Normal forms for matrices over uniserial rings of length two

This paper develops methods to describe the conjugacy classes of GL(n,R) on Rn×n for a serial ring R of length two. The main result is a reduction to a computation in the matrix algebra over the residue class field of R, which in some cases can be done theoretically without any actual computation.

Saved in:
Bibliographic Details
Published inJournal of algebra Vol. 358; pp. 250 - 256
Main Authors Jambor, Sebastian, Plesken, Wilhelm
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper develops methods to describe the conjugacy classes of GL(n,R) on Rn×n for a serial ring R of length two. The main result is a reduction to a computation in the matrix algebra over the residue class field of R, which in some cases can be done theoretically without any actual computation.
AbstractList This paper develops methods to describe the conjugacy classes of GL(n,R) on Rn×n for a serial ring R of length two. The main result is a reduction to a computation in the matrix algebra over the residue class field of R, which in some cases can be done theoretically without any actual computation.
Author Jambor, Sebastian
Plesken, Wilhelm
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Jambor
  fullname: Jambor, Sebastian
  email: sebastian@momo.math.rwth-aachen.de
– sequence: 2
  givenname: Wilhelm
  surname: Plesken
  fullname: Plesken, Wilhelm
  email: plesken@momo.math.rwth-aachen.de
BookMark eNqFkFFLwzAUhYNMcJv-BekfaL03adMUfFCGTmHoi4JvIU1vZkrXSlIn_ns7ps--nAOHew6Xb8Fm_dATY5cIGQLKqzZrTbelOpiMA_IMMAOuTtgcoYKUS_k2Y3MAjqmSlThjixhbAMQiV3N2_TSEnekSN1k8aLIzY_CWYjLsKSSfvY8U_HQRfL-dQpd01G_H92T8Gs7ZqTNdpItfX7LX-7uX1UO6eV4_rm43qRUSxrRomrziZS0a3khT1YWQDnhhapkXuahdqXKyBJyw5KLEspTIc-WsBFUpR0IsmTzu2jDEGMjpj-B3JnxrBH1goFv9x0AfGGhAPTGYijfHIk3f7T0FHa2n3lLjA9lRN4P_b-IHXJRp3g
CitedBy_id crossref_primary_10_1112_plms_pdv071
crossref_primary_10_1007_s00029_023_00914_2
crossref_primary_10_1016_j_laa_2016_03_015
Cites_doi 10.1016/j.jalgebra.2010.05.024
10.1016/0024-3795(83)90204-5
10.1007/BF01351597
10.1080/00927870902747266
10.1090/S0002-9939-1973-0309963-X
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jalgebra.2012.01.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-266X
EndPage 256
ExternalDocumentID 10_1016_j_jalgebra_2012_01_028
S0021869312000841
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXUO
ABAOU
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
WH7
YQT
ZMT
ZU3
~G-
186
29J
6TJ
9M8
AAEDT
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ABTAH
ADFGL
ADVLN
AFFNX
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FGOYB
G-2
H~9
MVM
NHB
OHT
R2-
SEW
WUQ
X7L
XJT
XOL
XPP
ZCG
ZY4
ID FETCH-LOGICAL-c360t-5dd4927b3d2d6a9b536f025ab64543bf784ece02e1723717761248fc60898fe33
IEDL.DBID AIKHN
ISSN 0021-8693
IngestDate Thu Sep 26 19:13:04 EDT 2024
Fri Feb 23 02:31:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Conjugacy classes
Normal forms of matrices
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-5dd4927b3d2d6a9b536f025ab64543bf784ece02e1723717761248fc60898fe33
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021869312000841
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_jalgebra_2012_01_028
elsevier_sciencedirect_doi_10_1016_j_jalgebra_2012_01_028
PublicationCentury 2000
PublicationDate 2012-05-15
PublicationDateYYYYMMDD 2012-05-15
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of algebra
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cohn (br0050) 1982
Jambor (br0090) 2011
Pomfret (br0130) 1973; 37
The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008.
Singla (br0140) 2010; 324
Huppert (br0070) 1967; Band 134
Nechaev (br0100) 1983
Appelgate, Onishi (br0020) 1983; 87
Avni, Onn, Prasad, Vaserstein (br0030) 2009; 37
Betten, Braun, Fripertinger, Kerber, Kohnert, Wassermann (br0040) 2006; vol. 18
Pizarro (br0120) 1983; 54
Albert (br0010) 1961; vol. XXIV
Nobs (br0110) 1977; 229
Jacobson (br0080) 1980
Betten (10.1016/j.jalgebra.2012.01.028_br0040) 2006; vol. 18
Pomfret (10.1016/j.jalgebra.2012.01.028_br0130) 1973; 37
Cohn (10.1016/j.jalgebra.2012.01.028_br0050) 1982
Huppert (10.1016/j.jalgebra.2012.01.028_br0070) 1967; Band 134
Appelgate (10.1016/j.jalgebra.2012.01.028_br0020) 1983; 87
10.1016/j.jalgebra.2012.01.028_br0060
Singla (10.1016/j.jalgebra.2012.01.028_br0140) 2010; 324
Jacobson (10.1016/j.jalgebra.2012.01.028_br0080) 1980
Jambor (10.1016/j.jalgebra.2012.01.028_br0090)
Nobs (10.1016/j.jalgebra.2012.01.028_br0110) 1977; 229
Pizarro (10.1016/j.jalgebra.2012.01.028_br0120) 1983; 54
Avni (10.1016/j.jalgebra.2012.01.028_br0030) 2009; 37
Albert (10.1016/j.jalgebra.2012.01.028_br0010) 1961; vol. XXIV
Nechaev (10.1016/j.jalgebra.2012.01.028_br0100) 1983
References_xml – year: 1980
  ident: br0080
  article-title: Basic Algebra. II
  contributor:
    fullname: Jacobson
– volume: vol. 18
  year: 2006
  ident: br0040
  article-title: Error-Correcting Linear Codes
  publication-title: Algorithms Comput. Math.
  contributor:
    fullname: Wassermann
– volume: Band 134
  year: 1967
  ident: br0070
  article-title: Endliche Gruppen. I
  publication-title: Grundlehren Math. Wiss.
  contributor:
    fullname: Huppert
– volume: 324
  start-page: 2543
  year: 2010
  end-page: 2563
  ident: br0140
  article-title: On representations of general linear groups over principal ideal local rings of length two
  publication-title: J. Algebra
  contributor:
    fullname: Singla
– year: 2011
  ident: br0090
  article-title: Source files
  contributor:
    fullname: Jambor
– volume: 54
  start-page: 29
  year: 1983
  end-page: 51
  ident: br0120
  article-title: Similarity classes of
  publication-title: Linear Algebra Appl.
  contributor:
    fullname: Pizarro
– volume: 37
  start-page: 421
  year: 1973
  end-page: 422
  ident: br0130
  article-title: Similarity of matrices over finite rings
  publication-title: Proc. Amer. Math. Soc.
  contributor:
    fullname: Pomfret
– start-page: 81
  year: 1983
  end-page: 101
  ident: br0100
  article-title: Similarity of matrices over a commutative local Artinian ring
  publication-title: Tr. Semin. im. I. G. Petrovskogo
  contributor:
    fullname: Nechaev
– year: 1982
  ident: br0050
  article-title: Algebra, vol. 1
  contributor:
    fullname: Cohn
– volume: 37
  start-page: 2601
  year: 2009
  end-page: 2615
  ident: br0030
  article-title: Similarity classes of
  publication-title: Comm. Algebra
  contributor:
    fullname: Vaserstein
– volume: 229
  start-page: 113
  year: 1977
  end-page: 133
  ident: br0110
  article-title: Die irreduziblen Darstellungen von
  publication-title: Math. Ann.
  contributor:
    fullname: Nobs
– volume: vol. XXIV
  year: 1961
  ident: br0010
  article-title: Structure of Algebras
  publication-title: Amer. Math. Soc. Colloq. Publ.
  contributor:
    fullname: Albert
– volume: 87
  start-page: 233
  year: 1983
  end-page: 238
  ident: br0020
  article-title: Similarity problem over
  publication-title: Proc. Amer. Math. Soc.
  contributor:
    fullname: Onishi
– volume: Band 134
  year: 1967
  ident: 10.1016/j.jalgebra.2012.01.028_br0070
  article-title: Endliche Gruppen. I
  contributor:
    fullname: Huppert
– volume: vol. 18
  year: 2006
  ident: 10.1016/j.jalgebra.2012.01.028_br0040
  article-title: Error-Correcting Linear Codes
  contributor:
    fullname: Betten
– volume: 324
  start-page: 2543
  issue: 9
  year: 2010
  ident: 10.1016/j.jalgebra.2012.01.028_br0140
  article-title: On representations of general linear groups over principal ideal local rings of length two
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2010.05.024
  contributor:
    fullname: Singla
– year: 1980
  ident: 10.1016/j.jalgebra.2012.01.028_br0080
  contributor:
    fullname: Jacobson
– volume: 54
  start-page: 29
  year: 1983
  ident: 10.1016/j.jalgebra.2012.01.028_br0120
  article-title: Similarity classes of 3×3 matrices over a discrete valuation ring
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(83)90204-5
  contributor:
    fullname: Pizarro
– year: 1982
  ident: 10.1016/j.jalgebra.2012.01.028_br0050
  contributor:
    fullname: Cohn
– volume: 229
  start-page: 113
  issue: 2
  year: 1977
  ident: 10.1016/j.jalgebra.2012.01.028_br0110
  article-title: Die irreduziblen Darstellungen von GL2(Zp), insbesondere GL2(Z2)
  publication-title: Math. Ann.
  doi: 10.1007/BF01351597
  contributor:
    fullname: Nobs
– volume: 87
  start-page: 233
  issue: 2
  year: 1983
  ident: 10.1016/j.jalgebra.2012.01.028_br0020
  article-title: Similarity problem over SL(n,Zp)
  publication-title: Proc. Amer. Math. Soc.
  contributor:
    fullname: Appelgate
– volume: 37
  start-page: 2601
  issue: 8
  year: 2009
  ident: 10.1016/j.jalgebra.2012.01.028_br0030
  article-title: Similarity classes of 3×3 matrices over a local principal ideal ring
  publication-title: Comm. Algebra
  doi: 10.1080/00927870902747266
  contributor:
    fullname: Avni
– start-page: 81
  issue: 9
  year: 1983
  ident: 10.1016/j.jalgebra.2012.01.028_br0100
  article-title: Similarity of matrices over a commutative local Artinian ring
  publication-title: Tr. Semin. im. I. G. Petrovskogo
  contributor:
    fullname: Nechaev
– ident: 10.1016/j.jalgebra.2012.01.028_br0090
  contributor:
    fullname: Jambor
– volume: vol. XXIV
  year: 1961
  ident: 10.1016/j.jalgebra.2012.01.028_br0010
  article-title: Structure of Algebras
  contributor:
    fullname: Albert
– volume: 37
  start-page: 421
  year: 1973
  ident: 10.1016/j.jalgebra.2012.01.028_br0130
  article-title: Similarity of matrices over finite rings
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1973-0309963-X
  contributor:
    fullname: Pomfret
– ident: 10.1016/j.jalgebra.2012.01.028_br0060
SSID ssj0011548
Score 2.0181327
Snippet This paper develops methods to describe the conjugacy classes of GL(n,R) on Rn×n for a serial ring R of length two. The main result is a reduction to a...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 250
SubjectTerms Conjugacy classes
Normal forms of matrices
Title Normal forms for matrices over uniserial rings of length two
URI https://dx.doi.org/10.1016/j.jalgebra.2012.01.028
Volume 358
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe9GD-MT6KHvwmjbJbtIEvLTF0toHIlZ6W5rsLrZoW2zEm7_dmTykguDBS0I2DITJZObbzMw3ANeIiYUw3LWM0rYl3FjjJ6W5hcjcmXGMIDplYhqN_d5E3E29aQk6RS8MlVXmvj_z6am3zlcauTYb6_mcenzTeUrcoW6TgJrXK2mSqAyVVn_QG38nEwiVZ5UejkUCW43Ci_qCxmngxpSqvNyMwTP4PUZtxZ3uAezngJG1smc6hJJeHsHe6JttdXMMN2MCni-M8OeGjuw1Jd7XG0YFmowy1qmhMfqJh4uG0fyU5JklH6sTmHRvHzs9K5-KYMXctxPLU0qEbjPiylX-LIw87hsELrOIuLl4ZJqB0LG2XY3QhONmrYkYRgQm9u0gDIzm_BTKy9VSnwHjoRdooQzGyViI2Jl5QiuulaeIzpf7VWgUepDrjPxCFlVhC1loTpLmpO1I1FwVwkJd8sdrlOih_5A9_4fsBezSFaX1He8Sysnbu75CtJBENdipfzo1tIn202BI587D8L6W2wje7U_bX1Tkweo
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5Ke1AP4hPrcw9eY5Ps5gVearFU-zi10tuSZGexRdtiI_59Z_IoFQQPXnLYMBC-bGa-yc58w9gtcmIpjXAto8G2pJsCflIgLGTmTiwwgkCuxDQc-b2JfJ560xrrVL0wVFZZ-v7Cp-feulxplWi2VrMZ9fjm85SEQ90mITWvN5ANBJiBNdoPL_3B5jCBWHlR6eFYZLDVKDy_m9M4DUxMqcrLLRQ8w99j1Fbc6R6w_ZIw8nbxTIesBosjtjfcqK2uj9n9iIjnGyf-uaYrf8-F92HNqUCT04l1vtE4_cTDRcNpfkr2yrOv5QmbdB_HnZ5VTkWwUuHbmeVpLSM3SIR2tR9HiSd8g8QlTkibSyQmCCWkYLuA1ERgshYgh5GhSX07jEIDQpyy-mK5gDPGReSFILXBOJlKmTqxJ0EL0J4mOV_hN1mrwkGtCvELVVWFzVWFnCLklO0oRK7Jogou9eM1KvTQf9ie_8P2hu30xsOBGjyN-hdsl-7QEb_jXbJ69vEJV8gcsuS63Bnfl3i_xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal+forms+for+matrices+over+uniserial+rings+of+length+two&rft.jtitle=Journal+of+algebra&rft.au=Jambor%2C+Sebastian&rft.au=Plesken%2C+Wilhelm&rft.date=2012-05-15&rft.issn=0021-8693&rft.volume=358&rft.spage=250&rft.epage=256&rft_id=info:doi/10.1016%2Fj.jalgebra.2012.01.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jalgebra_2012_01_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8693&client=summon