bib0075 article-title: Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties publication-title: Iet Gener. Transm. Distrib. – volume: 31 start-page: 1879 year: 2016 end-page: 1888 ident: bib0145 article-title: Value of distribution network reconfiguration in presence of renewable energy resources publication-title: Ieee Trans. Power Syst. – volume: 78 start-page: 801 year: 2016 end-page: 815 ident: bib0035 article-title: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network publication-title: Int. J. Electr. Power Energy Syst. – volume: 99 start-page: 121 year: 2018 end-page: 133 ident: bib0130 article-title: Stability constrained optimal distribution system reconfiguration considering uncertainties in correlated loads and distributed generations publication-title: Int. J. Electr. Power Energy Syst. – volume: 28 start-page: 2554 year: 2013 end-page: 2564 ident: bib0140 article-title: Branch flow model: relaxations and convexification—part I publication-title: Ieee Trans. Power Syst. – volume: 103 start-page: 86 year: 2016 end-page: 99 ident: bib0115 article-title: Multi-objective optimal reconfiguration and DG (distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty publication-title: Energy – volume: 32 start-page: 3681 year: 2017 end-page: 3693 ident: bib0060 article-title: Stochastic networked microgrid energy management with correlated wind generators publication-title: Ieee Trans. Power Syst. – volume: 4 start-page: 1401 year: 1989 end-page: 1407 ident: bib0135 article-title: Network reconfiguration in distribution systems for loss reduction and load balancing publication-title: Ieee Trans. Power Deliv. – volume: 60 start-page: 116 year: 2013 end-page: 124 ident: bib0165 article-title: Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks publication-title: Energy – volume: 99 start-page: 481 year: 2018 end-page: 492 ident: bib0120 article-title: Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method publication-title: Int. J. Electr. Power Energy Syst. – year: 2018 ident: bib0185 article-title: General Algebraic Modeling System (GAMS) User Guide – volume: 348 start-page: 281 year: 2017 end-page: 301 ident: bib0155 article-title: On state-of-charge determination for lithium-ion batteries publication-title: J. Power Sources – volume: 76 start-page: 920 year: 2014 end-page: 930 ident: bib0110 article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems publication-title: Energy – volume: 228 start-page: 2407 year: 2018 end-page: 2421 ident: bib0080 article-title: Design of an advanced energy management system for microgrid control using a state machine publication-title: Appl. Energy – volume: 62 start-page: 1044 year: 2018 end-page: 1055 ident: bib0125 article-title: Simultaneous optimization of re-phasing, reconfiguration and DG placement in distribution networks using BF-SD algorithm publication-title: Appl. Soft Comput. – volume: 30 start-page: 461 year: 2014 end-page: 478 ident: bib0010 article-title: Demand response and smart grids—a survey publication-title: Renewable Sustainable Energy Rev. – volume: 98 start-page: 118 year: 2018 end-page: 132 ident: bib0085 article-title: Robust energy management of a microgrid with photovoltaic inverters in VAR compensation mode publication-title: Int. J. Electr. Power Energy Syst. – volume: 22 start-page: 2204 year: 2007 end-page: 2212 ident: bib0170 article-title: Effect of load models in distributed generation planning publication-title: Ieee Trans. Power Syst. – volume: 23 start-page: 167 year: 2018 end-page: 178 ident: bib0160 article-title: Condition monitoring in advanced battery management systems: moving horizon estimation using a reduced electrochemical model publication-title: Ieee/asme Trans. Mechatron. – volume: 23 start-page: 533 year: 2017 end-page: 550 ident: bib0030 article-title: A biased random key genetic algorithm applied to the electric distribution network reconfiguration problem publication-title: J. Heuristics – volume: 75 start-page: 328 year: 2016 end-page: 336 ident: bib0095 article-title: Microgrid operation and management using probabilistic reconfiguration and unit commitment publication-title: Int. J. Electr. Power Energy Syst. – volume: 20 start-page: 57 year: 2018 end-page: 66 ident: bib0020 article-title: Range anxiety of electric vehicles in energy management of microgrids with controllable loads publication-title: J. Energy Storage – start-page: 144 year: 2016 end-page: 153 ident: bib0050 article-title: Voltage Stability Maximization by Distribution Network Reconfiguration Using a Hybrid Algorithm – reference: . – volume: 363 start-page: 277 year: 2017 end-page: 283 ident: bib0015 article-title: Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle publication-title: J. Power Sources – volume: 86 start-page: 1118 year: 2014 end-page: 1127 ident: bib0175 article-title: Integrated scheduling of renewable generation and demand response programs in a microgrid publication-title: Energy Convers. Manage. – volume: 9 start-page: 2065 year: 2018 end-page: 2075 ident: bib0005 article-title: Stochastic optimal energy management of smart home with PEV energy storage publication-title: IEEE Trans. Smart Grid – volume: 52 start-page: 256 year: 2015 end-page: 264 ident: bib0100 article-title: Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption publication-title: Renewable Sustainable Energy Rev. – volume: 64 start-page: 689 year: 2015 end-page: 698 ident: bib0180 article-title: Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support publication-title: Int. J. Electr. Power Energy Syst. – volume: 143 start-page: 323 year: 2018 end-page: 336 ident: bib0065 article-title: CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs publication-title: Energy – volume: 8 start-page: 583 year: 2014 end-page: 590 ident: bib0150 article-title: Optimal charging of plug-in electric vehicles observing power grid constraints publication-title: Iet Gener. Transm. Distrib. – volume: 13 start-page: 344 year: 2017 end-page: 358 ident: bib0025 article-title: Quantifying the importance of power system operation constraints in power system planning models: a case study for electricity storage publication-title: J. Energy Storage – volume: 7 start-page: 1401 year: 2016 end-page: 1410 ident: bib0040 article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration publication-title: IEEE Trans. Smart Grid – volume: 27 start-page: e2425 year: 2017 ident: bib0055 article-title: Multi-objective optimization model for distribution network reconfiguration in the presence of distributed generations publication-title: Int. Trans. Electr. Energy Syst. – volume: 86 start-page: 1118 year: 2014 ident: 10.1016/j.est.2018.11.009_bib0175 article-title: Integrated scheduling of renewable generation and demand response programs in a microgrid publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.06.078 – volume: 363 start-page: 277 year: 2017 ident: 10.1016/j.est.2018.11.009_bib0015 article-title: Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.086 – volume: 4 start-page: 1401 issue: 2 year: 1989 ident: 10.1016/j.est.2018.11.009_bib0135 article-title: Network reconfiguration in distribution systems for loss reduction and load balancing publication-title: Ieee Trans. Power Deliv. doi: 10.1109/61.25627 – volume: 78 start-page: 96 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0045 article-title: Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (dFCM) clustering based ANN approach publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.11.077 – volume: 75 start-page: 328 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0095 article-title: Microgrid operation and management using probabilistic reconfiguration and unit commitment publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.09.012 – volume: 103 start-page: 86 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0115 article-title: Multi-objective optimal reconfiguration and DG (distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty publication-title: Energy doi: 10.1016/j.energy.2016.02.152 – volume: 9 start-page: 4004 issue: 5 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0070 article-title: Energy management in smart distribution systems with Vehicle-to-Grid Integrated Microgrids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2646779 – volume: 23 start-page: 533 issue: 6 year: 2017 ident: 10.1016/j.est.2018.11.009_bib0030 article-title: A biased random key genetic algorithm applied to the electric distribution network reconfiguration problem publication-title: J. Heuristics doi: 10.1007/s10732-017-9355-8 – ident: 10.1016/j.est.2018.11.009_bib0190 – volume: 100 start-page: 1 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0090 article-title: CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.02.022 – volume: 99 start-page: 481 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0120 article-title: Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.01.044 – volume: 30 start-page: 461 year: 2014 ident: 10.1016/j.est.2018.11.009_bib0010 article-title: Demand response and smart grids—a survey publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.10.022 – volume: 143 start-page: 323 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0065 article-title: CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs publication-title: Energy doi: 10.1016/j.energy.2017.10.083 – volume: 20 start-page: 57 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0020 article-title: Range anxiety of electric vehicles in energy management of microgrids with controllable loads publication-title: J. Energy Storage doi: 10.1016/j.est.2018.08.023 – volume: 228 start-page: 2407 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0080 article-title: Design of an advanced energy management system for microgrid control using a state machine publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.034 – year: 2018 ident: 10.1016/j.est.2018.11.009_bib0185 – volume: 23 start-page: 167 issue: 1 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0160 article-title: Condition monitoring in advanced battery management systems: moving horizon estimation using a reduced electrochemical model publication-title: Ieee/asme Trans. Mechatron. doi: 10.1109/TMECH.2017.2675920 – volume: 78 start-page: 801 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0035 article-title: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.12.030 – volume: 98 start-page: 118 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0085 article-title: Robust energy management of a microgrid with photovoltaic inverters in VAR compensation mode publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.11.037 – volume: 99 start-page: 121 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0130 article-title: Stability constrained optimal distribution system reconfiguration considering uncertainties in correlated loads and distributed generations publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.01.010 – volume: 10 start-page: 2999 issue: 12 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0075 article-title: Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties publication-title: Iet Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.0024 – volume: 8 start-page: 583 issue: 4 year: 2014 ident: 10.1016/j.est.2018.11.009_bib0150 article-title: Optimal charging of plug-in electric vehicles observing power grid constraints publication-title: Iet Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2013.0628 – volume: 64 start-page: 689 year: 2015 ident: 10.1016/j.est.2018.11.009_bib0180 article-title: Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.07.065 – volume: 76 start-page: 920 year: 2014 ident: 10.1016/j.est.2018.11.009_bib0110 article-title: Application of the hybrid Big Bang-Big Crunch algorithm to optimal reconfiguration and distributed generation power allocation in distribution systems publication-title: Energy doi: 10.1016/j.energy.2014.09.004 – volume: 31 start-page: 1879 issue: 3 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0145 article-title: Value of distribution network reconfiguration in presence of renewable energy resources publication-title: Ieee Trans. Power Syst. doi: 10.1109/TPWRS.2015.2457954 – volume: 28 start-page: 2554 issue: 3 year: 2013 ident: 10.1016/j.est.2018.11.009_bib0140 article-title: Branch flow model: relaxations and convexification—part I publication-title: Ieee Trans. Power Syst. doi: 10.1109/TPWRS.2013.2255317 – volume: 7 start-page: 1401 issue: 3 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0040 article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2468683 – start-page: 144 year: 2016 ident: 10.1016/j.est.2018.11.009_bib0050 – volume: 348 start-page: 281 year: 2017 ident: 10.1016/j.est.2018.11.009_bib0155 article-title: On state-of-charge determination for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.001 – volume: 9 start-page: 2065 issue: 3 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0005 article-title: Stochastic optimal energy management of smart home with PEV energy storage publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2606442 – volume: 62 start-page: 1044 year: 2018 ident: 10.1016/j.est.2018.11.009_bib0125 article-title: Simultaneous optimization of re-phasing, reconfiguration and DG placement in distribution networks using BF-SD algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.041 – year: 2018 ident: 10.1016/j.est.2018.11.009_bib0105 article-title: Optimal network reconfiguration and renewable DGs integration considering time sequence variation of load and DGs publication-title: Renew. Energy – volume: 13 start-page: 344 year: 2017 ident: 10.1016/j.est.2018.11.009_bib0025 article-title: Quantifying the importance of power system operation constraints in power system planning models: a case study for electricity storage publication-title: J. Energy Storage doi: 10.1016/j.est.2017.07.003 – volume: 52 start-page: 256 year: 2015 ident: 10.1016/j.est.2018.11.009_bib0100 article-title: Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.07.105 – volume: 22 start-page: 2204 issue: 4 year: 2007 ident: 10.1016/j.est.2018.11.009_bib0170 article-title: Effect of load models in distributed generation planning publication-title: Ieee Trans. Power Syst. doi: 10.1109/TPWRS.2007.907582 – volume: 32 start-page: 3681 issue: 5 year: 2017 ident: 10.1016/j.est.2018.11.009_bib0060 article-title: Stochastic networked microgrid energy management with correlated wind generators publication-title: Ieee Trans. Power Syst. doi: 10.1109/TPWRS.2017.2650683 – volume: 27 start-page: e2425 issue: 12 year: 2017 ident: 10.1016/j.est.2018.11.009_bib0055 article-title: Multi-objective optimization model for distribution network reconfiguration in the presence of distributed generations publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2425 – volume: 60 start-page: 116 year: 2013 ident: 10.1016/j.est.2018.11.009_bib0165 article-title: Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks publication-title: Energy doi: 10.1016/j.energy.2013.08.039 |
SSID | ssj0001651196 |
Score | 2.3625338 |
Snippet | •Proposing a convex optimization model for MGs with integrated DFR and OGS for day-ahead operation.•Modeling the uncertainty of WT and PV renewable... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | Demand response (DR) Distributed generation (DG) Distribution feeder reconfiguration (DFR) Electric vehicles (EV) Microgrid Optimal generation scheduling (OGS) |
Title | Optimal distribution feeder reconfiguration and generation scheduling for microgrid day-ahead operation in the presence of electric vehicles considering uncertainties |
URI | https://dx.doi.org/10.1016/j.est.2018.11.009 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIrykgcmpFAnjp1mrCqqAqIMUKlb5NhOCaJpVLVI_CF-J2fH4SEBA6MjnxXlznfn-LvvEDqLmNKR4MwTkgZe6GvmxVnqg0LgfBEJIYWt4r8d8eE4vJ6wSQP161oYA6t0vr_y6dZbuycd9zU7ZZ537gPIHSD6TMAoCYWsZA21Ahpz1kSt3tXNcPT5q4Wby7KqzRwLPCNT329apBe4X4Px6l4YOk-DTPwpQn2JOoMttOnSRdyr3mgbNXSxgza-kAjuorc72PUzmKQMB65rX4UzbVgisD3vZvl0VSkai0LhqWWatkM42kKoMRXpGJJXPDPovOkiV1iJV0-An1Z4XtaT8wJDtohLW7AkNZ5nuGqik0v8oh8tvg5L1wDULAkhswIcGNLWPTQeXD70h57rvuBJysnS413Y7FRqSSTXQQRpQhpyolIRE0HTmGWcCwrZkASVSkIEGAPVGcuiSHFfBSHdR81iXugDhCVXypTk0tSXpumViAKSRlzEXZJKWKeNSP3FE-moyU2HjOekxqA9JaCkxCgJjiwJKKmNzj9EyoqX46_JYa3G5JtxJRA3fhc7_J_YEVqHUVxBu49Rc7lY6RPIXJbpqbPMd9vi8N0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvPDAhhbpx4jRjhUDh0TLQSt0ix3ZKEE0j1CLxh_idnBMHigQMjEnsKPKd7xF_9x3AaeArHQjuO0Iy1_Fa2nfCNGmhQDC_CISQoqzi7_Z4NPBuhv5wAS7qWhgDq7S2v7LppbW2d5p2NZtFljUfXIwd0PsMUSkpw6hkEZY8H7O9Bix1rm-j3tevFm4Oy6o2c77rmDn1-WaJ9ELzazBe7XND52mQiT95qDmvc7UOazZcJJ3qizZgQeebsDpHIrgF7_e468c4SBkOXNu-iqTasESQMt9Ns9GsEjQRuSKjkmm6vMTUFl2NqUgnGLySsUHnjV4yRZR4cwTaaUUmRT04ywlGi6QoC5akJpOUVE10Mkle9WOJryPSNgA1r0SXWQEODGnrNgyuLvsXkWO7LziScTp1eBs3O5NaUsm1G2CYkHicqkSEVLAk9FPOBcNoSKJIJaUClYHp1E-DQPGWcj22A418kutdIJIrZUpyWdKSpumVCFyaBFyEbZpIfM8e0HrFY2mpyU2HjOe4xqA9xSik2AgJU5YYhbQHZ59TioqX46_BXi3G-Jtyxeg3fp-2_79pJ7Ac9bt38d117_YAVvBJWMG8D6ExfZnpI4xipsmx1dIPTunzyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+distribution+feeder+reconfiguration+and+generation+scheduling+for+microgrid+day-ahead+operation+in+the+presence+of+electric+vehicles+considering+uncertainties&rft.jtitle=Journal+of+energy+storage&rft.au=Sedighizadeh%2C+Mostafa&rft.au=Shaghaghi-shahr%2C+Gholamreza&rft.au=Esmaili%2C+Masoud&rft.au=Aghamohammadi%2C+Mohammad+Reza&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=21&rft.spage=58&rft.epage=71&rft_id=info:doi/10.1016%2Fj.est.2018.11.009&rft.externalDocID=S2352152X18303566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |