Impact of solid-electrolyte interphase layer thickness on lithium-ion battery cell surface temperature

The widely used non-destructive battery characterization techniques, such as voltage, capacity, and impedance measurements, often fail to fully characterise a discarded lithium-ion battery when reuse of spent battery is envisaged. Here we propose a tool that uses the surface temperature of a pouch c...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 525; p. 231126
Main Authors Andriunas, Ignas, Milojevic, Zoran, Wade, Neal, Das, Prodip K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The widely used non-destructive battery characterization techniques, such as voltage, capacity, and impedance measurements, often fail to fully characterise a discarded lithium-ion battery when reuse of spent battery is envisaged. Here we propose a tool that uses the surface temperature of a pouch cell to measure the thickness of the solid-electrolyte-interphase (SEI) layer, which is often attributed as one of the main causes of lithium-ion battery degradation at 0.1C–1C discharge rates in ambient conditions. A 2D multiphysics coupled electrochemical-thermal continuum model and a 3D thermal model have been developed to investigate the changes in the surface temperature of a lithium-ion pouch cell with varying SEI layer thicknesses. Present modelling results show that the cell surface temperature changes due to significant SEI layer heat generation at several discharge rates. Furthermore, the temperature change has also been subject to different cooling conditions and particle sizes. The present results provide a reference to making decisions on battery reuse by providing a correlation between the SEI layer thickness with the surface temperature of the cell and inform future research on thermal runaway as a thicker SEI layer can decrease the onset temperature of thermal runaway. •Battery temperature changes due to significant solid-electrolyte-interphase heat.•Anode particle size changed the thermal impact of the solid-electrolyte-interphase.•Thermal impact of the solid-electrolyte-interphase depends on depth-of-discharge.
AbstractList The widely used non-destructive battery characterization techniques, such as voltage, capacity, and impedance measurements, often fail to fully characterise a discarded lithium-ion battery when reuse of spent battery is envisaged. Here we propose a tool that uses the surface temperature of a pouch cell to measure the thickness of the solid-electrolyte-interphase (SEI) layer, which is often attributed as one of the main causes of lithium-ion battery degradation at 0.1C–1C discharge rates in ambient conditions. A 2D multiphysics coupled electrochemical-thermal continuum model and a 3D thermal model have been developed to investigate the changes in the surface temperature of a lithium-ion pouch cell with varying SEI layer thicknesses. Present modelling results show that the cell surface temperature changes due to significant SEI layer heat generation at several discharge rates. Furthermore, the temperature change has also been subject to different cooling conditions and particle sizes. The present results provide a reference to making decisions on battery reuse by providing a correlation between the SEI layer thickness with the surface temperature of the cell and inform future research on thermal runaway as a thicker SEI layer can decrease the onset temperature of thermal runaway. •Battery temperature changes due to significant solid-electrolyte-interphase heat.•Anode particle size changed the thermal impact of the solid-electrolyte-interphase.•Thermal impact of the solid-electrolyte-interphase depends on depth-of-discharge.
ArticleNumber 231126
Author Andriunas, Ignas
Wade, Neal
Milojevic, Zoran
Das, Prodip K.
Author_xml – sequence: 1
  givenname: Ignas
  orcidid: 0000-0001-7483-7733
  surname: Andriunas
  fullname: Andriunas, Ignas
  email: ignas.andriunas@outlook.com
  organization: School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
– sequence: 2
  givenname: Zoran
  surname: Milojevic
  fullname: Milojevic, Zoran
  organization: School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
– sequence: 3
  givenname: Neal
  surname: Wade
  fullname: Wade, Neal
  organization: School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
– sequence: 4
  givenname: Prodip K.
  orcidid: 0000-0001-9096-3721
  surname: Das
  fullname: Das, Prodip K.
  organization: School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIIfTZxILEAVj0qV2MDacu2J6uDEke2A-vekKmzYdDUz0pwZ3bNAs973gNAtJTkltLxr83bw39GPIWeEsZxxSll5gea0EjxjoihmaE64qDIhCn6FFjG2hBBKBZmjZtMNSifsGxy9syYDBzoF7w4JsO0ThGGvImCnDhBw2lv92UOM2PfY2Wkcu8xO_U6lafWANTiH4xgapQEn6AYIKo0BrtFlo1yEm9-6RB_PT-_r12z79rJZP24zzUuSssLUjTCEVazWujEMaL0TO1PXZkW5FrxUiq0atapBlEYYpkFAWTOoqKDTR86XqDzd1cHHGKCRQ7CdCgdJiTzakq38syWPtuTJ1gTe_wO1TSpN2VJQ1p3HH044TOG-LAQZtYVeg7Fh8imNt-dO_ACCj5D-
CitedBy_id crossref_primary_10_1149_1945_7111_ada062
crossref_primary_10_1016_j_est_2024_111508
crossref_primary_10_1016_j_jechem_2024_12_063
crossref_primary_10_1088_1755_1315_1161_1_012010
crossref_primary_10_3390_physchem5010012
crossref_primary_10_1016_j_ensm_2025_104051
crossref_primary_10_1016_j_nxsust_2025_100114
crossref_primary_10_1021_acs_chas_3c00046
crossref_primary_10_1016_j_jpowsour_2024_235330
crossref_primary_10_1063_5_0235835
crossref_primary_10_1002_adma_202205421
crossref_primary_10_1016_j_est_2023_108040
crossref_primary_10_3390_en17143372
crossref_primary_10_1016_j_etran_2025_100411
Cites_doi 10.1016/j.pnsc.2018.11.002
10.1016/j.jpowsour.2013.04.062
10.1149/1.1644601
10.1149/1.2221597
10.1016/j.jpowsour.2021.230242
10.1016/S0378-7753(01)00722-4
10.1149/2.0641506jes
10.1016/j.apenergy.2018.01.011
10.1016/j.applthermaleng.2017.07.206
10.1149/2.0281914jes
10.1016/j.jpowsour.2009.10.090
10.1149/1.3486082
10.1016/j.jpowsour.2014.03.089
10.1016/j.apenergy.2009.05.006
10.1016/S0378-7753(01)00507-9
10.1149/2.0831501jes
10.1016/j.jpowsour.2018.07.094
10.1002/er.4410
10.1016/j.applthermaleng.2021.116623
10.1016/j.jpowsour.2011.10.027
10.1021/ja0681927
10.1016/j.jpowsour.2013.09.059
10.1016/j.jpowsour.2014.04.134
10.1016/j.jechem.2020.06.008
10.1016/j.jpowsour.2004.05.064
10.1016/j.energy.2019.03.007
10.1016/j.electacta.2011.02.025
10.1016/j.apenergy.2014.04.092
10.1016/j.jpowsour.2016.08.054
10.1021/acs.energyfuels.0c03595
10.1016/j.jpowsour.2011.03.017
10.1149/1.2113792
10.1039/C8SE00503F
10.1021/jp000142f
10.1149/2.1101902jes
10.1016/j.energy.2014.11.073
10.1016/j.jpowsour.2013.05.089
10.1149/1.3043429
10.1149/1.1836921
10.1016/j.apenergy.2015.04.110
10.1016/j.jpowsour.2018.02.027
10.1016/j.applthermaleng.2017.04.077
10.1149/2.026302jes
10.1016/j.jpowsour.2011.06.070
10.1149/1.1872737
10.1149/1.1634273
10.1149/1.3567007
10.1016/S0378-7753(99)00204-9
10.3390/en11112998
10.1002/er.1652
10.1115/1.4032012
10.1149/1.3294790
10.3390/en8088175
10.1149/2.0551509jes
10.1149/1.2054684
10.1016/j.jpowsour.2014.05.139
10.1007/s10008-017-3828-4
10.1149/1945-7111/abd1f1
10.1016/j.jpowsour.2010.12.051
10.1016/j.egypro.2017.12.467
10.1149/2.0331509jes
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jpowsour.2022.231126
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2022_231126
S0378775322001483
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c360t-5d9f7d02829ccfd2e19b7bd99d413c736aa24fa49e76d7d2ce7e692e8171ace33
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 01:40:43 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
Fri Feb 23 02:40:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Temperature
Heat
Modelling
Pouch cell
Solid-electrolyte-interphase
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-5d9f7d02829ccfd2e19b7bd99d413c736aa24fa49e76d7d2ce7e692e8171ace33
ORCID 0000-0001-7483-7733
0000-0001-9096-3721
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378775322001483
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2022_231126
crossref_citationtrail_10_1016_j_jpowsour_2022_231126
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2022_231126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-30
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Zhang, Wang, Jia, Yang (bib59) 2015; 80
Fuller, Doyle, Newman (bib38) 1994; 141
Allcorn, Manthiram (bib25) 2015; 162
Goutam, Timmermans, Omar, Bossche, Van Mierlo (bib67) 2015; 8
Ashwin, Chung, Wang (bib28) 2016; 328
Dollé, Grugeon, Beaudoin, Dupont, Tarascon (bib50) 2001; 97–98
Reniers, Mulder, Howey (bib52) 2019; 166
Dubarry, Devie, Liaw (bib56) 2014
Heubner, Schneider, Michaelis (bib37) 2018; 22
Xiao, Choe (bib4) 2013; 241
Huang, Lai (bib55) 2019; 157
Valøen, Reimers (bib44) 2005; 152
Jiang, Peng, Sun (bib54) 2013; 243
Wu, Xiao, Huang (bib31) 2011
Doyle, Fuller, Newman (bib39) 1993; 140
(bib2) 2018
Cai, White (bib10) 2011; 196
Lin, Röder, Krewer (bib14) 2018; 11
Wang, Niu, Zhao, Li, Zhao (bib27) 2019; 43
Okubo, Hosono, Kim, Enomoto, Kojima, Kudo, Zhou, Honma (bib36) 2007; 129
Milojevic, Attidekou, Muhammad, Ahmeid, Lambert, Das (bib9) 2021; 506
Guo, Long, Cheng, Zhou, Xu, Cao (bib62) 2010; 195
Shirazi, Azadi Kakavand, Rabczuk (bib32) 2015; 6
Jalkanen, Karppinen, Skogström, Laurila, Nisula, Vuorilehto (bib51) 2015; 154
Liang, Jiang, Ye, Wang, Wei, Wang, Sun (bib24) 2021; 54
Li, Wu, Wang, Wang (bib57) 2017; 142
Jin, Lu, Wang, Yang, Duh (bib34) 2014; 262
Kamyab, Weidner, White (bib20) 2019; 166
Doyle, Newman, Gozdz, Schmutz, Tarascon (bib40) 1996; 143
Safari, Delacourt (bib58) 2011; 158
Attidekou, Milojevic, Muhammad, Ahmeid, Lambert, Das (bib8) 2020; 167
Das, Li, Liu (bib46) 2010; 87
Wang, Ping, Sun, Chen (bib26) 2011; 196
Chang, Huang, Chen (bib22) 2019; 174
Broussely, Herreyre, Biensan, Kasztejna, Nechev, Staniewicz (bib6) 2001; 97–98
Li, Wang, He, Peng, Yu, Xie (bib33) 2021; 35
Bernardi, Pawlikowski, Newman (bib45) 1985; 132
Veth, Dragicevic, Merten (bib66) 2014; 267
Kondo, Sano, Hiwara, Omi, Fujita, Kuwae, Iida, Mogi, Yokoyama (bib43) 2000; 104
Chen, Wan, Wang (bib64) 2005; 140
Patel, Nelson (bib30) 2019
Li, Adewuyi, Lotfi, Landers, Park (bib48) 2018; 212
Ye, Shi, Cai, Lee, He (bib61) 2012; 199
Dai, Cai, White (bib21) 2013; 160
Abada, Petit, Lecocq, Marlair, Sauvant-Moynot, Huet (bib53) 2018; 399
Ekström, Lindbergh (bib19) 2015; 162
Goutam, Nikolian, Jaguemont, Smekens, Omar, Van Dan Bossche, Van Mierlo (bib68) 2017; 126
Du, Lai, Ai, Ai, Cheng, Tang, Jia (bib13) 2017; 121
Liu, Wang, Hicks-Garner, Sherman, Soukiazian, Verbrugge, Tataria, Musser, Finamore (bib16) 2010; 157
Zier, Scheiba, Oswald, Thomas, Goers, Scherer, Klose, Ehrenberg, Eckert (bib63) 2014; 266
Ploehn, Ramadass, White (bib18) 2004; 151
Mei, Chen, Sun, Wang (bib29) 2019; 3
Uddin, Perera, Widanage, Somerville, Marco (bib3) 2016
Christensen, Milojevic, Wise, Ahmeid, Attidekou, Mrozik, Dickmann, Restuccia, Lambert, Das (bib7) 2021; 189
Ma, Jiang, Tao, Song, Wu, Wang, Deng, Shang (bib41) 2018; 28
Cai, White (bib11) 2010; 157
Ecker, Tran, Dechent, Käbitz, Warnecke, Sauer (bib42) 2015; 162
Aurbach, Levi, Gamulski, Markovsky, Salitra, Levi, Heider, Heider, Oesten (bib15) 1999; 81–82
Li, Lu, Chen, Amine (bib1) 2018; 30
Ping, Wang, Huang, Sun, Chen (bib23) 2014; 129
Wu, Li, Zhang (bib65) 2015; 162
Hosseinzadeh, Genieser, Worwood, Barai, Marco, Jennings (bib12) 2018; 382
Zugmann, Fleischmann, Amereller, Gschwind, Wiemhöfer, Gores (bib5) 2011; 56
Xie, Li, Yuan (bib47) 2014; 248
Fang, Kwon, Wang (bib60) 2010; 34
Ramadass, Haran, Gomadam, White, Popov (bib49) 2004; 151
Safari, Morcrette, Teyssot, Delacourt (bib17) 2009; 156
Utsunomiya, Hatozaki, Yoshimoto, Egashira, Morita (bib35) 2011; 196
Patel (10.1016/j.jpowsour.2022.231126_bib30) 2019
Aurbach (10.1016/j.jpowsour.2022.231126_bib15) 1999; 81–82
Ma (10.1016/j.jpowsour.2022.231126_bib41) 2018; 28
Milojevic (10.1016/j.jpowsour.2022.231126_bib9) 2021; 506
Liu (10.1016/j.jpowsour.2022.231126_bib16) 2010; 157
Jiang (10.1016/j.jpowsour.2022.231126_bib54) 2013; 243
Doyle (10.1016/j.jpowsour.2022.231126_bib39) 1993; 140
Ekström (10.1016/j.jpowsour.2022.231126_bib19) 2015; 162
Mei (10.1016/j.jpowsour.2022.231126_bib29) 2019; 3
Dai (10.1016/j.jpowsour.2022.231126_bib21) 2013; 160
Valøen (10.1016/j.jpowsour.2022.231126_bib44) 2005; 152
Ashwin (10.1016/j.jpowsour.2022.231126_bib28) 2016; 328
Safari (10.1016/j.jpowsour.2022.231126_bib17) 2009; 156
Goutam (10.1016/j.jpowsour.2022.231126_bib67) 2015; 8
Wu (10.1016/j.jpowsour.2022.231126_bib31) 2011
Kondo (10.1016/j.jpowsour.2022.231126_bib43) 2000; 104
Reniers (10.1016/j.jpowsour.2022.231126_bib52) 2019; 166
Kamyab (10.1016/j.jpowsour.2022.231126_bib20) 2019; 166
Dollé (10.1016/j.jpowsour.2022.231126_bib50) 2001; 97–98
Fang (10.1016/j.jpowsour.2022.231126_bib60) 2010; 34
Ramadass (10.1016/j.jpowsour.2022.231126_bib49) 2004; 151
Guo (10.1016/j.jpowsour.2022.231126_bib62) 2010; 195
Doyle (10.1016/j.jpowsour.2022.231126_bib40) 1996; 143
Jin (10.1016/j.jpowsour.2022.231126_bib34) 2014; 262
Chang (10.1016/j.jpowsour.2022.231126_bib22) 2019; 174
Ecker (10.1016/j.jpowsour.2022.231126_bib42) 2015; 162
Hosseinzadeh (10.1016/j.jpowsour.2022.231126_bib12) 2018; 382
Ping (10.1016/j.jpowsour.2022.231126_bib23) 2014; 129
Li (10.1016/j.jpowsour.2022.231126_bib57) 2017; 142
Abada (10.1016/j.jpowsour.2022.231126_bib53) 2018; 399
Utsunomiya (10.1016/j.jpowsour.2022.231126_bib35) 2011; 196
Wang (10.1016/j.jpowsour.2022.231126_bib26) 2011; 196
Fuller (10.1016/j.jpowsour.2022.231126_bib38) 1994; 141
Li (10.1016/j.jpowsour.2022.231126_bib1) 2018; 30
Cai (10.1016/j.jpowsour.2022.231126_bib10) 2011; 196
Du (10.1016/j.jpowsour.2022.231126_bib13) 2017; 121
Xie (10.1016/j.jpowsour.2022.231126_bib47) 2014; 248
Christensen (10.1016/j.jpowsour.2022.231126_bib7) 2021; 189
Wang (10.1016/j.jpowsour.2022.231126_bib27) 2019; 43
Allcorn (10.1016/j.jpowsour.2022.231126_bib25) 2015; 162
Ploehn (10.1016/j.jpowsour.2022.231126_bib18) 2004; 151
Attidekou (10.1016/j.jpowsour.2022.231126_bib8) 2020; 167
Lin (10.1016/j.jpowsour.2022.231126_bib14) 2018; 11
Chen (10.1016/j.jpowsour.2022.231126_bib64) 2005; 140
Goutam (10.1016/j.jpowsour.2022.231126_bib68) 2017; 126
Xiao (10.1016/j.jpowsour.2022.231126_bib4) 2013; 241
Safari (10.1016/j.jpowsour.2022.231126_bib58) 2011; 158
Xu (10.1016/j.jpowsour.2022.231126_bib59) 2015; 80
Ye (10.1016/j.jpowsour.2022.231126_bib61) 2012; 199
Shirazi (10.1016/j.jpowsour.2022.231126_bib32) 2015; 6
Jalkanen (10.1016/j.jpowsour.2022.231126_bib51) 2015; 154
Huang (10.1016/j.jpowsour.2022.231126_bib55) 2019; 157
Li (10.1016/j.jpowsour.2022.231126_bib33) 2021; 35
Zier (10.1016/j.jpowsour.2022.231126_bib63) 2014; 266
Liang (10.1016/j.jpowsour.2022.231126_bib24) 2021; 54
Dubarry (10.1016/j.jpowsour.2022.231126_bib56) 2014
Li (10.1016/j.jpowsour.2022.231126_bib48) 2018; 212
Broussely (10.1016/j.jpowsour.2022.231126_bib6) 2001; 97–98
Bernardi (10.1016/j.jpowsour.2022.231126_bib45) 1985; 132
Veth (10.1016/j.jpowsour.2022.231126_bib66) 2014; 267
Heubner (10.1016/j.jpowsour.2022.231126_bib37) 2018; 22
(10.1016/j.jpowsour.2022.231126_bib2) 2018
Cai (10.1016/j.jpowsour.2022.231126_bib11) 2010; 157
Das (10.1016/j.jpowsour.2022.231126_bib46) 2010; 87
Okubo (10.1016/j.jpowsour.2022.231126_bib36) 2007; 129
Uddin (10.1016/j.jpowsour.2022.231126_bib3) 2016
Zugmann (10.1016/j.jpowsour.2022.231126_bib5) 2011; 56
Wu (10.1016/j.jpowsour.2022.231126_bib65) 2015; 162
References_xml – volume: 56
  start-page: 3926
  year: 2011
  end-page: 3933
  ident: bib5
  publication-title: Electrochim. Acta
– volume: 151
  start-page: A196
  year: 2004
  end-page: A203
  ident: bib49
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 5960
  year: 2011
  end-page: 5965
  ident: bib26
  publication-title: J. Power Sources
– volume: 196
  start-page: 8675
  year: 2011
  end-page: 8682
  ident: bib35
  publication-title: J. Power Sources
– volume: 160
  start-page: A182
  year: 2013
  end-page: A190
  ident: bib21
  publication-title: J. Electrochem. Soc.
– volume: 87
  start-page: 2785
  year: 2010
  end-page: 2796
  ident: bib46
  publication-title: Appl. Energy
– volume: 162
  start-page: A1778
  year: 2015
  end-page: A1786
  ident: bib25
  publication-title: J. Electrochem. Soc.
– volume: 151
  start-page: A456
  year: 2004
  end-page: A462
  ident: bib18
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 653
  year: 2018
  end-page: 666
  ident: bib41
  publication-title: Prog. Nat. Sci.: Materials International
– volume: 129
  start-page: 261
  year: 2014
  end-page: 273
  ident: bib23
  publication-title: Appl. Energy
– volume: 97–98
  start-page: 104
  year: 2001
  end-page: 106
  ident: bib50
  publication-title: J. Power Sources
– year: 2014
  ident: bib56
  article-title: The Value of Battery Diagnostics and Prognostics
– volume: 243
  start-page: 181
  year: 2013
  end-page: 194
  ident: bib54
  publication-title: J. Power Sources
– volume: 152
  start-page: A882
  year: 2005
  end-page: A891
  ident: bib44
  publication-title: J. Electrochem. Soc.
– volume: 267
  start-page: 760
  year: 2014
  end-page: 769
  ident: bib66
  publication-title: J. Power Sources
– volume: 241
  start-page: 46
  year: 2013
  end-page: 55
  ident: bib4
  publication-title: J. Power Sources
– volume: 167
  year: 2020
  ident: bib8
  publication-title: J. Electrochem. Soc.
– volume: 156
  start-page: A145
  year: 2009
  end-page: A153
  ident: bib17
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 8175
  year: 2015
  end-page: 8192
  ident: bib67
  publication-title: Energies
– volume: 121
  start-page: 501
  year: 2017
  end-page: 510
  ident: bib13
  publication-title: Appl. Therm. Eng.
– volume: 132
  start-page: 5
  year: 1985
  end-page: 12
  ident: bib45
  publication-title: J. Electrochem. Soc.
– volume: 157
  start-page: A499
  year: 2010
  end-page: A507
  ident: bib16
  publication-title: J. Electrochem. Soc.
– volume: 80
  start-page: 303
  year: 2015
  end-page: 317
  ident: bib59
  publication-title: Energy
– start-page: 1513
  year: 2011
  end-page: 1522
  ident: bib31
  publication-title: ASME 2011 5th International Conference on Energy Sustainability, ES 2011, August 7, 2011 - August 10, 2011
– volume: 328
  start-page: 586
  year: 2016
  end-page: 598
  ident: bib28
  publication-title: J. Power Sources
– year: 2016
  ident: bib3
  article-title: Characterising Lithium-Ion Battery Degradation through the Identification and Tracking of Electrochemical Battery Model Parameters
– volume: 266
  start-page: 198
  year: 2014
  end-page: 207
  ident: bib63
  publication-title: J. Power Sources
– volume: 81–82
  start-page: 472
  year: 1999
  end-page: 479
  ident: bib15
  publication-title: J. Power Sources
– year: 2019
  ident: bib30
  publication-title: ASME 2019 13th International Conference on Energy Sustainability, ES 2019, Collocated with the ASME 2019 Heat Transfer Summer Conference, July 14, 2019 - July 17, 2019, American Society of Mechanical Engineers (ASME)
– volume: 34
  start-page: 107
  year: 2010
  end-page: 115
  ident: bib60
  publication-title: Int. J. Energy Res.
– volume: 262
  start-page: 483
  year: 2014
  end-page: 487
  ident: bib34
  publication-title: J. Power Sources
– volume: 154
  start-page: 160
  year: 2015
  end-page: 172
  ident: bib51
  publication-title: Appl. Energy
– volume: 157
  year: 2019
  ident: bib55
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 148
  year: 2019
  end-page: 165
  ident: bib29
  publication-title: Sustain. Energy Fuels
– volume: 142
  start-page: 3338
  year: 2017
  end-page: 3343
  ident: bib57
  publication-title: Energy Proc.
– volume: 143
  start-page: 1890
  year: 1996
  end-page: 1903
  ident: bib40
  publication-title: J. Electrochem. Soc.
– volume: 141
  start-page: 1
  year: 1994
  end-page: 10
  ident: bib38
  publication-title: J. Electrochem. Soc.
– volume: 166
  start-page: A3189
  year: 2019
  end-page: A3200
  ident: bib52
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: A181
  year: 2015
  end-page: A191
  ident: bib65
  publication-title: J. Electrochem. Soc.
– volume: 129
  start-page: 7444
  year: 2007
  end-page: 7452
  ident: bib36
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2015
  ident: bib32
  publication-title: J. Nanotechnol. Eng. Med.
– volume: 126
  start-page: 796
  year: 2017
  end-page: 808
  ident: bib68
  publication-title: Appl. Therm. Eng.
– volume: 189
  year: 2021
  ident: bib7
  publication-title: Appl. Therm. Eng.
– volume: 399
  start-page: 264
  year: 2018
  end-page: 273
  ident: bib53
  publication-title: J. Power Sources
– volume: 22
  start-page: 1099
  year: 2018
  end-page: 1108
  ident: bib37
  publication-title: J. Solid State Electrochem.
– volume: 157
  start-page: A1188
  year: 2010
  end-page: A1195
  ident: bib11
  publication-title: J. Electrochem. Soc.
– volume: 166
  start-page: A334
  year: 2019
  end-page: A341
  ident: bib20
  publication-title: J. Electrochem. Soc.
– volume: 382
  start-page: 77
  year: 2018
  end-page: 94
  ident: bib12
  publication-title: J. Power Sources
– volume: 162
  start-page: A1836
  year: 2015
  end-page: A1848
  ident: bib42
  publication-title: J. Electrochem. Soc.
– volume: 43
  start-page: 2086
  year: 2019
  end-page: 2107
  ident: bib27
  publication-title: Int. J. Energy Res.
– volume: 196
  start-page: 5985
  year: 2011
  end-page: 5989
  ident: bib10
  publication-title: J. Power Sources
– volume: 54
  start-page: 332
  year: 2021
  end-page: 341
  ident: bib24
  publication-title: J. Energy Chem.
– volume: 158
  start-page: A562
  year: 2011
  ident: bib58
  publication-title: J. Electrochem. Soc.
– volume: 140
  start-page: 111
  year: 2005
  end-page: 124
  ident: bib64
  publication-title: J. Power Sources
– volume: 174
  start-page: 999
  year: 2019
  end-page: 1011
  ident: bib22
  publication-title: Energy
– volume: 140
  start-page: 1526
  year: 1993
  end-page: 1533
  ident: bib39
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 3426
  year: 2021
  end-page: 3437
  ident: bib33
  publication-title: Energy & Fuels
– volume: 248
  start-page: 172
  year: 2014
  end-page: 179
  ident: bib47
  publication-title: J. Power Sources
– volume: 506
  year: 2021
  ident: bib9
  publication-title: J. Power Sources
– volume: 195
  start-page: 2393
  year: 2010
  end-page: 2398
  ident: bib62
  publication-title: J. Power Sources
– volume: 104
  start-page: 5040
  year: 2000
  end-page: 5044
  ident: bib43
  publication-title: J. Phys. Chem. B
– volume: 199
  start-page: 227
  year: 2012
  end-page: 238
  ident: bib61
  publication-title: J. Power Sources
– volume: 212
  start-page: 1178
  year: 2018
  end-page: 1190
  ident: bib48
  publication-title: Appl. Energy
– volume: 97–98
  start-page: 13
  year: 2001
  end-page: 21
  ident: bib6
  publication-title: J. Power Sources
– volume: 162
  start-page: A1003
  year: 2015
  end-page: A1007
  ident: bib19
  publication-title: J. Electrochem. Soc.
– start-page: 139
  year: 2018
  ident: bib2
  publication-title: International Energy Agency
– volume: 30
  year: 2018
  ident: bib1
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2998
  year: 2018
  ident: bib14
  publication-title: Energies
– volume: 28
  start-page: 653
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib41
  publication-title: Prog. Nat. Sci.: Materials International
  doi: 10.1016/j.pnsc.2018.11.002
– volume: 241
  start-page: 46
  year: 2013
  ident: 10.1016/j.jpowsour.2022.231126_bib4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.062
– volume: 151
  start-page: A456
  year: 2004
  ident: 10.1016/j.jpowsour.2022.231126_bib18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1644601
– volume: 140
  start-page: 1526
  year: 1993
  ident: 10.1016/j.jpowsour.2022.231126_bib39
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221597
– volume: 506
  year: 2021
  ident: 10.1016/j.jpowsour.2022.231126_bib9
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230242
– volume: 97–98
  start-page: 13
  year: 2001
  ident: 10.1016/j.jpowsour.2022.231126_bib6
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00722-4
– volume: 162
  start-page: A1003
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0641506jes
– volume: 212
  start-page: 1178
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib48
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.011
– volume: 126
  start-page: 796
  year: 2017
  ident: 10.1016/j.jpowsour.2022.231126_bib68
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.206
– volume: 166
  start-page: A3189
  year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib52
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0281914jes
– volume: 195
  start-page: 2393
  year: 2010
  ident: 10.1016/j.jpowsour.2022.231126_bib62
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.090
– volume: 157
  start-page: A1188
  year: 2010
  ident: 10.1016/j.jpowsour.2022.231126_bib11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3486082
– year: 2014
  ident: 10.1016/j.jpowsour.2022.231126_bib56
– volume: 262
  start-page: 483
  year: 2014
  ident: 10.1016/j.jpowsour.2022.231126_bib34
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.089
– volume: 87
  start-page: 2785
  year: 2010
  ident: 10.1016/j.jpowsour.2022.231126_bib46
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.05.006
– volume: 97–98
  start-page: 104
  year: 2001
  ident: 10.1016/j.jpowsour.2022.231126_bib50
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00507-9
– volume: 162
  start-page: A181
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib65
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0831501jes
– volume: 399
  start-page: 264
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib53
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.094
– volume: 43
  start-page: 2086
  year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib27
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4410
– volume: 189
  year: 2021
  ident: 10.1016/j.jpowsour.2022.231126_bib7
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116623
– volume: 199
  start-page: 227
  year: 2012
  ident: 10.1016/j.jpowsour.2022.231126_bib61
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.10.027
– start-page: 139
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib2
– volume: 129
  start-page: 7444
  year: 2007
  ident: 10.1016/j.jpowsour.2022.231126_bib36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0681927
– volume: 248
  start-page: 172
  year: 2014
  ident: 10.1016/j.jpowsour.2022.231126_bib47
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.059
– volume: 266
  start-page: 198
  year: 2014
  ident: 10.1016/j.jpowsour.2022.231126_bib63
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.134
– year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib30
– volume: 54
  start-page: 332
  year: 2021
  ident: 10.1016/j.jpowsour.2022.231126_bib24
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.06.008
– volume: 140
  start-page: 111
  year: 2005
  ident: 10.1016/j.jpowsour.2022.231126_bib64
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.05.064
– volume: 174
  start-page: 999
  year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib22
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.007
– volume: 157
  year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib55
  publication-title: Appl. Therm. Eng.
– volume: 56
  start-page: 3926
  year: 2011
  ident: 10.1016/j.jpowsour.2022.231126_bib5
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.02.025
– volume: 129
  start-page: 261
  year: 2014
  ident: 10.1016/j.jpowsour.2022.231126_bib23
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.092
– volume: 328
  start-page: 586
  year: 2016
  ident: 10.1016/j.jpowsour.2022.231126_bib28
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.054
– volume: 35
  start-page: 3426
  year: 2021
  ident: 10.1016/j.jpowsour.2022.231126_bib33
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.0c03595
– volume: 196
  start-page: 5985
  year: 2011
  ident: 10.1016/j.jpowsour.2022.231126_bib10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.03.017
– volume: 132
  start-page: 5
  year: 1985
  ident: 10.1016/j.jpowsour.2022.231126_bib45
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2113792
– volume: 3
  start-page: 148
  year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib29
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00503F
– volume: 104
  start-page: 5040
  year: 2000
  ident: 10.1016/j.jpowsour.2022.231126_bib43
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp000142f
– volume: 166
  start-page: A334
  year: 2019
  ident: 10.1016/j.jpowsour.2022.231126_bib20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1101902jes
– volume: 80
  start-page: 303
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib59
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.073
– volume: 243
  start-page: 181
  year: 2013
  ident: 10.1016/j.jpowsour.2022.231126_bib54
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.089
– volume: 156
  start-page: A145
  year: 2009
  ident: 10.1016/j.jpowsour.2022.231126_bib17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3043429
– volume: 143
  start-page: 1890
  year: 1996
  ident: 10.1016/j.jpowsour.2022.231126_bib40
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836921
– volume: 154
  start-page: 160
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib51
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.110
– volume: 382
  start-page: 77
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.027
– volume: 121
  start-page: 501
  year: 2017
  ident: 10.1016/j.jpowsour.2022.231126_bib13
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.04.077
– volume: 160
  start-page: A182
  year: 2013
  ident: 10.1016/j.jpowsour.2022.231126_bib21
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.026302jes
– volume: 196
  start-page: 8675
  year: 2011
  ident: 10.1016/j.jpowsour.2022.231126_bib35
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.06.070
– volume: 152
  start-page: A882
  year: 2005
  ident: 10.1016/j.jpowsour.2022.231126_bib44
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1872737
– volume: 151
  start-page: A196
  year: 2004
  ident: 10.1016/j.jpowsour.2022.231126_bib49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1634273
– volume: 158
  start-page: A562
  year: 2011
  ident: 10.1016/j.jpowsour.2022.231126_bib58
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3567007
– volume: 81–82
  start-page: 472
  year: 1999
  ident: 10.1016/j.jpowsour.2022.231126_bib15
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00204-9
– volume: 30
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib1
  publication-title: Adv. Mater.
– start-page: 1513
  year: 2011
  ident: 10.1016/j.jpowsour.2022.231126_bib31
– year: 2016
  ident: 10.1016/j.jpowsour.2022.231126_bib3
– volume: 11
  start-page: 2998
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib14
  publication-title: Energies
  doi: 10.3390/en11112998
– volume: 34
  start-page: 107
  year: 2010
  ident: 10.1016/j.jpowsour.2022.231126_bib60
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1652
– volume: 6
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib32
  publication-title: J. Nanotechnol. Eng. Med.
  doi: 10.1115/1.4032012
– volume: 157
  start-page: A499
  year: 2010
  ident: 10.1016/j.jpowsour.2022.231126_bib16
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3294790
– volume: 8
  start-page: 8175
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib67
  publication-title: Energies
  doi: 10.3390/en8088175
– volume: 162
  start-page: A1836
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib42
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0551509jes
– volume: 141
  start-page: 1
  year: 1994
  ident: 10.1016/j.jpowsour.2022.231126_bib38
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2054684
– volume: 267
  start-page: 760
  year: 2014
  ident: 10.1016/j.jpowsour.2022.231126_bib66
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.139
– volume: 22
  start-page: 1099
  year: 2018
  ident: 10.1016/j.jpowsour.2022.231126_bib37
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-017-3828-4
– volume: 167
  year: 2020
  ident: 10.1016/j.jpowsour.2022.231126_bib8
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abd1f1
– volume: 196
  start-page: 5960
  year: 2011
  ident: 10.1016/j.jpowsour.2022.231126_bib26
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.051
– volume: 142
  start-page: 3338
  year: 2017
  ident: 10.1016/j.jpowsour.2022.231126_bib57
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.12.467
– volume: 162
  start-page: A1778
  year: 2015
  ident: 10.1016/j.jpowsour.2022.231126_bib25
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0331509jes
SSID ssj0001170
Score 2.4743993
Snippet The widely used non-destructive battery characterization techniques, such as voltage, capacity, and impedance measurements, often fail to fully characterise a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 231126
SubjectTerms Heat
Lithium-ion battery
Modelling
Pouch cell
Solid-electrolyte-interphase
Temperature
Title Impact of solid-electrolyte interphase layer thickness on lithium-ion battery cell surface temperature
URI https://dx.doi.org/10.1016/j.jpowsour.2022.231126
Volume 525
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6mcYED4inGY8qBa9f1meY4TUwDxC4wabcqaRKtY6zT6IR24bdj9wFDQtqBYx9uI9uxncT-TMit9kGqHsw0IbixfCYjS4KXsJTLdMiN5yQa9zueRuFw7D9MgkmD9OtaGEyrrGx_adMLa13dsStu2ss0tZ-7HigbRNsupgX5ESJ--j5DLe98_qR5YGeV4iQBVkv49laV8KwzW2YfuEkO60TX7UCo4yDIwl8OasvpDI7IYRUt0l45oGPS0IsTcrCFIXhKzH1R50gzQ0GNUmVVjW3mm1zTtEgpnIKnonMBwTXF7PZXtG40W1CIwKfp-s0C0VBZ4GxuKG7k0_f1yohEU8StqkCXz8h4cPfSH1pV8wQr8cJubgWKG6aKg9IkMcrVDpdMKs4VuK2EeaEQrm-EzzULFVMuyASE4-rIYQ78wfPOSXORLfQFoTKCKMCEQoYweSOuBDzlKgjx-1IkXosENcfipEIWxwYX87hOIZvFNadj5HRccrpF7G-6ZYmtsZOC1wKJf2lJDA5gB-3lP2ivyD5eFbWI3WvSzFdrfQPBSC7bhba1yV7v_nE4-gLt4eL5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTl6YE1TRPn5RFVVC20XWilbpEd22pKSaqSCnXht3POA4qE1IE1zjnR3fnus30PhO6lA1IlsNIYo8pwfB4YHLyEIWxfelQRK5L6vGMw9Lpj52niTmqoXeXC6LDK0vYXNj231uUTs-SmuYhj86VFQNkAbds6LMgJyA7adWD56jYGzc-fOA_dWiW_SoDtkn59I0141pwt0g99Sg4bRdtuAtaxdJWFvzzUhtfpHKHDEi7ih-KPjlFNJifoYKOI4ClSvTzREacKgx7Fwig728zXmcRxHlM4BVeF5wzQNdbh7a_avOE0wQDBp_HqzQDZYJ4X2lxjfZKP31dLxSKJdeGqsuryGRp3HkftrlF2TzAi4rUywxVU-SK_KY0iJWxpUe5zQakAvxX5xGPMdhRzqPQ94QsbhALSsWVg-RZ8gZBzVE_SRF4gzAOAAcpj3IPVG1DBYJQK19PzcxaRBnIrjoVRWVpcd7iYh1UM2SysOB1qTocFpxvI_KZbFMU1tlLQSiDhLzUJwQNsob38B-0d2uuOBv2w3xs-X6F9PZInJrauUT1bruQNIJOM3-aa9wUwp-SH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+solid-electrolyte+interphase+layer+thickness+on+lithium-ion+battery+cell+surface+temperature&rft.jtitle=Journal+of+power+sources&rft.au=Andriunas%2C+Ignas&rft.au=Milojevic%2C+Zoran&rft.au=Wade%2C+Neal&rft.au=Das%2C+Prodip+K.&rft.date=2022-03-30&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=525&rft_id=info:doi/10.1016%2Fj.jpowsour.2022.231126&rft.externalDocID=S0378775322001483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon