Crop rotational diversity enhances soil microbiome network complexity and multifunctionality
•Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network complexity and multifunctionality.•Soil microbial network complexity had a stronger effect on multifunctionality than diversity. Although it is widel...
Saved in:
Published in | Geoderma Vol. 436; p. 116562 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2023.116562 |
Cover
Loading…
Abstract | •Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network complexity and multifunctionality.•Soil microbial network complexity had a stronger effect on multifunctionality than diversity.
Although it is widely accepted that crop rotations can alleviate the adverse effects of agricultural intensification on ecosystem functioning, the influence of rotational diversification on soil microbial diversity, network complexity, and their associations with multifunctionality remains unclear. Here, we used a 16-year field experiment to assess the effect of six cropping regimes, and their respective crop diversity index (CDI, i.e., the number of crop species in a rotation multiplied by the species per year) and management intensity (MI, i.e., the anthropogenic inputs including fertilizer use, pesticide use and fuel consumption across a 2-year cycle), on soil microbial community (bacteria, fungi and protists) and soil multifunctionality. We used 20 soil functions related to soil properties, soil basal respiration, soil enzymatic activities and soil nitrogen cycling potential to characterize soil multifunctionality. Diversified crop rotation was shown to enhance soil multifunctionality. Also, soil multifunctionality and microbial diversity increased with CDI, but were negatively correlated or had a hump-shaped relationship with MI. With the increase in CDI, microbiome network nodes, edges and degree increased, but betweenness and average path length decreased. An increase in MI was found to have a hump-shaped relationship with the topological properties of the network. Soil microbiome network complexity had a stronger effect on multifunctionality than microbiome diversity and community composition. This study illustrates that more diverse rotations under intermediate MI promoted soil multifunctionality, and highlights the crucial role of network complexity in maintaining soil functions. |
---|---|
AbstractList | •Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network complexity and multifunctionality.•Soil microbial network complexity had a stronger effect on multifunctionality than diversity.
Although it is widely accepted that crop rotations can alleviate the adverse effects of agricultural intensification on ecosystem functioning, the influence of rotational diversification on soil microbial diversity, network complexity, and their associations with multifunctionality remains unclear. Here, we used a 16-year field experiment to assess the effect of six cropping regimes, and their respective crop diversity index (CDI, i.e., the number of crop species in a rotation multiplied by the species per year) and management intensity (MI, i.e., the anthropogenic inputs including fertilizer use, pesticide use and fuel consumption across a 2-year cycle), on soil microbial community (bacteria, fungi and protists) and soil multifunctionality. We used 20 soil functions related to soil properties, soil basal respiration, soil enzymatic activities and soil nitrogen cycling potential to characterize soil multifunctionality. Diversified crop rotation was shown to enhance soil multifunctionality. Also, soil multifunctionality and microbial diversity increased with CDI, but were negatively correlated or had a hump-shaped relationship with MI. With the increase in CDI, microbiome network nodes, edges and degree increased, but betweenness and average path length decreased. An increase in MI was found to have a hump-shaped relationship with the topological properties of the network. Soil microbiome network complexity had a stronger effect on multifunctionality than microbiome diversity and community composition. This study illustrates that more diverse rotations under intermediate MI promoted soil multifunctionality, and highlights the crucial role of network complexity in maintaining soil functions. |
ArticleNumber | 116562 |
Author | Cui, Zhen-Ling Hu, Hang-Wei Yang, Xue Yang, Gao-Wen Chen, Yong-Liang |
Author_xml | – sequence: 1 givenname: Xue surname: Yang fullname: Yang, Xue organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China – sequence: 2 givenname: Hang-Wei surname: Hu fullname: Hu, Hang-Wei organization: School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia – sequence: 3 givenname: Gao-Wen surname: Yang fullname: Yang, Gao-Wen organization: College of Grassland Science & Technology, Department of Grassland Science, Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China – sequence: 4 givenname: Zhen-Ling surname: Cui fullname: Cui, Zhen-Ling organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China – sequence: 5 givenname: Yong-Liang surname: Chen fullname: Chen, Yong-Liang email: ylchen@cau.edu.cn organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China |
BookMark | eNqFkF9LwzAUxYNMcJt-BekXaE2yNunAB2X4Dwa-6JsQ0uRGM9tkJN10396U6osvezrcyzmHe38zNHHeAUKXBBcEE3a1Kd7BawidLCimi4IQVjF6gqak5jRntFpO0BQnZ84xI2doFuMmjRxTPEVvq-C3WfC97K13ss203UOItj9k4D6kUxCz6G2bdVYF31jfQeag__LhM1O-27bwPXil01m3a3trdk6NTWl9jk6NbCNc_Oocvd7fvawe8_Xzw9Pqdp2rBcN9XklaYqXrhiwJ50uqS1LXhpdQGVZqxShuzBJrXrNBDUtO1dSl4Q1mGGq9mCM29qYTYwxgxDbYToaDIFgMjMRG_DESAyMxMkrB639BZUcSfZC2PR6_GeOQnttbCCIqC4mZtgFUL7S3xyp-ANkRjHE |
CitedBy_id | crossref_primary_10_1016_j_bcab_2024_103433 crossref_primary_10_1016_j_agee_2025_109537 crossref_primary_10_1007_s11104_023_06412_w crossref_primary_10_3390_agronomy13122984 crossref_primary_10_1016_j_agee_2024_109370 crossref_primary_10_1111_mec_17238 crossref_primary_10_1016_j_agee_2025_109497 crossref_primary_10_1016_j_apsoil_2024_105805 crossref_primary_10_1016_j_apsoil_2024_105827 crossref_primary_10_1186_s40793_024_00636_8 crossref_primary_10_3390_app14188411 crossref_primary_10_1016_j_scitotenv_2025_178563 crossref_primary_10_1134_S1064229323602640 crossref_primary_10_1002_ece3_70164 crossref_primary_10_1016_j_jenvman_2025_124731 crossref_primary_10_1016_j_catena_2024_108582 crossref_primary_10_1186_s40793_024_00571_8 crossref_primary_10_1016_j_scitotenv_2024_172724 crossref_primary_10_1002_ldr_5330 crossref_primary_10_3390_agronomy14061154 crossref_primary_10_1016_j_still_2024_106174 crossref_primary_10_1111_nph_19310 crossref_primary_10_1016_j_scitotenv_2024_175336 crossref_primary_10_1016_j_scitotenv_2024_170881 crossref_primary_10_1016_j_apsoil_2024_105758 crossref_primary_10_3390_agronomy14071456 crossref_primary_10_1016_j_apsoil_2024_105678 crossref_primary_10_3390_agronomy14040669 crossref_primary_10_1016_j_indcrop_2025_120575 crossref_primary_10_1016_j_micres_2025_128075 crossref_primary_10_1016_j_fcr_2024_109734 crossref_primary_10_1111_gcb_70041 crossref_primary_10_1002_agj2_21658 crossref_primary_10_1016_j_fcr_2025_109834 crossref_primary_10_1016_j_pedsph_2024_10_010 crossref_primary_10_1016_j_indcrop_2023_117980 crossref_primary_10_1016_j_scitotenv_2024_172954 crossref_primary_10_1186_s12866_024_03580_2 crossref_primary_10_3389_fagro_2024_1455448 |
Cites_doi | 10.1016/j.agee.2020.107206 10.1038/nmeth.2604 10.1073/pnas.0813417106 10.1016/j.tree.2018.04.012 10.1046/j.1523-1739.1992.610018.x 10.1111/j.1574-6976.2012.00343.x 10.1073/pnas.1320054111 10.1016/j.soilbio.2015.11.010 10.1038/s41559-017-0415-0 10.1080/03650340.2020.1726325 10.1093/bioinformatics/btr507 10.1016/j.tree.2016.02.016 10.1093/biomet/93.3.491 10.1007/s11104-020-04430-6 10.1016/j.geoderma.2022.116273 10.1073/pnas.1305198110 10.1073/pnas.96.4.1463 10.1016/j.agee.2017.02.020 10.1093/femsre/fuy006 10.1093/nar/gky1022 10.2136/sssabookser5.2.c42 10.1016/j.soilbio.2017.02.010 10.1038/ncomms7707 10.1016/j.tplants.2022.02.003 10.1016/bs.agron.2019.01.001 10.18637/jss.v082.i13 10.1038/s41396-019-0383-2 10.1007/s00374-022-01675-4 10.1038/ismej.2017.171 10.1038/nature22899 10.1111/2041-210X.12143 10.1038/ncomms10541 10.1016/j.foreco.2019.117805 10.1111/1365-2435.13039 10.1038/s41559-019-1084-y 10.1038/s41396-021-00913-1 10.1016/j.soilbio.2010.08.006 10.1038/srep41911 10.1073/pnas.1220608110 10.1016/j.agee.2018.02.011 10.1016/j.soilbio.2020.107917 10.1093/nar/gks1219 10.1002/ecy.2634 10.1038/s41586-019-1316-y 10.1128/AEM.00322-20 10.1186/s40793-021-00396-9 10.1038/nmeth.f.303 10.1016/j.scitotenv.2016.05.073 10.1111/ele.12453 10.1016/j.soilbio.2021.108143 10.1038/ismej.2015.261 10.1073/pnas.1000080107 10.1038/ncomms9159 10.1016/j.envint.2021.106438 10.1038/ncomms14349 10.1016/j.agee.2015.04.034 10.1038/s43016-020-00210-8 10.1016/j.soilbio.2014.07.027 10.1111/j.1365-294X.2009.04480.x 10.1016/j.soilbio.2013.05.009 10.1016/j.soilbio.2021.108219 10.1002/jsfa.6565 10.1002/ece3.2454 10.1038/s41467-019-12798-y 10.1093/nar/gks1160 10.1016/j.pedobi.2016.04.001 10.1016/j.agee.2021.107550 10.1126/science.1111772 10.1111/gcb.15747 10.1111/gcb.15917 10.1007/s00374-022-01626-z 10.1016/j.oneear.2020.02.007 10.1016/j.agee.2021.107389 10.1111/ele.12560 10.1111/gcb.15487 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.geoderma.2023.116562 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2023_116562 S0016706123002392 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c360t-5a240cd8b1917792d4188f74e5f64dc620bf90d786bf90f6d8bcb84f7b060e8d3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Jul 01 04:05:01 EDT 2025 Thu Apr 24 22:51:33 EDT 2025 Fri Feb 23 02:36:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial diversity Crop diversity index Microbial community composition Soil multifunctionality Management intensity Network complexity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-5a240cd8b1917792d4188f74e5f64dc620bf90d786bf90f6d8bcb84f7b060e8d3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706123002392 |
ParticipantIDs | crossref_primary_10_1016_j_geoderma_2023_116562 crossref_citationtrail_10_1016_j_geoderma_2023_116562 elsevier_sciencedirect_doi_10_1016_j_geoderma_2023_116562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Byrnes, Gamfeldt, Isbell, Lefcheck, Griffin, Hector, Cardinale, Hooper, Dee, Emmett Duffy, Freckleton (b0045) 2014; 5 Xiong, W., Jousset, A., Li, R., Delgado-Baquerizo, M., Bahram, M., Logares, R., Wilden, B., de Groot, G.A., Amacker, N., Kowalchuk, G.A., Shen, Q.R., Geisen, S., 2021. A global overview of the trophic structure within microbiomes across ecosystems. Environ. Int. 151, 106438. Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (b0055) 2011; 108 Du, Dini-Andreote, Zhang, Liang, Yao, Zhang, Zhang, Cann (b0105) 2020; 86 Gaudin, Janovicek, Deen, Hooker (b0140) 2015; 210 Chen, Y.L., Liu, F.T., Kang, L.Y., Zhang, D.Y., Kou, D., Mao, C., Qin, S.Q., Zhang, Q.W., Yang, Y.H., 2020. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biol. 27, 3218–3229. Zhang, Maltais-Landry, James, Mendez, Wright, George, Liao (b0420) 2022; 58 Romdhane, Spor, Banerjee, Breuil, Bru, Chabbi, Hallin, van der Heijden, Saghai, Philippot (b0315) 2022; 17 Jia, J.Y., Zhang, J.Z., Li, Y.Z., Koziol, L., Podzikowski, L., Delgado-Baquerizo, M., Wang, G.Z., Zhang, J.L., 2022. Relationships between soil biodiversity and multifunctionality in croplands depend on salinity and organic matter. Geoderma, 429, 116273. Stoeck, Bass, Nebel, Christen, Jones, Breiner, Richards (b0330) 2010; 19 White (b0365) 1970; 44 Xue, L., Ren, H.D., Brodribb, T.J., Wang, J., Yao, X.H., Li, S., 2020. Long term effects of management practice intensification on soil microbial community structure and cooccurrence network in a non-timber plantation. Forest Ecol. Manag. 459, 117805. Han, S., Delgado-Baquerizo, M., Luo, X.S., Liu, Y.R., Nostrand, J.D.V., Chen, W.L., Zhou, J.Z., Huang, Q.Y., 2021. Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biol. Biochem. 154,108143. Ma, Wang, Dsouza, Lou, He, Dai, Brookes, Xu, Gilbert (b0245) 2016; 10 de Graaff, Hornslein, Throop, Kardol, van Diepen (b0075) 2019; 155 Harrell Jr., F.H., Dupont, C., 2017. Hmisc: Harrell Miscellaneous. R Package Version 4.0-3 Online Publication. Tiemann, Grandy, Atkinson, Marin‐Spiotta, McDaniel, Hooper (b0335) 2015; 18 Zhang, Maltais-Landry, George, Grabau, Small, Wright, Liao (b0415) 2022; 58 Doak, Bigger, Harding, Marvier, O'Malley, Thomson (b0100) 1998; 151 Bainarda, Navarro-Borrella, Hamelb, Brauna, Hansona, Gan (b0005) 2017; 240 Hart, S., Stark, J.M., Davidson, E., Firestone, M.K., 1994. Nitrogen mineralization, immobilization, and nitrification. In Methods of Soil Analysis, Part 2: Microbiological and biochemical Properties. Soil Science Society of America, Madison, pp. 985-1018. Bao (b0015) 2000 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2015. Vegan: community ecology package. R package version 2.6-2. Nazaries, L., Singh, B.P., Sarker, J.R., Fang, Y.Y., Klein, M., Singh, B.K., 2021.The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agr. Ecosyst. Environ. 307, 107206. Xiong, Jousset, Guo, Karlsson, Zhao, Wu, Kowalchuk, Shen, Li, Geisen (b0385) 2018; 12 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glockner (b0300) 2013; 41 Navarro-Noya, Gómez-Acata, Montoya-Ciriaco, Rojas-Valdez, Suárez-Arriaga, Valenzuela-Encinas, Jiménez-Bueno, Verhulst, Govaerts, Dendooven (b0275) 2013; 65 Jing, Sanders, Shi, Chu, Classen, Zhao, Chen, Shi, Jiang, He (b0205) 2015; 6 Zirbel, Grman, Bassett, Brudvig (b0425) 2019; 100 Mori, Isbell, Fujii, Makoto, Matsuoka, Osono, Casper (b0260) 2016; 19 Venter, Jacobs, Hawkins (b0340) 2016; 59 de Vries, Thébault, Liiri, Birkhofer, Tsiafouli, Bjørnlund, Bracht Jørgensen, Brady, Christensen, de Ruiter, d’Hertefeldt, Frouz, Hedlund, Hemerik, Hol, Hotes, Mortimer, Setälä, Sgardelis, Uteseny, van der Putten, Wolters, Bardgett (b0080) 2013; 110 Ju, Xing, Chen, Zhang, Zhang, Liu, Cui, Yin, Christie, Zhu, Zhang (b0210) 2009; 106 Steinauer, Chatzinotas, Eisenhauer (b0325) 2016; 6 Yin, Jones, Peterson, Garrett, Hulbert, Paulitz (b0405) 2010; 42 Nilsson, Larsson, Taylor, Bengtsson-Palme, Jeppesen, Schigel, Kennedy, Picard, Gloeckner, Tedersoo, Saar, Koljalg, Abarenkov (b0285) 2019; 47 Guillou, Bachar, Audic, Bass, Berney, Bittner, Boutte, Burgaud, de Vargas, Decelle, del Campo, Dolan, Dunthorn, Edvardsen, Holzmann, Kooistra, Lara, Le Bescot, Logares, Mahe, Massana, Montresor, Morard, Not, Pawlowski, Probert, Sauvadet, Siano, Stoeck, Vaulot, Zimmermann, Christen (b0160) 2013; 41 Griffiths, Philippot (b0155) 2013; 37 Cappelli, Domeignoz-Horta, Loaiza, Laine (b0060) 2022; 27 D’Acunto, Andrade, Poggio, Semmartin (b0070) 2018; 257 Delgado-Baquerizo, Reich, Trivedi, Eldridge, Abades, Alfaro, Bastida, Berhe, Cutler, Gallardo, Garcia-Velazquez, Hart, Hayes, He, Hseu, Hu, Kirchmair, Neuhauser, Perez, Reed, Santos, Sullivan, Trivedi, Wang, Weber-Grullon, Williams, Singh (b0090) 2020; 4 Geisen, Mitchell, Adl, Bonkowski, Dunthorn, Ekelund, Fernandez, Jousset, Krashevska, Singer, Spiegel, Walochnik, Lara (b0150) 2018; 42 Rodrigues, Pellizari, Mueller, Baek, Jesus, Paula, Mirza, Hamaoui, Tsai, Feigl, Tiedje, Bohannan, Nüsslein (b0310) 2013; 110 Edgar (b0110) 2013; 10 Qiu, Zhang, Zhu, Reich, Banerjee, van der Heijden, Sadowsky, Ishii, Jia, Shao, Liu, Jiao, Li, Wei (b0295) 2021; 15 Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. Banerjee, Walder, Büchi, Meyer, Held, Gattinger, Keller, Charles, van der Heijden (b0010) 2019; 13 Walker (b0355) 1992; 6 Benjamini, Krieger, Yekutieli (b0035) 2006; 93 Li, M.H., Guo, J.J., Ren, T., Luo, G.W., Shen, Q.R., Lu, J.W., Guo, S.W., Ling, N., 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agr. Ecosyst. Environ. 319, 107550. Isbell, Gonzalez, Loreau, Cowles, Díaz, Hector, Mace, Wardle, O'Connor, Duffy, Turnbull, Thompson, Larigauderie (b0185) 2017; 546 Linton, N.F., Machado, P.V.F., Deen, B., Wagner-Riddle, C., Dunfield, K.E., 2020. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem, 149, 107917. Bender, Wagg, van der Heijden (b0030) 2016; 31 Wang, Li, Wang, Liu, Cheng, Zhang, Baoyin, Bardgett (b0360) 2020; 448 Hu, Liu, Wang, Yu, Yao, Jin, Liu, Wang (b0180) 2021; 67 Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (b0025) 2013; 15 Dias, Dukes, Antunes (b0095) 2015; 95 Beillouin, Ben‐Ari, Malézieux, Seufert, Makowski (b0020) 2021; 27 Foley, DeFries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (b0130) 2005; 309 Zhang, K.L, Maltais-Landry, G., Liao, H.L., 2021. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 156, 108219. Delgado-Baquerizo, Maestre, Reich, Jeffries, Gaitan, Encinar, Berdugo, Campbell, Singh (b0085) 2016; 7 Wagg, Schlaeppi, Banerjee, Kuramae, van der Heijden (b0350) 2019; 10 Fernandez, Sheaffer, Wyse, Staley, Gould, Sadowsky (b0125) 2016; 566 Lange, Eisenhauer, Sierra, Bessler, Engels, Griffiths, Mellado-Vazquez, Malik, Roy, Scheu, Steinbeiss, Thomson, Trumbore, Gleixner (b0220) 2015; 6 Luo, Rensing, Chen, Liu, Wang, Guo, Ling, Shen, Briones (b0240) 2018; 32 Li, K.L., Zhang, H.Y., Li, X.L., Wang, C., Zhang, J.L., Jiang, R.F., Feng, G., Liu, X.J., Zuo, Y.M., Yuan, H.M., Zhang, C.C., Gai, J.P., Tian, J., 2021. Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agr. Ecosyst. Environ. 313, 107389. Schermelleh-Engel, Helfried, Hans (b0320) 2003; 8 Yang, Evans, Bainard (b0400) 2021; 12 Fanin, Gundale, Farrell, Ciobanu, Baldock, Nilsson, Kardol, Wardle (b0115) 2018; 2 Wagg, Bender, Widmer, van der Heijden (b0345) 2014; 111 Kuznetsova, Brockhoff, Christensen (b0215) 2017; 82 Jiao, S., Lu, Y.H., Wei, G.H, 2021. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biol. 28, 140-153. Yachi, Loreau (b0395) 1999; 96 FAO, 1998. World reference base for soil resources. World Soil Resources Rep. 84 Rome. Garland, Edlinger, Banerjee, Degrune, Garcia-Palacios, Pescador, Herzog, Romdhane, Saghai, Spor, Wagg, Hallin, Maestre, Philippot, Rillig, van der Heijden (b0135) 2021; 2 White, Bruns, Lee, Taylor (b0370) 1990 Morriën, Hannula, Snoek, Helmsing, Zweers, de Hollander, Soto, Bouffaud, Buee, Dimmers, Duyts, Geisen, Girlanda, Griffiths, Jorgensen, Jensen, Plassart, Redecker, Schmelz, Schmidt, Thomson, Tisserant, Uroz, Winding, Bailey, Bonkowski, Faber, Martin, Lemanceau, de Boer, van Veen, van der Putten (b0270) 2017; 8 Mori, Isbell, Seidl (b0265) 2018; 33 Bowles, Mooshammer, Socolar, Calderón, Cavigelli, Culman, Deen, Drury, Garcia y Garcia, Gaudin, Harkcom, Lehman, Osborne, Robertson, Salerno, Schmer, Strock, Grandy (b0040) 2020; 2 Wittwer, Dorn, Jossi, van der Heijden (b0375) 2017; 7 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Turnbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (b0050) 2010; 7 Jiang, Li, Li, Zhang, Liu, Lv, Zhu, Wu, Li (b0195) 2017; 109 Geisen, Koller, Hunninghaus, Dumack, Urich, Bonkowski (b0145) 2016; 94 McDaniel, Grandy, Tiemann, Weintraub (b0255) 2014; 78 Renard, Tilman (b0305) 2019; 571 Xiong (10.1016/j.geoderma.2023.116562_b0385) 2018; 12 Morriën (10.1016/j.geoderma.2023.116562_b0270) 2017; 8 Luo (10.1016/j.geoderma.2023.116562_b0240) 2018; 32 Romdhane (10.1016/j.geoderma.2023.116562_b0315) 2022; 17 Venter (10.1016/j.geoderma.2023.116562_b0340) 2016; 59 Wittwer (10.1016/j.geoderma.2023.116562_b0375) 2017; 7 10.1016/j.geoderma.2023.116562_b0190 10.1016/j.geoderma.2023.116562_b0390 Yang (10.1016/j.geoderma.2023.116562_b0400) 2021; 12 10.1016/j.geoderma.2023.116562_b0230 Griffiths (10.1016/j.geoderma.2023.116562_b0155) 2013; 37 10.1016/j.geoderma.2023.116562_b0235 Byrnes (10.1016/j.geoderma.2023.116562_b0045) 2014; 5 Hu (10.1016/j.geoderma.2023.116562_b0180) 2021; 67 Delgado-Baquerizo (10.1016/j.geoderma.2023.116562_b0090) 2020; 4 Foley (10.1016/j.geoderma.2023.116562_b0130) 2005; 309 Schermelleh-Engel (10.1016/j.geoderma.2023.116562_b0320) 2003; 8 Bell (10.1016/j.geoderma.2023.116562_b0025) 2013; 15 Renard (10.1016/j.geoderma.2023.116562_b0305) 2019; 571 Zhang (10.1016/j.geoderma.2023.116562_b0420) 2022; 58 Tiemann (10.1016/j.geoderma.2023.116562_b0335) 2015; 18 Zirbel (10.1016/j.geoderma.2023.116562_b0425) 2019; 100 Wang (10.1016/j.geoderma.2023.116562_b0360) 2020; 448 Du (10.1016/j.geoderma.2023.116562_b0105) 2020; 86 Yachi (10.1016/j.geoderma.2023.116562_b0395) 1999; 96 10.1016/j.geoderma.2023.116562_b0280 Benjamini (10.1016/j.geoderma.2023.116562_b0035) 2006; 93 Mori (10.1016/j.geoderma.2023.116562_b0260) 2016; 19 D’Acunto (10.1016/j.geoderma.2023.116562_b0070) 2018; 257 Geisen (10.1016/j.geoderma.2023.116562_b0150) 2018; 42 10.1016/j.geoderma.2023.116562_b0165 10.1016/j.geoderma.2023.116562_b0120 Zhang (10.1016/j.geoderma.2023.116562_b0415) 2022; 58 Bao (10.1016/j.geoderma.2023.116562_b0015) 2000 10.1016/j.geoderma.2023.116562_b0200 Wagg (10.1016/j.geoderma.2023.116562_b0350) 2019; 10 Bainarda (10.1016/j.geoderma.2023.116562_b0005) 2017; 240 McDaniel (10.1016/j.geoderma.2023.116562_b0255) 2014; 78 Kuznetsova (10.1016/j.geoderma.2023.116562_b0215) 2017; 82 Caporaso (10.1016/j.geoderma.2023.116562_b0055) 2011; 108 Quast (10.1016/j.geoderma.2023.116562_b0300) 2013; 41 Jiang (10.1016/j.geoderma.2023.116562_b0195) 2017; 109 Bowles (10.1016/j.geoderma.2023.116562_b0040) 2020; 2 Banerjee (10.1016/j.geoderma.2023.116562_b0010) 2019; 13 10.1016/j.geoderma.2023.116562_b0170 10.1016/j.geoderma.2023.116562_b0290 de Vries (10.1016/j.geoderma.2023.116562_b0080) 2013; 110 Nilsson (10.1016/j.geoderma.2023.116562_b0285) 2019; 47 Caporaso (10.1016/j.geoderma.2023.116562_b0050) 2010; 7 Guillou (10.1016/j.geoderma.2023.116562_b0160) 2013; 41 10.1016/j.geoderma.2023.116562_b0250 Ma (10.1016/j.geoderma.2023.116562_b0245) 2016; 10 10.1016/j.geoderma.2023.116562_b0175 Garland (10.1016/j.geoderma.2023.116562_b0135) 2021; 2 Navarro-Noya (10.1016/j.geoderma.2023.116562_b0275) 2013; 65 10.1016/j.geoderma.2023.116562_b0410 Wagg (10.1016/j.geoderma.2023.116562_b0345) 2014; 111 White (10.1016/j.geoderma.2023.116562_b0370) 1990 Ju (10.1016/j.geoderma.2023.116562_b0210) 2009; 106 Mori (10.1016/j.geoderma.2023.116562_b0265) 2018; 33 Rodrigues (10.1016/j.geoderma.2023.116562_b0310) 2013; 110 Lange (10.1016/j.geoderma.2023.116562_b0220) 2015; 6 Dias (10.1016/j.geoderma.2023.116562_b0095) 2015; 95 Fanin (10.1016/j.geoderma.2023.116562_b0115) 2018; 2 White (10.1016/j.geoderma.2023.116562_b0365) 1970; 44 Walker (10.1016/j.geoderma.2023.116562_b0355) 1992; 6 Fernandez (10.1016/j.geoderma.2023.116562_b0125) 2016; 566 Qiu (10.1016/j.geoderma.2023.116562_b0295) 2021; 15 Geisen (10.1016/j.geoderma.2023.116562_b0145) 2016; 94 Isbell (10.1016/j.geoderma.2023.116562_b0185) 2017; 546 Gaudin (10.1016/j.geoderma.2023.116562_b0140) 2015; 210 Yin (10.1016/j.geoderma.2023.116562_b0405) 2010; 42 Delgado-Baquerizo (10.1016/j.geoderma.2023.116562_b0085) 2016; 7 Beillouin (10.1016/j.geoderma.2023.116562_b0020) 2021; 27 Steinauer (10.1016/j.geoderma.2023.116562_b0325) 2016; 6 10.1016/j.geoderma.2023.116562_b0380 Stoeck (10.1016/j.geoderma.2023.116562_b0330) 2010; 19 10.1016/j.geoderma.2023.116562_b0065 Cappelli (10.1016/j.geoderma.2023.116562_b0060) 2022; 27 Doak (10.1016/j.geoderma.2023.116562_b0100) 1998; 151 10.1016/j.geoderma.2023.116562_b0225 Jing (10.1016/j.geoderma.2023.116562_b0205) 2015; 6 Edgar (10.1016/j.geoderma.2023.116562_b0110) 2013; 10 Bender (10.1016/j.geoderma.2023.116562_b0030) 2016; 31 de Graaff (10.1016/j.geoderma.2023.116562_b0075) 2019; 155 |
References_xml | – volume: 19 start-page: 249 year: 2016 end-page: 259 ident: b0260 article-title: Low multifunctional redundancy of soil fungal diversity at multiple scales publication-title: Ecol. Lett. – reference: Hart, S., Stark, J.M., Davidson, E., Firestone, M.K., 1994. Nitrogen mineralization, immobilization, and nitrification. In Methods of Soil Analysis, Part 2: Microbiological and biochemical Properties. Soil Science Society of America, Madison, pp. 985-1018. – volume: 6 start-page: 18 year: 1992 end-page: 23 ident: b0355 article-title: Biodiversity and ecological redundancy publication-title: Conserv. Biol. – reference: Xue, L., Ren, H.D., Brodribb, T.J., Wang, J., Yao, X.H., Li, S., 2020. Long term effects of management practice intensification on soil microbial community structure and cooccurrence network in a non-timber plantation. Forest Ecol. Manag. 459, 117805. – reference: Han, S., Delgado-Baquerizo, M., Luo, X.S., Liu, Y.R., Nostrand, J.D.V., Chen, W.L., Zhou, J.Z., Huang, Q.Y., 2021. Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biol. Biochem. 154,108143. – volume: 151 start-page: 264 year: 1998 end-page: 276 ident: b0100 article-title: The statistical inevitability of stability-diversity relationships in community ecology publication-title: Am. Soc. Nat. – volume: 8 start-page: 14349 year: 2017 ident: b0270 article-title: Soil networks become more connected and take up more carbon as nature restoration progresses publication-title: Nat. Commun. – volume: 59 start-page: 215 year: 2016 end-page: 223 ident: b0340 article-title: The impact of crop rotation on soil microbial diversity: a meta-analysis publication-title: Pedobiologia – volume: 41 start-page: 597 year: 2013 end-page: 604 ident: b0160 article-title: The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy publication-title: Nucleic Acids Res. – volume: 6 start-page: 8159 year: 2015 ident: b0205 article-title: The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate publication-title: Nat. Commun. – volume: 58 start-page: 883 year: 2022 end-page: 901 ident: b0420 article-title: Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation publication-title: Biol. Fert. Soils – volume: 257 start-page: 159 year: 2018 end-page: 164 ident: b0070 article-title: Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community publication-title: Agr. Ecosyst. Environ. – volume: 94 start-page: 10 year: 2016 end-page: 18 ident: b0145 article-title: The soil food web revisited: diverse and widespread mycophagous soil protists publication-title: Soil Biol. Biochem. – volume: 19 start-page: 21 year: 2010 end-page: 31 ident: b0330 article-title: Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water publication-title: Mol. Ecol. – reference: Xiong, W., Jousset, A., Li, R., Delgado-Baquerizo, M., Bahram, M., Logares, R., Wilden, B., de Groot, G.A., Amacker, N., Kowalchuk, G.A., Shen, Q.R., Geisen, S., 2021. A global overview of the trophic structure within microbiomes across ecosystems. Environ. Int. 151, 106438. – volume: 13 start-page: 1722 year: 2019 end-page: 1736 ident: b0010 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: ISME J. – volume: 93 start-page: 491 year: 2006 end-page: 507 ident: b0035 article-title: Adaptive linear step-up procedures that control the false discovery rate publication-title: Biometrika – volume: 109 start-page: 145 year: 2017 end-page: 155 ident: b0195 article-title: Plant cultivars imprint the rhizosphere bacterial community composition and association networks publication-title: Soil Biol. Biochem. – volume: 8 start-page: 23 year: 2003 end-page: 74 ident: b0320 article-title: Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures publication-title: Methods Psychological Res. – volume: 155 start-page: 1 year: 2019 end-page: 44 ident: b0075 article-title: Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis publication-title: Adv. Agron. – year: 2000 ident: b0015 article-title: Soil and Agricultural Chemistry Analysis – reference: Li, M.H., Guo, J.J., Ren, T., Luo, G.W., Shen, Q.R., Lu, J.W., Guo, S.W., Ling, N., 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agr. Ecosyst. Environ. 319, 107550. – volume: 110 start-page: 988 year: 2013 end-page: 993 ident: b0310 article-title: Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 7387 year: 2016 end-page: 7396 ident: b0325 article-title: Root exudate cock-tails: the link between plant diversity and soil microorganisms? publication-title: Ecol. Evol. – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: b0050 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 2 start-page: 28 year: 2021 end-page: 37 ident: b0135 article-title: Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems publication-title: Nat. Food – volume: 15 start-page: e50961 year: 2013 ident: b0025 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: JoVE-J Vis Exp. – volume: 7 start-page: 10541 year: 2016 ident: b0085 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nat. Commun. – volume: 2 start-page: 284 year: 2020 end-page: 293 ident: b0040 article-title: Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in north America publication-title: One Earth – volume: 10 start-page: 996 year: 2013 end-page: 998 ident: b0110 article-title: Uparse: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods – volume: 546 start-page: 65 year: 2017 end-page: 72 ident: b0185 article-title: Linking the influence and dependence of people on biodiversity across scales publication-title: Nature – volume: 6 start-page: 6707 year: 2015 ident: b0220 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nat. Commun. – volume: 58 start-page: 403 year: 2022 end-page: 419 ident: b0415 article-title: Long-term sod-based rotation promotes beneficial root microbiomes and increases crop productivity publication-title: Biol. Fert. Soils – volume: 12 start-page: 634 year: 2018 end-page: 638 ident: b0385 article-title: Soil protist communities form a dynamic hub in the soil microbiome publication-title: ISME J. – volume: 95 start-page: 447 year: 2015 end-page: 454 ident: b0095 article-title: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations publication-title: J. Sci. Food Agr. – volume: 67 start-page: 426 year: 2021 end-page: 434 ident: b0180 article-title: Dramatic changes in bacterial co-occurrence patterns and keystone taxa responses to cropping systems in mollisols of northeast China publication-title: Arch. Agron. Soil Sci. – volume: 4 start-page: 210 year: 2020 end-page: 220 ident: b0090 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nat. Ecol. Evol. – reference: Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. – volume: 31 start-page: 440 year: 2016 end-page: 452 ident: b0030 article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability publication-title: Trends Ecol. Evol. – volume: 37 start-page: 112 year: 2013 end-page: 129 ident: b0155 article-title: Insights into the resistance and resilience of the soil microbial community publication-title: FEMS Microbiol. Rev. – reference: Nazaries, L., Singh, B.P., Sarker, J.R., Fang, Y.Y., Klein, M., Singh, B.K., 2021.The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agr. Ecosyst. Environ. 307, 107206. – volume: 44 start-page: 281 year: 1970 end-page: 290 ident: b0365 article-title: Fallowing, crop rotation and crop yields in Roman times publication-title: Agric. Hist. – reference: Zhang, K.L, Maltais-Landry, G., Liao, H.L., 2021. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 156, 108219. – volume: 5 start-page: 111 year: 2014 end-page: 124 ident: b0045 article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions publication-title: Methods Ecol. Evol. – volume: 240 start-page: 206 year: 2017 end-page: 214 ident: b0005 article-title: Increasing the frequency of pulses in crop rotations reduces soil fungal diversity and increases the proportion of fungal pathotrophs in a semiarid agroecosystem publication-title: Agr. Ecosyst. Environ. – volume: 96 start-page: 1463 year: 1999 end-page: 1468 ident: b0395 article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 761 year: 2015 end-page: 771 ident: b0335 article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem publication-title: Ecol. Lett. – volume: 10 start-page: 4841 year: 2019 ident: b0350 article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning publication-title: Nat. Commun. – volume: 27 start-page: 4697 year: 2021 end-page: 4710 ident: b0020 article-title: Positive but variable effects of crop diversification on biodiversity and ecosystem services publication-title: Global Change Biol. – volume: 309 start-page: 570 year: 2005 end-page: 574 ident: b0130 article-title: Global consequences of land use publication-title: Science – volume: 111 start-page: 5266 year: 2014 end-page: 5270 ident: b0345 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality publication-title: Proc. Natl. Acad. Sci. USA – volume: 448 start-page: 265 year: 2020 end-page: 276 ident: b0360 article-title: High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland publication-title: Plant Soil – volume: 110 start-page: 14296 year: 2013 end-page: 14301 ident: b0080 article-title: Soil food web properties explain ecosystem services across European land use systems publication-title: P. Natl. Acad. Sci. USA – volume: 65 start-page: 86 year: 2013 end-page: 95 ident: b0275 article-title: Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem publication-title: Soil Biol. Biochem. – volume: 32 start-page: 1103 year: 2018 end-page: 1116 ident: b0240 article-title: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management publication-title: Funct. Ecol. – start-page: 315 year: 1990 end-page: 322 ident: b0370 article-title: Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics – volume: 7 start-page: 41911 year: 2017 ident: b0375 article-title: Cover crops support ecological intensification of arable cropping systems publication-title: Sci. Rep. – volume: 47 start-page: 259 year: 2019 end-page: 264 ident: b0285 article-title: The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications publication-title: Nucleic Acids Res. – reference: Chen, Y.L., Liu, F.T., Kang, L.Y., Zhang, D.Y., Kou, D., Mao, C., Qin, S.Q., Zhang, Q.W., Yang, Y.H., 2020. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biol. 27, 3218–3229. – reference: Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2015. Vegan: community ecology package. R package version 2.6-2. – volume: 42 start-page: 293 year: 2018 end-page: 323 ident: b0150 article-title: Soil protists: a fertile frontier in soil biology research publication-title: FEMS Microbiol. Rev. – volume: 78 start-page: 243 year: 2014 end-page: 254 ident: b0255 article-title: Crop rotation complexity regulates the decomposition of high and low quality residues publication-title: Soil Biol. Biochem. – volume: 100 start-page: e02634 year: 2019 ident: b0425 article-title: Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity publication-title: Ecology – volume: 33 start-page: 549 year: 2018 end-page: 564 ident: b0265 article-title: β-Diversity, community assembly, and ecosystem functioning publication-title: Trends Ecol. Evol. – volume: 106 start-page: 3041 year: 2009 end-page: 3046 ident: b0210 article-title: Reducing environmental risk by improving N management in intensive Chinese agricultural systems publication-title: Proc. Natl. Acad. Sci. USA – reference: Jiao, S., Lu, Y.H., Wei, G.H, 2021. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biol. 28, 140-153. – volume: 108 start-page: 4516 year: 2011 end-page: 4522 ident: b0055 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 1 year: 2022 ident: b0315 article-title: Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity publication-title: Environ. Microbiome – volume: 42 start-page: 2111 year: 2010 end-page: 2118 ident: b0405 article-title: Members of soil bacterial communities sensitive to tillage and crop rotation publication-title: Soil Biol. Biochem. – volume: 10 start-page: 1891 year: 2016 end-page: 1901 ident: b0245 article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China publication-title: ISME J. – volume: 41 start-page: 590 year: 2013 end-page: 596 ident: b0300 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. – volume: 2 start-page: 269 year: 2018 end-page: 278 ident: b0115 article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems publication-title: Nat. Ecol. Evol. – volume: 82 start-page: 1 year: 2017 end-page: 26 ident: b0215 article-title: LmerTest package: tests in linear mixed effects models publication-title: J. Stat. Softw. – volume: 210 start-page: 1 year: 2015 end-page: 10 ident: b0140 article-title: Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems publication-title: Agric. Ecosyst. Environ. – reference: Jia, J.Y., Zhang, J.Z., Li, Y.Z., Koziol, L., Podzikowski, L., Delgado-Baquerizo, M., Wang, G.Z., Zhang, J.L., 2022. Relationships between soil biodiversity and multifunctionality in croplands depend on salinity and organic matter. Geoderma, 429, 116273. – reference: Linton, N.F., Machado, P.V.F., Deen, B., Wagner-Riddle, C., Dunfield, K.E., 2020. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem, 149, 107917. – volume: 571 start-page: 257 year: 2019 end-page: 260 ident: b0305 article-title: National food production stabilized by crop diversity publication-title: Nature – volume: 27 start-page: 674 year: 2022 end-page: 687 ident: b0060 article-title: Plant biodiversity promotes sustainable agriculture directly and via belowground effects publication-title: Trends Plant Sci. – reference: FAO, 1998. World reference base for soil resources. World Soil Resources Rep. 84 Rome. – volume: 15 start-page: 2474 year: 2021 end-page: 2489 ident: b0295 article-title: Erosion reduces soil microbial diversity, network complexity and multifunctionality publication-title: ISME J. – volume: 12 year: 2021 ident: b0400 article-title: Pulse frequency in crop rotations alters soil microbial community networks and the relative abundance of fungal plant pathogens publication-title: Front. Microbiol. – volume: 566 start-page: 949 year: 2016 end-page: 959 ident: b0125 article-title: Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment publication-title: Sci. Total Environ. – reference: Li, K.L., Zhang, H.Y., Li, X.L., Wang, C., Zhang, J.L., Jiang, R.F., Feng, G., Liu, X.J., Zuo, Y.M., Yuan, H.M., Zhang, C.C., Gai, J.P., Tian, J., 2021. Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agr. Ecosyst. Environ. 313, 107389. – volume: 86 year: 2020 ident: b0105 article-title: Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem publication-title: Appl. Environ. Microb. – reference: Harrell Jr., F.H., Dupont, C., 2017. Hmisc: Harrell Miscellaneous. R Package Version 4.0-3 Online Publication. – ident: 10.1016/j.geoderma.2023.116562_b0280 doi: 10.1016/j.agee.2020.107206 – volume: 10 start-page: 996 issue: 10 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0110 article-title: Uparse: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat. Methods doi: 10.1038/nmeth.2604 – volume: 12 year: 2021 ident: 10.1016/j.geoderma.2023.116562_b0400 article-title: Pulse frequency in crop rotations alters soil microbial community networks and the relative abundance of fungal plant pathogens publication-title: Front. Microbiol. – volume: 15 start-page: e50961 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0025 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: JoVE-J Vis Exp. – volume: 106 start-page: 3041 issue: 9 year: 2009 ident: 10.1016/j.geoderma.2023.116562_b0210 article-title: Reducing environmental risk by improving N management in intensive Chinese agricultural systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0813417106 – volume: 33 start-page: 549 issue: 7 year: 2018 ident: 10.1016/j.geoderma.2023.116562_b0265 article-title: β-Diversity, community assembly, and ecosystem functioning publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2018.04.012 – volume: 6 start-page: 18 issue: 1 year: 1992 ident: 10.1016/j.geoderma.2023.116562_b0355 article-title: Biodiversity and ecological redundancy publication-title: Conserv. Biol. doi: 10.1046/j.1523-1739.1992.610018.x – volume: 37 start-page: 112 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0155 article-title: Insights into the resistance and resilience of the soil microbial community publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2012.00343.x – volume: 111 start-page: 5266 issue: 14 year: 2014 ident: 10.1016/j.geoderma.2023.116562_b0345 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320054111 – volume: 94 start-page: 10 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0145 article-title: The soil food web revisited: diverse and widespread mycophagous soil protists publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.11.010 – volume: 2 start-page: 269 year: 2018 ident: 10.1016/j.geoderma.2023.116562_b0115 article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0415-0 – volume: 67 start-page: 426 issue: 3 year: 2021 ident: 10.1016/j.geoderma.2023.116562_b0180 article-title: Dramatic changes in bacterial co-occurrence patterns and keystone taxa responses to cropping systems in mollisols of northeast China publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2020.1726325 – ident: 10.1016/j.geoderma.2023.116562_b0250 doi: 10.1093/bioinformatics/btr507 – volume: 31 start-page: 440 issue: 6 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0030 article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2016.02.016 – volume: 93 start-page: 491 year: 2006 ident: 10.1016/j.geoderma.2023.116562_b0035 article-title: Adaptive linear step-up procedures that control the false discovery rate publication-title: Biometrika doi: 10.1093/biomet/93.3.491 – volume: 448 start-page: 265 issue: 1-2 year: 2020 ident: 10.1016/j.geoderma.2023.116562_b0360 article-title: High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland publication-title: Plant Soil doi: 10.1007/s11104-020-04430-6 – ident: 10.1016/j.geoderma.2023.116562_b0190 doi: 10.1016/j.geoderma.2022.116273 – volume: 44 start-page: 281 year: 1970 ident: 10.1016/j.geoderma.2023.116562_b0365 article-title: Fallowing, crop rotation and crop yields in Roman times publication-title: Agric. Hist. – volume: 110 start-page: 14296 issue: 35 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0080 article-title: Soil food web properties explain ecosystem services across European land use systems publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.1305198110 – volume: 96 start-page: 1463 issue: 4 year: 1999 ident: 10.1016/j.geoderma.2023.116562_b0395 article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.4.1463 – volume: 240 start-page: 206 year: 2017 ident: 10.1016/j.geoderma.2023.116562_b0005 article-title: Increasing the frequency of pulses in crop rotations reduces soil fungal diversity and increases the proportion of fungal pathotrophs in a semiarid agroecosystem publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2017.02.020 – volume: 42 start-page: 293 year: 2018 ident: 10.1016/j.geoderma.2023.116562_b0150 article-title: Soil protists: a fertile frontier in soil biology research publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuy006 – volume: 47 start-page: 259 year: 2019 ident: 10.1016/j.geoderma.2023.116562_b0285 article-title: The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1022 – ident: 10.1016/j.geoderma.2023.116562_b0175 doi: 10.2136/sssabookser5.2.c42 – volume: 109 start-page: 145 year: 2017 ident: 10.1016/j.geoderma.2023.116562_b0195 article-title: Plant cultivars imprint the rhizosphere bacterial community composition and association networks publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.02.010 – volume: 6 start-page: 6707 year: 2015 ident: 10.1016/j.geoderma.2023.116562_b0220 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nat. Commun. doi: 10.1038/ncomms7707 – volume: 27 start-page: 674 issue: 7 year: 2022 ident: 10.1016/j.geoderma.2023.116562_b0060 article-title: Plant biodiversity promotes sustainable agriculture directly and via belowground effects publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2022.02.003 – volume: 155 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2023.116562_b0075 article-title: Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis publication-title: Adv. Agron. doi: 10.1016/bs.agron.2019.01.001 – volume: 82 start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2023.116562_b0215 article-title: LmerTest package: tests in linear mixed effects models publication-title: J. Stat. Softw. doi: 10.18637/jss.v082.i13 – volume: 13 start-page: 1722 issue: 7 year: 2019 ident: 10.1016/j.geoderma.2023.116562_b0010 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: ISME J. doi: 10.1038/s41396-019-0383-2 – volume: 58 start-page: 883 issue: 8 year: 2022 ident: 10.1016/j.geoderma.2023.116562_b0420 article-title: Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation publication-title: Biol. Fert. Soils doi: 10.1007/s00374-022-01675-4 – year: 2000 ident: 10.1016/j.geoderma.2023.116562_b0015 – volume: 12 start-page: 634 issue: 2 year: 2018 ident: 10.1016/j.geoderma.2023.116562_b0385 article-title: Soil protist communities form a dynamic hub in the soil microbiome publication-title: ISME J. doi: 10.1038/ismej.2017.171 – volume: 546 start-page: 65 issue: 7656 year: 2017 ident: 10.1016/j.geoderma.2023.116562_b0185 article-title: Linking the influence and dependence of people on biodiversity across scales publication-title: Nature doi: 10.1038/nature22899 – volume: 5 start-page: 111 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2023.116562_b0045 article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12143 – volume: 7 start-page: 10541 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0085 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nat. Commun. doi: 10.1038/ncomms10541 – ident: 10.1016/j.geoderma.2023.116562_b0290 – ident: 10.1016/j.geoderma.2023.116562_b0390 doi: 10.1016/j.foreco.2019.117805 – volume: 32 start-page: 1103 issue: 4 year: 2018 ident: 10.1016/j.geoderma.2023.116562_b0240 article-title: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13039 – volume: 4 start-page: 210 year: 2020 ident: 10.1016/j.geoderma.2023.116562_b0090 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-1084-y – volume: 15 start-page: 2474 issue: 8 year: 2021 ident: 10.1016/j.geoderma.2023.116562_b0295 article-title: Erosion reduces soil microbial diversity, network complexity and multifunctionality publication-title: ISME J. doi: 10.1038/s41396-021-00913-1 – volume: 42 start-page: 2111 issue: 12 year: 2010 ident: 10.1016/j.geoderma.2023.116562_b0405 article-title: Members of soil bacterial communities sensitive to tillage and crop rotation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.08.006 – volume: 7 start-page: 41911 year: 2017 ident: 10.1016/j.geoderma.2023.116562_b0375 article-title: Cover crops support ecological intensification of arable cropping systems publication-title: Sci. Rep. doi: 10.1038/srep41911 – ident: 10.1016/j.geoderma.2023.116562_b0170 – volume: 110 start-page: 988 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0310 article-title: Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1220608110 – volume: 257 start-page: 159 year: 2018 ident: 10.1016/j.geoderma.2023.116562_b0070 article-title: Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2018.02.011 – ident: 10.1016/j.geoderma.2023.116562_b0235 doi: 10.1016/j.soilbio.2020.107917 – volume: 41 start-page: 590 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0300 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 100 start-page: e02634 year: 2019 ident: 10.1016/j.geoderma.2023.116562_b0425 article-title: Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity publication-title: Ecology doi: 10.1002/ecy.2634 – volume: 151 start-page: 264 issue: 3 year: 1998 ident: 10.1016/j.geoderma.2023.116562_b0100 article-title: The statistical inevitability of stability-diversity relationships in community ecology publication-title: Am. Soc. Nat. – volume: 571 start-page: 257 issue: 7764 year: 2019 ident: 10.1016/j.geoderma.2023.116562_b0305 article-title: National food production stabilized by crop diversity publication-title: Nature doi: 10.1038/s41586-019-1316-y – volume: 86 issue: 13 year: 2020 ident: 10.1016/j.geoderma.2023.116562_b0105 article-title: Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.00322-20 – volume: 17 start-page: 1 year: 2022 ident: 10.1016/j.geoderma.2023.116562_b0315 article-title: Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity publication-title: Environ. Microbiome doi: 10.1186/s40793-021-00396-9 – volume: 7 start-page: 335 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2023.116562_b0050 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – volume: 566 start-page: 949 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0125 article-title: Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.073 – volume: 18 start-page: 761 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2023.116562_b0335 article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem publication-title: Ecol. Lett. doi: 10.1111/ele.12453 – ident: 10.1016/j.geoderma.2023.116562_b0165 doi: 10.1016/j.soilbio.2021.108143 – volume: 10 start-page: 1891 issue: 8 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0245 article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China publication-title: ISME J. doi: 10.1038/ismej.2015.261 – start-page: 315 year: 1990 ident: 10.1016/j.geoderma.2023.116562_b0370 – volume: 108 start-page: 4516 issue: supplement_1 year: 2011 ident: 10.1016/j.geoderma.2023.116562_b0055 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1000080107 – volume: 6 start-page: 8159 year: 2015 ident: 10.1016/j.geoderma.2023.116562_b0205 article-title: The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate publication-title: Nat. Commun. doi: 10.1038/ncomms9159 – ident: 10.1016/j.geoderma.2023.116562_b0380 doi: 10.1016/j.envint.2021.106438 – volume: 8 start-page: 14349 year: 2017 ident: 10.1016/j.geoderma.2023.116562_b0270 article-title: Soil networks become more connected and take up more carbon as nature restoration progresses publication-title: Nat. Commun. doi: 10.1038/ncomms14349 – volume: 210 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2023.116562_b0140 article-title: Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.04.034 – volume: 2 start-page: 28 year: 2021 ident: 10.1016/j.geoderma.2023.116562_b0135 article-title: Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems publication-title: Nat. Food doi: 10.1038/s43016-020-00210-8 – volume: 78 start-page: 243 year: 2014 ident: 10.1016/j.geoderma.2023.116562_b0255 article-title: Crop rotation complexity regulates the decomposition of high and low quality residues publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.07.027 – volume: 19 start-page: 21 year: 2010 ident: 10.1016/j.geoderma.2023.116562_b0330 article-title: Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2009.04480.x – volume: 65 start-page: 86 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0275 article-title: Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.05.009 – volume: 8 start-page: 23 year: 2003 ident: 10.1016/j.geoderma.2023.116562_b0320 article-title: Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures publication-title: Methods Psychological Res. – ident: 10.1016/j.geoderma.2023.116562_b0410 doi: 10.1016/j.soilbio.2021.108219 – volume: 95 start-page: 447 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2023.116562_b0095 article-title: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations publication-title: J. Sci. Food Agr. doi: 10.1002/jsfa.6565 – volume: 6 start-page: 7387 issue: 20 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0325 article-title: Root exudate cock-tails: the link between plant diversity and soil microorganisms? publication-title: Ecol. Evol. doi: 10.1002/ece3.2454 – volume: 10 start-page: 4841 year: 2019 ident: 10.1016/j.geoderma.2023.116562_b0350 article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning publication-title: Nat. Commun. doi: 10.1038/s41467-019-12798-y – ident: 10.1016/j.geoderma.2023.116562_b0120 – volume: 41 start-page: 597 year: 2013 ident: 10.1016/j.geoderma.2023.116562_b0160 article-title: The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1160 – volume: 59 start-page: 215 issue: 4 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0340 article-title: The impact of crop rotation on soil microbial diversity: a meta-analysis publication-title: Pedobiologia doi: 10.1016/j.pedobi.2016.04.001 – ident: 10.1016/j.geoderma.2023.116562_b0225 doi: 10.1016/j.agee.2021.107550 – volume: 309 start-page: 570 issue: 5734 year: 2005 ident: 10.1016/j.geoderma.2023.116562_b0130 article-title: Global consequences of land use publication-title: Science doi: 10.1126/science.1111772 – volume: 27 start-page: 4697 issue: 19 year: 2021 ident: 10.1016/j.geoderma.2023.116562_b0020 article-title: Positive but variable effects of crop diversification on biodiversity and ecosystem services publication-title: Global Change Biol. doi: 10.1111/gcb.15747 – ident: 10.1016/j.geoderma.2023.116562_b0200 doi: 10.1111/gcb.15917 – volume: 58 start-page: 403 issue: 4 year: 2022 ident: 10.1016/j.geoderma.2023.116562_b0415 article-title: Long-term sod-based rotation promotes beneficial root microbiomes and increases crop productivity publication-title: Biol. Fert. Soils doi: 10.1007/s00374-022-01626-z – volume: 2 start-page: 284 issue: 3 year: 2020 ident: 10.1016/j.geoderma.2023.116562_b0040 article-title: Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in north America publication-title: One Earth doi: 10.1016/j.oneear.2020.02.007 – ident: 10.1016/j.geoderma.2023.116562_b0230 doi: 10.1016/j.agee.2021.107389 – volume: 19 start-page: 249 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2023.116562_b0260 article-title: Low multifunctional redundancy of soil fungal diversity at multiple scales publication-title: Ecol. Lett. doi: 10.1111/ele.12560 – ident: 10.1016/j.geoderma.2023.116562_b0065 doi: 10.1111/gcb.15487 |
SSID | ssj0017020 |
Score | 2.5941243 |
Snippet | •Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116562 |
SubjectTerms | Crop diversity index Management intensity Microbial community composition Microbial diversity Network complexity Soil multifunctionality |
Title | Crop rotational diversity enhances soil microbiome network complexity and multifunctionality |
URI | https://dx.doi.org/10.1016/j.geoderma.2023.116562 |
Volume | 436 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl47Za2adIex3BMxZ0c7CCUpkm0Y2tHN8GTf7v56pgg7OCpNOSV8vL6Psrv_R4A91JKlAjGvSDMVYHCMvVJZZh7COcZlgRxZKYovEzIeIqfZtGsBYZNL4yGVTrfb3268dZupe-02V8Vhe7x9Qk19CGmQ1P7YYyptvLe9xbm4VPkqBl94undO13Cc3VGeuCY4R8Kwp5hogn-DlA7QWd0Ao5dtggH9oVOQUuUZ-Bo8F47xgxxDt6GdbWCdbVxf_Ugb5AWUJQf-kzXcF0VC7gsLOfSUsDSYr-hwZOLL703Kzk04EId6OyT1PIFmI4eXodjz41M8PKQoI0XZSpC5zxmugyjScCxH8eSYhFJgnlOAsRkgjiNib5KonbmLMaSMkSQiHl4CdplVYorABlXkV5QkUidZaGYIVWq4YjxkGRhxKIOiBo9pbnjE9djLRZpAxybp41-U63f1Oq3A_pbuZVl1NgrkTTHkP6yjVS5_T2y1_-QvQGH-s7C_W5Be1N_ijuVgmxY19hYFxwMHp_Hk64p5H8Ay5ffOQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na4MwFA-lPWw7jH2y7jOHXV1TjVGPpazY9ePUQg-DYEyyWVot1sH-_CUaSweDHnYSYp7Ie_G9l_h7vwfAs5QSBYJxy3ZitUFhkfqkIswthOMIS4I4KrsoTKYknOO3hbtogH5dC6Nhlcb3Vz699NZmpGO02dkkia7x7RKvpA8pKzSVH25pdiq3CVq94Sic7n4meMiwM3aJpQX2CoWXyky651hJQWQ7LyUZjf13jNqLO4MzcGoSRtir3ukcNER6AU56H7khzRCX4L2fZxuYZ4U52IO8BltAkX5qs27hNktWcJ1UtEtrAdMK_g1LSLn41nOjlMMSX6hjXfUkNXwF5oPXWT-0TNcEK3YIKiw3UkE65j7TOzEvsDnu-r70sHAlwTwmNmIyQNzzib5KombGzMfSY4gg4XPnGjTTLBU3ADKugr3wRCB1ooV8htRuDbuMOyRyXOa2gVvricaGUlx3tljRGju2pLV-qdYvrfTbBp2d3KYi1TgoEdRmoL-WB1We_4Ds7T9kn8BROJuM6Xg4Hd2BY32nQv_dg2aRf4kHlZEU7NGsuB81reD1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+rotational+diversity+enhances+soil+microbiome+network+complexity+and+multifunctionality&rft.jtitle=Geoderma&rft.au=Yang%2C+Xue&rft.au=Hu%2C+Hang-Wei&rft.au=Yang%2C+Gao-Wen&rft.au=Cui%2C+Zhen-Ling&rft.date=2023-08-01&rft.issn=0016-7061&rft.volume=436&rft.spage=116562&rft_id=info:doi/10.1016%2Fj.geoderma.2023.116562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2023_116562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |