Crop rotational diversity enhances soil microbiome network complexity and multifunctionality

•Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network complexity and multifunctionality.•Soil microbial network complexity had a stronger effect on multifunctionality than diversity. Although it is widel...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 436; p. 116562
Main Authors Yang, Xue, Hu, Hang-Wei, Yang, Gao-Wen, Cui, Zhen-Ling, Chen, Yong-Liang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2023.116562

Cover

Loading…
Abstract •Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network complexity and multifunctionality.•Soil microbial network complexity had a stronger effect on multifunctionality than diversity. Although it is widely accepted that crop rotations can alleviate the adverse effects of agricultural intensification on ecosystem functioning, the influence of rotational diversification on soil microbial diversity, network complexity, and their associations with multifunctionality remains unclear. Here, we used a 16-year field experiment to assess the effect of six cropping regimes, and their respective crop diversity index (CDI, i.e., the number of crop species in a rotation multiplied by the species per year) and management intensity (MI, i.e., the anthropogenic inputs including fertilizer use, pesticide use and fuel consumption across a 2-year cycle), on soil microbial community (bacteria, fungi and protists) and soil multifunctionality. We used 20 soil functions related to soil properties, soil basal respiration, soil enzymatic activities and soil nitrogen cycling potential to characterize soil multifunctionality. Diversified crop rotation was shown to enhance soil multifunctionality. Also, soil multifunctionality and microbial diversity increased with CDI, but were negatively correlated or had a hump-shaped relationship with MI. With the increase in CDI, microbiome network nodes, edges and degree increased, but betweenness and average path length decreased. An increase in MI was found to have a hump-shaped relationship with the topological properties of the network. Soil microbiome network complexity had a stronger effect on multifunctionality than microbiome diversity and community composition. This study illustrates that more diverse rotations under intermediate MI promoted soil multifunctionality, and highlights the crucial role of network complexity in maintaining soil functions.
AbstractList •Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network complexity and multifunctionality.•Soil microbial network complexity had a stronger effect on multifunctionality than diversity. Although it is widely accepted that crop rotations can alleviate the adverse effects of agricultural intensification on ecosystem functioning, the influence of rotational diversification on soil microbial diversity, network complexity, and their associations with multifunctionality remains unclear. Here, we used a 16-year field experiment to assess the effect of six cropping regimes, and their respective crop diversity index (CDI, i.e., the number of crop species in a rotation multiplied by the species per year) and management intensity (MI, i.e., the anthropogenic inputs including fertilizer use, pesticide use and fuel consumption across a 2-year cycle), on soil microbial community (bacteria, fungi and protists) and soil multifunctionality. We used 20 soil functions related to soil properties, soil basal respiration, soil enzymatic activities and soil nitrogen cycling potential to characterize soil multifunctionality. Diversified crop rotation was shown to enhance soil multifunctionality. Also, soil multifunctionality and microbial diversity increased with CDI, but were negatively correlated or had a hump-shaped relationship with MI. With the increase in CDI, microbiome network nodes, edges and degree increased, but betweenness and average path length decreased. An increase in MI was found to have a hump-shaped relationship with the topological properties of the network. Soil microbiome network complexity had a stronger effect on multifunctionality than microbiome diversity and community composition. This study illustrates that more diverse rotations under intermediate MI promoted soil multifunctionality, and highlights the crucial role of network complexity in maintaining soil functions.
ArticleNumber 116562
Author Cui, Zhen-Ling
Hu, Hang-Wei
Yang, Xue
Yang, Gao-Wen
Chen, Yong-Liang
Author_xml – sequence: 1
  givenname: Xue
  surname: Yang
  fullname: Yang, Xue
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
– sequence: 2
  givenname: Hang-Wei
  surname: Hu
  fullname: Hu, Hang-Wei
  organization: School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
– sequence: 3
  givenname: Gao-Wen
  surname: Yang
  fullname: Yang, Gao-Wen
  organization: College of Grassland Science & Technology, Department of Grassland Science, Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
– sequence: 4
  givenname: Zhen-Ling
  surname: Cui
  fullname: Cui, Zhen-Ling
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
– sequence: 5
  givenname: Yong-Liang
  surname: Chen
  fullname: Chen, Yong-Liang
  email: ylchen@cau.edu.cn
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
BookMark eNqFkF9LwzAUxYNMcJt-BekXaE2yNunAB2X4Dwa-6JsQ0uRGM9tkJN10396U6osvezrcyzmHe38zNHHeAUKXBBcEE3a1Kd7BawidLCimi4IQVjF6gqak5jRntFpO0BQnZ84xI2doFuMmjRxTPEVvq-C3WfC97K13ss203UOItj9k4D6kUxCz6G2bdVYF31jfQeag__LhM1O-27bwPXil01m3a3trdk6NTWl9jk6NbCNc_Oocvd7fvawe8_Xzw9Pqdp2rBcN9XklaYqXrhiwJ50uqS1LXhpdQGVZqxShuzBJrXrNBDUtO1dSl4Q1mGGq9mCM29qYTYwxgxDbYToaDIFgMjMRG_DESAyMxMkrB639BZUcSfZC2PR6_GeOQnttbCCIqC4mZtgFUL7S3xyp-ANkRjHE
CitedBy_id crossref_primary_10_1016_j_bcab_2024_103433
crossref_primary_10_1016_j_agee_2025_109537
crossref_primary_10_1007_s11104_023_06412_w
crossref_primary_10_3390_agronomy13122984
crossref_primary_10_1016_j_agee_2024_109370
crossref_primary_10_1111_mec_17238
crossref_primary_10_1016_j_agee_2025_109497
crossref_primary_10_1016_j_apsoil_2024_105805
crossref_primary_10_1016_j_apsoil_2024_105827
crossref_primary_10_1186_s40793_024_00636_8
crossref_primary_10_3390_app14188411
crossref_primary_10_1016_j_scitotenv_2025_178563
crossref_primary_10_1134_S1064229323602640
crossref_primary_10_1002_ece3_70164
crossref_primary_10_1016_j_jenvman_2025_124731
crossref_primary_10_1016_j_catena_2024_108582
crossref_primary_10_1186_s40793_024_00571_8
crossref_primary_10_1016_j_scitotenv_2024_172724
crossref_primary_10_1002_ldr_5330
crossref_primary_10_3390_agronomy14061154
crossref_primary_10_1016_j_still_2024_106174
crossref_primary_10_1111_nph_19310
crossref_primary_10_1016_j_scitotenv_2024_175336
crossref_primary_10_1016_j_scitotenv_2024_170881
crossref_primary_10_1016_j_apsoil_2024_105758
crossref_primary_10_3390_agronomy14071456
crossref_primary_10_1016_j_apsoil_2024_105678
crossref_primary_10_3390_agronomy14040669
crossref_primary_10_1016_j_indcrop_2025_120575
crossref_primary_10_1016_j_micres_2025_128075
crossref_primary_10_1016_j_fcr_2024_109734
crossref_primary_10_1111_gcb_70041
crossref_primary_10_1002_agj2_21658
crossref_primary_10_1016_j_fcr_2025_109834
crossref_primary_10_1016_j_pedsph_2024_10_010
crossref_primary_10_1016_j_indcrop_2023_117980
crossref_primary_10_1016_j_scitotenv_2024_172954
crossref_primary_10_1186_s12866_024_03580_2
crossref_primary_10_3389_fagro_2024_1455448
Cites_doi 10.1016/j.agee.2020.107206
10.1038/nmeth.2604
10.1073/pnas.0813417106
10.1016/j.tree.2018.04.012
10.1046/j.1523-1739.1992.610018.x
10.1111/j.1574-6976.2012.00343.x
10.1073/pnas.1320054111
10.1016/j.soilbio.2015.11.010
10.1038/s41559-017-0415-0
10.1080/03650340.2020.1726325
10.1093/bioinformatics/btr507
10.1016/j.tree.2016.02.016
10.1093/biomet/93.3.491
10.1007/s11104-020-04430-6
10.1016/j.geoderma.2022.116273
10.1073/pnas.1305198110
10.1073/pnas.96.4.1463
10.1016/j.agee.2017.02.020
10.1093/femsre/fuy006
10.1093/nar/gky1022
10.2136/sssabookser5.2.c42
10.1016/j.soilbio.2017.02.010
10.1038/ncomms7707
10.1016/j.tplants.2022.02.003
10.1016/bs.agron.2019.01.001
10.18637/jss.v082.i13
10.1038/s41396-019-0383-2
10.1007/s00374-022-01675-4
10.1038/ismej.2017.171
10.1038/nature22899
10.1111/2041-210X.12143
10.1038/ncomms10541
10.1016/j.foreco.2019.117805
10.1111/1365-2435.13039
10.1038/s41559-019-1084-y
10.1038/s41396-021-00913-1
10.1016/j.soilbio.2010.08.006
10.1038/srep41911
10.1073/pnas.1220608110
10.1016/j.agee.2018.02.011
10.1016/j.soilbio.2020.107917
10.1093/nar/gks1219
10.1002/ecy.2634
10.1038/s41586-019-1316-y
10.1128/AEM.00322-20
10.1186/s40793-021-00396-9
10.1038/nmeth.f.303
10.1016/j.scitotenv.2016.05.073
10.1111/ele.12453
10.1016/j.soilbio.2021.108143
10.1038/ismej.2015.261
10.1073/pnas.1000080107
10.1038/ncomms9159
10.1016/j.envint.2021.106438
10.1038/ncomms14349
10.1016/j.agee.2015.04.034
10.1038/s43016-020-00210-8
10.1016/j.soilbio.2014.07.027
10.1111/j.1365-294X.2009.04480.x
10.1016/j.soilbio.2013.05.009
10.1016/j.soilbio.2021.108219
10.1002/jsfa.6565
10.1002/ece3.2454
10.1038/s41467-019-12798-y
10.1093/nar/gks1160
10.1016/j.pedobi.2016.04.001
10.1016/j.agee.2021.107550
10.1126/science.1111772
10.1111/gcb.15747
10.1111/gcb.15917
10.1007/s00374-022-01626-z
10.1016/j.oneear.2020.02.007
10.1016/j.agee.2021.107389
10.1111/ele.12560
10.1111/gcb.15487
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.geoderma.2023.116562
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2023_116562
S0016706123002392
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c360t-5a240cd8b1917792d4188f74e5f64dc620bf90d786bf90f6d8bcb84f7b060e8d3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Jul 01 04:05:01 EDT 2025
Thu Apr 24 22:51:33 EDT 2025
Fri Feb 23 02:36:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microbial diversity
Crop diversity index
Microbial community composition
Soil multifunctionality
Management intensity
Network complexity
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-5a240cd8b1917792d4188f74e5f64dc620bf90d786bf90f6d8bcb84f7b060e8d3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706123002392
ParticipantIDs crossref_primary_10_1016_j_geoderma_2023_116562
crossref_citationtrail_10_1016_j_geoderma_2023_116562
elsevier_sciencedirect_doi_10_1016_j_geoderma_2023_116562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Byrnes, Gamfeldt, Isbell, Lefcheck, Griffin, Hector, Cardinale, Hooper, Dee, Emmett Duffy, Freckleton (b0045) 2014; 5
Xiong, W., Jousset, A., Li, R., Delgado-Baquerizo, M., Bahram, M., Logares, R., Wilden, B., de Groot, G.A., Amacker, N., Kowalchuk, G.A., Shen, Q.R., Geisen, S., 2021. A global overview of the trophic structure within microbiomes across ecosystems. Environ. Int. 151, 106438.
Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (b0055) 2011; 108
Du, Dini-Andreote, Zhang, Liang, Yao, Zhang, Zhang, Cann (b0105) 2020; 86
Gaudin, Janovicek, Deen, Hooker (b0140) 2015; 210
Chen, Y.L., Liu, F.T., Kang, L.Y., Zhang, D.Y., Kou, D., Mao, C., Qin, S.Q., Zhang, Q.W., Yang, Y.H., 2020. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biol. 27, 3218–3229.
Zhang, Maltais-Landry, James, Mendez, Wright, George, Liao (b0420) 2022; 58
Romdhane, Spor, Banerjee, Breuil, Bru, Chabbi, Hallin, van der Heijden, Saghai, Philippot (b0315) 2022; 17
Jia, J.Y., Zhang, J.Z., Li, Y.Z., Koziol, L., Podzikowski, L., Delgado-Baquerizo, M., Wang, G.Z., Zhang, J.L., 2022. Relationships between soil biodiversity and multifunctionality in croplands depend on salinity and organic matter. Geoderma, 429, 116273.
Stoeck, Bass, Nebel, Christen, Jones, Breiner, Richards (b0330) 2010; 19
White (b0365) 1970; 44
Xue, L., Ren, H.D., Brodribb, T.J., Wang, J., Yao, X.H., Li, S., 2020. Long term effects of management practice intensification on soil microbial community structure and cooccurrence network in a non-timber plantation. Forest Ecol. Manag. 459, 117805.
Han, S., Delgado-Baquerizo, M., Luo, X.S., Liu, Y.R., Nostrand, J.D.V., Chen, W.L., Zhou, J.Z., Huang, Q.Y., 2021. Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biol. Biochem. 154,108143.
Ma, Wang, Dsouza, Lou, He, Dai, Brookes, Xu, Gilbert (b0245) 2016; 10
de Graaff, Hornslein, Throop, Kardol, van Diepen (b0075) 2019; 155
Harrell Jr., F.H., Dupont, C., 2017. Hmisc: Harrell Miscellaneous. R Package Version 4.0-3 Online Publication.
Tiemann, Grandy, Atkinson, Marin‐Spiotta, McDaniel, Hooper (b0335) 2015; 18
Zhang, Maltais-Landry, George, Grabau, Small, Wright, Liao (b0415) 2022; 58
Doak, Bigger, Harding, Marvier, O'Malley, Thomson (b0100) 1998; 151
Bainarda, Navarro-Borrella, Hamelb, Brauna, Hansona, Gan (b0005) 2017; 240
Hart, S., Stark, J.M., Davidson, E., Firestone, M.K., 1994. Nitrogen mineralization, immobilization, and nitrification. In Methods of Soil Analysis, Part 2: Microbiological and biochemical Properties. Soil Science Society of America, Madison, pp. 985-1018.
Bao (b0015) 2000
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2015. Vegan: community ecology package. R package version 2.6-2.
Nazaries, L., Singh, B.P., Sarker, J.R., Fang, Y.Y., Klein, M., Singh, B.K., 2021.The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agr. Ecosyst. Environ. 307, 107206.
Xiong, Jousset, Guo, Karlsson, Zhao, Wu, Kowalchuk, Shen, Li, Geisen (b0385) 2018; 12
Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glockner (b0300) 2013; 41
Navarro-Noya, Gómez-Acata, Montoya-Ciriaco, Rojas-Valdez, Suárez-Arriaga, Valenzuela-Encinas, Jiménez-Bueno, Verhulst, Govaerts, Dendooven (b0275) 2013; 65
Jing, Sanders, Shi, Chu, Classen, Zhao, Chen, Shi, Jiang, He (b0205) 2015; 6
Zirbel, Grman, Bassett, Brudvig (b0425) 2019; 100
Mori, Isbell, Fujii, Makoto, Matsuoka, Osono, Casper (b0260) 2016; 19
Venter, Jacobs, Hawkins (b0340) 2016; 59
de Vries, Thébault, Liiri, Birkhofer, Tsiafouli, Bjørnlund, Bracht Jørgensen, Brady, Christensen, de Ruiter, d’Hertefeldt, Frouz, Hedlund, Hemerik, Hol, Hotes, Mortimer, Setälä, Sgardelis, Uteseny, van der Putten, Wolters, Bardgett (b0080) 2013; 110
Ju, Xing, Chen, Zhang, Zhang, Liu, Cui, Yin, Christie, Zhu, Zhang (b0210) 2009; 106
Steinauer, Chatzinotas, Eisenhauer (b0325) 2016; 6
Yin, Jones, Peterson, Garrett, Hulbert, Paulitz (b0405) 2010; 42
Nilsson, Larsson, Taylor, Bengtsson-Palme, Jeppesen, Schigel, Kennedy, Picard, Gloeckner, Tedersoo, Saar, Koljalg, Abarenkov (b0285) 2019; 47
Guillou, Bachar, Audic, Bass, Berney, Bittner, Boutte, Burgaud, de Vargas, Decelle, del Campo, Dolan, Dunthorn, Edvardsen, Holzmann, Kooistra, Lara, Le Bescot, Logares, Mahe, Massana, Montresor, Morard, Not, Pawlowski, Probert, Sauvadet, Siano, Stoeck, Vaulot, Zimmermann, Christen (b0160) 2013; 41
Griffiths, Philippot (b0155) 2013; 37
Cappelli, Domeignoz-Horta, Loaiza, Laine (b0060) 2022; 27
D’Acunto, Andrade, Poggio, Semmartin (b0070) 2018; 257
Delgado-Baquerizo, Reich, Trivedi, Eldridge, Abades, Alfaro, Bastida, Berhe, Cutler, Gallardo, Garcia-Velazquez, Hart, Hayes, He, Hseu, Hu, Kirchmair, Neuhauser, Perez, Reed, Santos, Sullivan, Trivedi, Wang, Weber-Grullon, Williams, Singh (b0090) 2020; 4
Geisen, Mitchell, Adl, Bonkowski, Dunthorn, Ekelund, Fernandez, Jousset, Krashevska, Singer, Spiegel, Walochnik, Lara (b0150) 2018; 42
Rodrigues, Pellizari, Mueller, Baek, Jesus, Paula, Mirza, Hamaoui, Tsai, Feigl, Tiedje, Bohannan, Nüsslein (b0310) 2013; 110
Edgar (b0110) 2013; 10
Qiu, Zhang, Zhu, Reich, Banerjee, van der Heijden, Sadowsky, Ishii, Jia, Shao, Liu, Jiao, Li, Wei (b0295) 2021; 15
Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963.
Banerjee, Walder, Büchi, Meyer, Held, Gattinger, Keller, Charles, van der Heijden (b0010) 2019; 13
Walker (b0355) 1992; 6
Benjamini, Krieger, Yekutieli (b0035) 2006; 93
Li, M.H., Guo, J.J., Ren, T., Luo, G.W., Shen, Q.R., Lu, J.W., Guo, S.W., Ling, N., 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agr. Ecosyst. Environ. 319, 107550.
Isbell, Gonzalez, Loreau, Cowles, Díaz, Hector, Mace, Wardle, O'Connor, Duffy, Turnbull, Thompson, Larigauderie (b0185) 2017; 546
Linton, N.F., Machado, P.V.F., Deen, B., Wagner-Riddle, C., Dunfield, K.E., 2020. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem, 149, 107917.
Bender, Wagg, van der Heijden (b0030) 2016; 31
Wang, Li, Wang, Liu, Cheng, Zhang, Baoyin, Bardgett (b0360) 2020; 448
Hu, Liu, Wang, Yu, Yao, Jin, Liu, Wang (b0180) 2021; 67
Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (b0025) 2013; 15
Dias, Dukes, Antunes (b0095) 2015; 95
Beillouin, Ben‐Ari, Malézieux, Seufert, Makowski (b0020) 2021; 27
Foley, DeFries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (b0130) 2005; 309
Zhang, K.L, Maltais-Landry, G., Liao, H.L., 2021. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 156, 108219.
Delgado-Baquerizo, Maestre, Reich, Jeffries, Gaitan, Encinar, Berdugo, Campbell, Singh (b0085) 2016; 7
Wagg, Schlaeppi, Banerjee, Kuramae, van der Heijden (b0350) 2019; 10
Fernandez, Sheaffer, Wyse, Staley, Gould, Sadowsky (b0125) 2016; 566
Lange, Eisenhauer, Sierra, Bessler, Engels, Griffiths, Mellado-Vazquez, Malik, Roy, Scheu, Steinbeiss, Thomson, Trumbore, Gleixner (b0220) 2015; 6
Luo, Rensing, Chen, Liu, Wang, Guo, Ling, Shen, Briones (b0240) 2018; 32
Li, K.L., Zhang, H.Y., Li, X.L., Wang, C., Zhang, J.L., Jiang, R.F., Feng, G., Liu, X.J., Zuo, Y.M., Yuan, H.M., Zhang, C.C., Gai, J.P., Tian, J., 2021. Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agr. Ecosyst. Environ. 313, 107389.
Schermelleh-Engel, Helfried, Hans (b0320) 2003; 8
Yang, Evans, Bainard (b0400) 2021; 12
Fanin, Gundale, Farrell, Ciobanu, Baldock, Nilsson, Kardol, Wardle (b0115) 2018; 2
Wagg, Bender, Widmer, van der Heijden (b0345) 2014; 111
Kuznetsova, Brockhoff, Christensen (b0215) 2017; 82
Jiao, S., Lu, Y.H., Wei, G.H, 2021. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biol. 28, 140-153.
Yachi, Loreau (b0395) 1999; 96
FAO, 1998. World reference base for soil resources. World Soil Resources Rep. 84 Rome.
Garland, Edlinger, Banerjee, Degrune, Garcia-Palacios, Pescador, Herzog, Romdhane, Saghai, Spor, Wagg, Hallin, Maestre, Philippot, Rillig, van der Heijden (b0135) 2021; 2
White, Bruns, Lee, Taylor (b0370) 1990
Morriën, Hannula, Snoek, Helmsing, Zweers, de Hollander, Soto, Bouffaud, Buee, Dimmers, Duyts, Geisen, Girlanda, Griffiths, Jorgensen, Jensen, Plassart, Redecker, Schmelz, Schmidt, Thomson, Tisserant, Uroz, Winding, Bailey, Bonkowski, Faber, Martin, Lemanceau, de Boer, van Veen, van der Putten (b0270) 2017; 8
Mori, Isbell, Seidl (b0265) 2018; 33
Bowles, Mooshammer, Socolar, Calderón, Cavigelli, Culman, Deen, Drury, Garcia y Garcia, Gaudin, Harkcom, Lehman, Osborne, Robertson, Salerno, Schmer, Strock, Grandy (b0040) 2020; 2
Wittwer, Dorn, Jossi, van der Heijden (b0375) 2017; 7
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Turnbaugh, Walters, Widmann, Yatsunenko, Zaneveld, Knight (b0050) 2010; 7
Jiang, Li, Li, Zhang, Liu, Lv, Zhu, Wu, Li (b0195) 2017; 109
Geisen, Koller, Hunninghaus, Dumack, Urich, Bonkowski (b0145) 2016; 94
McDaniel, Grandy, Tiemann, Weintraub (b0255) 2014; 78
Renard, Tilman (b0305) 2019; 571
Xiong (10.1016/j.geoderma.2023.116562_b0385) 2018; 12
Morriën (10.1016/j.geoderma.2023.116562_b0270) 2017; 8
Luo (10.1016/j.geoderma.2023.116562_b0240) 2018; 32
Romdhane (10.1016/j.geoderma.2023.116562_b0315) 2022; 17
Venter (10.1016/j.geoderma.2023.116562_b0340) 2016; 59
Wittwer (10.1016/j.geoderma.2023.116562_b0375) 2017; 7
10.1016/j.geoderma.2023.116562_b0190
10.1016/j.geoderma.2023.116562_b0390
Yang (10.1016/j.geoderma.2023.116562_b0400) 2021; 12
10.1016/j.geoderma.2023.116562_b0230
Griffiths (10.1016/j.geoderma.2023.116562_b0155) 2013; 37
10.1016/j.geoderma.2023.116562_b0235
Byrnes (10.1016/j.geoderma.2023.116562_b0045) 2014; 5
Hu (10.1016/j.geoderma.2023.116562_b0180) 2021; 67
Delgado-Baquerizo (10.1016/j.geoderma.2023.116562_b0090) 2020; 4
Foley (10.1016/j.geoderma.2023.116562_b0130) 2005; 309
Schermelleh-Engel (10.1016/j.geoderma.2023.116562_b0320) 2003; 8
Bell (10.1016/j.geoderma.2023.116562_b0025) 2013; 15
Renard (10.1016/j.geoderma.2023.116562_b0305) 2019; 571
Zhang (10.1016/j.geoderma.2023.116562_b0420) 2022; 58
Tiemann (10.1016/j.geoderma.2023.116562_b0335) 2015; 18
Zirbel (10.1016/j.geoderma.2023.116562_b0425) 2019; 100
Wang (10.1016/j.geoderma.2023.116562_b0360) 2020; 448
Du (10.1016/j.geoderma.2023.116562_b0105) 2020; 86
Yachi (10.1016/j.geoderma.2023.116562_b0395) 1999; 96
10.1016/j.geoderma.2023.116562_b0280
Benjamini (10.1016/j.geoderma.2023.116562_b0035) 2006; 93
Mori (10.1016/j.geoderma.2023.116562_b0260) 2016; 19
D’Acunto (10.1016/j.geoderma.2023.116562_b0070) 2018; 257
Geisen (10.1016/j.geoderma.2023.116562_b0150) 2018; 42
10.1016/j.geoderma.2023.116562_b0165
10.1016/j.geoderma.2023.116562_b0120
Zhang (10.1016/j.geoderma.2023.116562_b0415) 2022; 58
Bao (10.1016/j.geoderma.2023.116562_b0015) 2000
10.1016/j.geoderma.2023.116562_b0200
Wagg (10.1016/j.geoderma.2023.116562_b0350) 2019; 10
Bainarda (10.1016/j.geoderma.2023.116562_b0005) 2017; 240
McDaniel (10.1016/j.geoderma.2023.116562_b0255) 2014; 78
Kuznetsova (10.1016/j.geoderma.2023.116562_b0215) 2017; 82
Caporaso (10.1016/j.geoderma.2023.116562_b0055) 2011; 108
Quast (10.1016/j.geoderma.2023.116562_b0300) 2013; 41
Jiang (10.1016/j.geoderma.2023.116562_b0195) 2017; 109
Bowles (10.1016/j.geoderma.2023.116562_b0040) 2020; 2
Banerjee (10.1016/j.geoderma.2023.116562_b0010) 2019; 13
10.1016/j.geoderma.2023.116562_b0170
10.1016/j.geoderma.2023.116562_b0290
de Vries (10.1016/j.geoderma.2023.116562_b0080) 2013; 110
Nilsson (10.1016/j.geoderma.2023.116562_b0285) 2019; 47
Caporaso (10.1016/j.geoderma.2023.116562_b0050) 2010; 7
Guillou (10.1016/j.geoderma.2023.116562_b0160) 2013; 41
10.1016/j.geoderma.2023.116562_b0250
Ma (10.1016/j.geoderma.2023.116562_b0245) 2016; 10
10.1016/j.geoderma.2023.116562_b0175
Garland (10.1016/j.geoderma.2023.116562_b0135) 2021; 2
Navarro-Noya (10.1016/j.geoderma.2023.116562_b0275) 2013; 65
10.1016/j.geoderma.2023.116562_b0410
Wagg (10.1016/j.geoderma.2023.116562_b0345) 2014; 111
White (10.1016/j.geoderma.2023.116562_b0370) 1990
Ju (10.1016/j.geoderma.2023.116562_b0210) 2009; 106
Mori (10.1016/j.geoderma.2023.116562_b0265) 2018; 33
Rodrigues (10.1016/j.geoderma.2023.116562_b0310) 2013; 110
Lange (10.1016/j.geoderma.2023.116562_b0220) 2015; 6
Dias (10.1016/j.geoderma.2023.116562_b0095) 2015; 95
Fanin (10.1016/j.geoderma.2023.116562_b0115) 2018; 2
White (10.1016/j.geoderma.2023.116562_b0365) 1970; 44
Walker (10.1016/j.geoderma.2023.116562_b0355) 1992; 6
Fernandez (10.1016/j.geoderma.2023.116562_b0125) 2016; 566
Qiu (10.1016/j.geoderma.2023.116562_b0295) 2021; 15
Geisen (10.1016/j.geoderma.2023.116562_b0145) 2016; 94
Isbell (10.1016/j.geoderma.2023.116562_b0185) 2017; 546
Gaudin (10.1016/j.geoderma.2023.116562_b0140) 2015; 210
Yin (10.1016/j.geoderma.2023.116562_b0405) 2010; 42
Delgado-Baquerizo (10.1016/j.geoderma.2023.116562_b0085) 2016; 7
Beillouin (10.1016/j.geoderma.2023.116562_b0020) 2021; 27
Steinauer (10.1016/j.geoderma.2023.116562_b0325) 2016; 6
10.1016/j.geoderma.2023.116562_b0380
Stoeck (10.1016/j.geoderma.2023.116562_b0330) 2010; 19
10.1016/j.geoderma.2023.116562_b0065
Cappelli (10.1016/j.geoderma.2023.116562_b0060) 2022; 27
Doak (10.1016/j.geoderma.2023.116562_b0100) 1998; 151
10.1016/j.geoderma.2023.116562_b0225
Jing (10.1016/j.geoderma.2023.116562_b0205) 2015; 6
Edgar (10.1016/j.geoderma.2023.116562_b0110) 2013; 10
Bender (10.1016/j.geoderma.2023.116562_b0030) 2016; 31
de Graaff (10.1016/j.geoderma.2023.116562_b0075) 2019; 155
References_xml – volume: 19
  start-page: 249
  year: 2016
  end-page: 259
  ident: b0260
  article-title: Low multifunctional redundancy of soil fungal diversity at multiple scales
  publication-title: Ecol. Lett.
– reference: Hart, S., Stark, J.M., Davidson, E., Firestone, M.K., 1994. Nitrogen mineralization, immobilization, and nitrification. In Methods of Soil Analysis, Part 2: Microbiological and biochemical Properties. Soil Science Society of America, Madison, pp. 985-1018.
– volume: 6
  start-page: 18
  year: 1992
  end-page: 23
  ident: b0355
  article-title: Biodiversity and ecological redundancy
  publication-title: Conserv. Biol.
– reference: Xue, L., Ren, H.D., Brodribb, T.J., Wang, J., Yao, X.H., Li, S., 2020. Long term effects of management practice intensification on soil microbial community structure and cooccurrence network in a non-timber plantation. Forest Ecol. Manag. 459, 117805.
– reference: Han, S., Delgado-Baquerizo, M., Luo, X.S., Liu, Y.R., Nostrand, J.D.V., Chen, W.L., Zhou, J.Z., Huang, Q.Y., 2021. Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biol. Biochem. 154,108143.
– volume: 151
  start-page: 264
  year: 1998
  end-page: 276
  ident: b0100
  article-title: The statistical inevitability of stability-diversity relationships in community ecology
  publication-title: Am. Soc. Nat.
– volume: 8
  start-page: 14349
  year: 2017
  ident: b0270
  article-title: Soil networks become more connected and take up more carbon as nature restoration progresses
  publication-title: Nat. Commun.
– volume: 59
  start-page: 215
  year: 2016
  end-page: 223
  ident: b0340
  article-title: The impact of crop rotation on soil microbial diversity: a meta-analysis
  publication-title: Pedobiologia
– volume: 41
  start-page: 597
  year: 2013
  end-page: 604
  ident: b0160
  article-title: The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 8159
  year: 2015
  ident: b0205
  article-title: The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate
  publication-title: Nat. Commun.
– volume: 58
  start-page: 883
  year: 2022
  end-page: 901
  ident: b0420
  article-title: Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation
  publication-title: Biol. Fert. Soils
– volume: 257
  start-page: 159
  year: 2018
  end-page: 164
  ident: b0070
  article-title: Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community
  publication-title: Agr. Ecosyst. Environ.
– volume: 94
  start-page: 10
  year: 2016
  end-page: 18
  ident: b0145
  article-title: The soil food web revisited: diverse and widespread mycophagous soil protists
  publication-title: Soil Biol. Biochem.
– volume: 19
  start-page: 21
  year: 2010
  end-page: 31
  ident: b0330
  article-title: Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water
  publication-title: Mol. Ecol.
– reference: Xiong, W., Jousset, A., Li, R., Delgado-Baquerizo, M., Bahram, M., Logares, R., Wilden, B., de Groot, G.A., Amacker, N., Kowalchuk, G.A., Shen, Q.R., Geisen, S., 2021. A global overview of the trophic structure within microbiomes across ecosystems. Environ. Int. 151, 106438.
– volume: 13
  start-page: 1722
  year: 2019
  end-page: 1736
  ident: b0010
  article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots
  publication-title: ISME J.
– volume: 93
  start-page: 491
  year: 2006
  end-page: 507
  ident: b0035
  article-title: Adaptive linear step-up procedures that control the false discovery rate
  publication-title: Biometrika
– volume: 109
  start-page: 145
  year: 2017
  end-page: 155
  ident: b0195
  article-title: Plant cultivars imprint the rhizosphere bacterial community composition and association networks
  publication-title: Soil Biol. Biochem.
– volume: 8
  start-page: 23
  year: 2003
  end-page: 74
  ident: b0320
  article-title: Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures
  publication-title: Methods Psychological Res.
– volume: 155
  start-page: 1
  year: 2019
  end-page: 44
  ident: b0075
  article-title: Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis
  publication-title: Adv. Agron.
– year: 2000
  ident: b0015
  article-title: Soil and Agricultural Chemistry Analysis
– reference: Li, M.H., Guo, J.J., Ren, T., Luo, G.W., Shen, Q.R., Lu, J.W., Guo, S.W., Ling, N., 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agr. Ecosyst. Environ. 319, 107550.
– volume: 110
  start-page: 988
  year: 2013
  end-page: 993
  ident: b0310
  article-title: Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 7387
  year: 2016
  end-page: 7396
  ident: b0325
  article-title: Root exudate cock-tails: the link between plant diversity and soil microorganisms?
  publication-title: Ecol. Evol.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: b0050
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– volume: 2
  start-page: 28
  year: 2021
  end-page: 37
  ident: b0135
  article-title: Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems
  publication-title: Nat. Food
– volume: 15
  start-page: e50961
  year: 2013
  ident: b0025
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: JoVE-J Vis Exp.
– volume: 7
  start-page: 10541
  year: 2016
  ident: b0085
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nat. Commun.
– volume: 2
  start-page: 284
  year: 2020
  end-page: 293
  ident: b0040
  article-title: Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in north America
  publication-title: One Earth
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  ident: b0110
  article-title: Uparse: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
– volume: 546
  start-page: 65
  year: 2017
  end-page: 72
  ident: b0185
  article-title: Linking the influence and dependence of people on biodiversity across scales
  publication-title: Nature
– volume: 6
  start-page: 6707
  year: 2015
  ident: b0220
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nat. Commun.
– volume: 58
  start-page: 403
  year: 2022
  end-page: 419
  ident: b0415
  article-title: Long-term sod-based rotation promotes beneficial root microbiomes and increases crop productivity
  publication-title: Biol. Fert. Soils
– volume: 12
  start-page: 634
  year: 2018
  end-page: 638
  ident: b0385
  article-title: Soil protist communities form a dynamic hub in the soil microbiome
  publication-title: ISME J.
– volume: 95
  start-page: 447
  year: 2015
  end-page: 454
  ident: b0095
  article-title: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations
  publication-title: J. Sci. Food Agr.
– volume: 67
  start-page: 426
  year: 2021
  end-page: 434
  ident: b0180
  article-title: Dramatic changes in bacterial co-occurrence patterns and keystone taxa responses to cropping systems in mollisols of northeast China
  publication-title: Arch. Agron. Soil Sci.
– volume: 4
  start-page: 210
  year: 2020
  end-page: 220
  ident: b0090
  article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes
  publication-title: Nat. Ecol. Evol.
– reference: Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963.
– volume: 31
  start-page: 440
  year: 2016
  end-page: 452
  ident: b0030
  article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability
  publication-title: Trends Ecol. Evol.
– volume: 37
  start-page: 112
  year: 2013
  end-page: 129
  ident: b0155
  article-title: Insights into the resistance and resilience of the soil microbial community
  publication-title: FEMS Microbiol. Rev.
– reference: Nazaries, L., Singh, B.P., Sarker, J.R., Fang, Y.Y., Klein, M., Singh, B.K., 2021.The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agr. Ecosyst. Environ. 307, 107206.
– volume: 44
  start-page: 281
  year: 1970
  end-page: 290
  ident: b0365
  article-title: Fallowing, crop rotation and crop yields in Roman times
  publication-title: Agric. Hist.
– reference: Zhang, K.L, Maltais-Landry, G., Liao, H.L., 2021. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 156, 108219.
– volume: 5
  start-page: 111
  year: 2014
  end-page: 124
  ident: b0045
  article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions
  publication-title: Methods Ecol. Evol.
– volume: 240
  start-page: 206
  year: 2017
  end-page: 214
  ident: b0005
  article-title: Increasing the frequency of pulses in crop rotations reduces soil fungal diversity and increases the proportion of fungal pathotrophs in a semiarid agroecosystem
  publication-title: Agr. Ecosyst. Environ.
– volume: 96
  start-page: 1463
  year: 1999
  end-page: 1468
  ident: b0395
  article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 761
  year: 2015
  end-page: 771
  ident: b0335
  article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem
  publication-title: Ecol. Lett.
– volume: 10
  start-page: 4841
  year: 2019
  ident: b0350
  article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning
  publication-title: Nat. Commun.
– volume: 27
  start-page: 4697
  year: 2021
  end-page: 4710
  ident: b0020
  article-title: Positive but variable effects of crop diversification on biodiversity and ecosystem services
  publication-title: Global Change Biol.
– volume: 309
  start-page: 570
  year: 2005
  end-page: 574
  ident: b0130
  article-title: Global consequences of land use
  publication-title: Science
– volume: 111
  start-page: 5266
  year: 2014
  end-page: 5270
  ident: b0345
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 448
  start-page: 265
  year: 2020
  end-page: 276
  ident: b0360
  article-title: High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland
  publication-title: Plant Soil
– volume: 110
  start-page: 14296
  year: 2013
  end-page: 14301
  ident: b0080
  article-title: Soil food web properties explain ecosystem services across European land use systems
  publication-title: P. Natl. Acad. Sci. USA
– volume: 65
  start-page: 86
  year: 2013
  end-page: 95
  ident: b0275
  article-title: Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 1103
  year: 2018
  end-page: 1116
  ident: b0240
  article-title: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management
  publication-title: Funct. Ecol.
– start-page: 315
  year: 1990
  end-page: 322
  ident: b0370
  article-title: Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics
– volume: 7
  start-page: 41911
  year: 2017
  ident: b0375
  article-title: Cover crops support ecological intensification of arable cropping systems
  publication-title: Sci. Rep.
– volume: 47
  start-page: 259
  year: 2019
  end-page: 264
  ident: b0285
  article-title: The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications
  publication-title: Nucleic Acids Res.
– reference: Chen, Y.L., Liu, F.T., Kang, L.Y., Zhang, D.Y., Kou, D., Mao, C., Qin, S.Q., Zhang, Q.W., Yang, Y.H., 2020. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biol. 27, 3218–3229.
– reference: Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2015. Vegan: community ecology package. R package version 2.6-2.
– volume: 42
  start-page: 293
  year: 2018
  end-page: 323
  ident: b0150
  article-title: Soil protists: a fertile frontier in soil biology research
  publication-title: FEMS Microbiol. Rev.
– volume: 78
  start-page: 243
  year: 2014
  end-page: 254
  ident: b0255
  article-title: Crop rotation complexity regulates the decomposition of high and low quality residues
  publication-title: Soil Biol. Biochem.
– volume: 100
  start-page: e02634
  year: 2019
  ident: b0425
  article-title: Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity
  publication-title: Ecology
– volume: 33
  start-page: 549
  year: 2018
  end-page: 564
  ident: b0265
  article-title: β-Diversity, community assembly, and ecosystem functioning
  publication-title: Trends Ecol. Evol.
– volume: 106
  start-page: 3041
  year: 2009
  end-page: 3046
  ident: b0210
  article-title: Reducing environmental risk by improving N management in intensive Chinese agricultural systems
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: Jiao, S., Lu, Y.H., Wei, G.H, 2021. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biol. 28, 140-153.
– volume: 108
  start-page: 4516
  year: 2011
  end-page: 4522
  ident: b0055
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 1
  year: 2022
  ident: b0315
  article-title: Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity
  publication-title: Environ. Microbiome
– volume: 42
  start-page: 2111
  year: 2010
  end-page: 2118
  ident: b0405
  article-title: Members of soil bacterial communities sensitive to tillage and crop rotation
  publication-title: Soil Biol. Biochem.
– volume: 10
  start-page: 1891
  year: 2016
  end-page: 1901
  ident: b0245
  article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China
  publication-title: ISME J.
– volume: 41
  start-page: 590
  year: 2013
  end-page: 596
  ident: b0300
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 269
  year: 2018
  end-page: 278
  ident: b0115
  article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems
  publication-title: Nat. Ecol. Evol.
– volume: 82
  start-page: 1
  year: 2017
  end-page: 26
  ident: b0215
  article-title: LmerTest package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
– volume: 210
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0140
  article-title: Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems
  publication-title: Agric. Ecosyst. Environ.
– reference: Jia, J.Y., Zhang, J.Z., Li, Y.Z., Koziol, L., Podzikowski, L., Delgado-Baquerizo, M., Wang, G.Z., Zhang, J.L., 2022. Relationships between soil biodiversity and multifunctionality in croplands depend on salinity and organic matter. Geoderma, 429, 116273.
– reference: Linton, N.F., Machado, P.V.F., Deen, B., Wagner-Riddle, C., Dunfield, K.E., 2020. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem, 149, 107917.
– volume: 571
  start-page: 257
  year: 2019
  end-page: 260
  ident: b0305
  article-title: National food production stabilized by crop diversity
  publication-title: Nature
– volume: 27
  start-page: 674
  year: 2022
  end-page: 687
  ident: b0060
  article-title: Plant biodiversity promotes sustainable agriculture directly and via belowground effects
  publication-title: Trends Plant Sci.
– reference: FAO, 1998. World reference base for soil resources. World Soil Resources Rep. 84 Rome.
– volume: 15
  start-page: 2474
  year: 2021
  end-page: 2489
  ident: b0295
  article-title: Erosion reduces soil microbial diversity, network complexity and multifunctionality
  publication-title: ISME J.
– volume: 12
  year: 2021
  ident: b0400
  article-title: Pulse frequency in crop rotations alters soil microbial community networks and the relative abundance of fungal plant pathogens
  publication-title: Front. Microbiol.
– volume: 566
  start-page: 949
  year: 2016
  end-page: 959
  ident: b0125
  article-title: Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment
  publication-title: Sci. Total Environ.
– reference: Li, K.L., Zhang, H.Y., Li, X.L., Wang, C., Zhang, J.L., Jiang, R.F., Feng, G., Liu, X.J., Zuo, Y.M., Yuan, H.M., Zhang, C.C., Gai, J.P., Tian, J., 2021. Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agr. Ecosyst. Environ. 313, 107389.
– volume: 86
  year: 2020
  ident: b0105
  article-title: Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem
  publication-title: Appl. Environ. Microb.
– reference: Harrell Jr., F.H., Dupont, C., 2017. Hmisc: Harrell Miscellaneous. R Package Version 4.0-3 Online Publication.
– ident: 10.1016/j.geoderma.2023.116562_b0280
  doi: 10.1016/j.agee.2020.107206
– volume: 10
  start-page: 996
  issue: 10
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0110
  article-title: Uparse: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 12
  year: 2021
  ident: 10.1016/j.geoderma.2023.116562_b0400
  article-title: Pulse frequency in crop rotations alters soil microbial community networks and the relative abundance of fungal plant pathogens
  publication-title: Front. Microbiol.
– volume: 15
  start-page: e50961
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0025
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: JoVE-J Vis Exp.
– volume: 106
  start-page: 3041
  issue: 9
  year: 2009
  ident: 10.1016/j.geoderma.2023.116562_b0210
  article-title: Reducing environmental risk by improving N management in intensive Chinese agricultural systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0813417106
– volume: 33
  start-page: 549
  issue: 7
  year: 2018
  ident: 10.1016/j.geoderma.2023.116562_b0265
  article-title: β-Diversity, community assembly, and ecosystem functioning
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2018.04.012
– volume: 6
  start-page: 18
  issue: 1
  year: 1992
  ident: 10.1016/j.geoderma.2023.116562_b0355
  article-title: Biodiversity and ecological redundancy
  publication-title: Conserv. Biol.
  doi: 10.1046/j.1523-1739.1992.610018.x
– volume: 37
  start-page: 112
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0155
  article-title: Insights into the resistance and resilience of the soil microbial community
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2012.00343.x
– volume: 111
  start-page: 5266
  issue: 14
  year: 2014
  ident: 10.1016/j.geoderma.2023.116562_b0345
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1320054111
– volume: 94
  start-page: 10
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0145
  article-title: The soil food web revisited: diverse and widespread mycophagous soil protists
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.11.010
– volume: 2
  start-page: 269
  year: 2018
  ident: 10.1016/j.geoderma.2023.116562_b0115
  article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0415-0
– volume: 67
  start-page: 426
  issue: 3
  year: 2021
  ident: 10.1016/j.geoderma.2023.116562_b0180
  article-title: Dramatic changes in bacterial co-occurrence patterns and keystone taxa responses to cropping systems in mollisols of northeast China
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2020.1726325
– ident: 10.1016/j.geoderma.2023.116562_b0250
  doi: 10.1093/bioinformatics/btr507
– volume: 31
  start-page: 440
  issue: 6
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0030
  article-title: An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2016.02.016
– volume: 93
  start-page: 491
  year: 2006
  ident: 10.1016/j.geoderma.2023.116562_b0035
  article-title: Adaptive linear step-up procedures that control the false discovery rate
  publication-title: Biometrika
  doi: 10.1093/biomet/93.3.491
– volume: 448
  start-page: 265
  issue: 1-2
  year: 2020
  ident: 10.1016/j.geoderma.2023.116562_b0360
  article-title: High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04430-6
– ident: 10.1016/j.geoderma.2023.116562_b0190
  doi: 10.1016/j.geoderma.2022.116273
– volume: 44
  start-page: 281
  year: 1970
  ident: 10.1016/j.geoderma.2023.116562_b0365
  article-title: Fallowing, crop rotation and crop yields in Roman times
  publication-title: Agric. Hist.
– volume: 110
  start-page: 14296
  issue: 35
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0080
  article-title: Soil food web properties explain ecosystem services across European land use systems
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305198110
– volume: 96
  start-page: 1463
  issue: 4
  year: 1999
  ident: 10.1016/j.geoderma.2023.116562_b0395
  article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.4.1463
– volume: 240
  start-page: 206
  year: 2017
  ident: 10.1016/j.geoderma.2023.116562_b0005
  article-title: Increasing the frequency of pulses in crop rotations reduces soil fungal diversity and increases the proportion of fungal pathotrophs in a semiarid agroecosystem
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.02.020
– volume: 42
  start-page: 293
  year: 2018
  ident: 10.1016/j.geoderma.2023.116562_b0150
  article-title: Soil protists: a fertile frontier in soil biology research
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuy006
– volume: 47
  start-page: 259
  year: 2019
  ident: 10.1016/j.geoderma.2023.116562_b0285
  article-title: The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1022
– ident: 10.1016/j.geoderma.2023.116562_b0175
  doi: 10.2136/sssabookser5.2.c42
– volume: 109
  start-page: 145
  year: 2017
  ident: 10.1016/j.geoderma.2023.116562_b0195
  article-title: Plant cultivars imprint the rhizosphere bacterial community composition and association networks
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.02.010
– volume: 6
  start-page: 6707
  year: 2015
  ident: 10.1016/j.geoderma.2023.116562_b0220
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7707
– volume: 27
  start-page: 674
  issue: 7
  year: 2022
  ident: 10.1016/j.geoderma.2023.116562_b0060
  article-title: Plant biodiversity promotes sustainable agriculture directly and via belowground effects
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2022.02.003
– volume: 155
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2023.116562_b0075
  article-title: Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2019.01.001
– volume: 82
  start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2023.116562_b0215
  article-title: LmerTest package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v082.i13
– volume: 13
  start-page: 1722
  issue: 7
  year: 2019
  ident: 10.1016/j.geoderma.2023.116562_b0010
  article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0383-2
– volume: 58
  start-page: 883
  issue: 8
  year: 2022
  ident: 10.1016/j.geoderma.2023.116562_b0420
  article-title: Absolute microbiome profiling highlights the links among microbial stability, soil health, and crop productivity under long-term sod-based rotation
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-022-01675-4
– year: 2000
  ident: 10.1016/j.geoderma.2023.116562_b0015
– volume: 12
  start-page: 634
  issue: 2
  year: 2018
  ident: 10.1016/j.geoderma.2023.116562_b0385
  article-title: Soil protist communities form a dynamic hub in the soil microbiome
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.171
– volume: 546
  start-page: 65
  issue: 7656
  year: 2017
  ident: 10.1016/j.geoderma.2023.116562_b0185
  article-title: Linking the influence and dependence of people on biodiversity across scales
  publication-title: Nature
  doi: 10.1038/nature22899
– volume: 5
  start-page: 111
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2023.116562_b0045
  article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12143
– volume: 7
  start-page: 10541
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0085
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10541
– ident: 10.1016/j.geoderma.2023.116562_b0290
– ident: 10.1016/j.geoderma.2023.116562_b0390
  doi: 10.1016/j.foreco.2019.117805
– volume: 32
  start-page: 1103
  issue: 4
  year: 2018
  ident: 10.1016/j.geoderma.2023.116562_b0240
  article-title: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13039
– volume: 4
  start-page: 210
  year: 2020
  ident: 10.1016/j.geoderma.2023.116562_b0090
  article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-1084-y
– volume: 15
  start-page: 2474
  issue: 8
  year: 2021
  ident: 10.1016/j.geoderma.2023.116562_b0295
  article-title: Erosion reduces soil microbial diversity, network complexity and multifunctionality
  publication-title: ISME J.
  doi: 10.1038/s41396-021-00913-1
– volume: 42
  start-page: 2111
  issue: 12
  year: 2010
  ident: 10.1016/j.geoderma.2023.116562_b0405
  article-title: Members of soil bacterial communities sensitive to tillage and crop rotation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.08.006
– volume: 7
  start-page: 41911
  year: 2017
  ident: 10.1016/j.geoderma.2023.116562_b0375
  article-title: Cover crops support ecological intensification of arable cropping systems
  publication-title: Sci. Rep.
  doi: 10.1038/srep41911
– ident: 10.1016/j.geoderma.2023.116562_b0170
– volume: 110
  start-page: 988
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0310
  article-title: Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1220608110
– volume: 257
  start-page: 159
  year: 2018
  ident: 10.1016/j.geoderma.2023.116562_b0070
  article-title: Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.02.011
– ident: 10.1016/j.geoderma.2023.116562_b0235
  doi: 10.1016/j.soilbio.2020.107917
– volume: 41
  start-page: 590
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0300
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 100
  start-page: e02634
  year: 2019
  ident: 10.1016/j.geoderma.2023.116562_b0425
  article-title: Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity
  publication-title: Ecology
  doi: 10.1002/ecy.2634
– volume: 151
  start-page: 264
  issue: 3
  year: 1998
  ident: 10.1016/j.geoderma.2023.116562_b0100
  article-title: The statistical inevitability of stability-diversity relationships in community ecology
  publication-title: Am. Soc. Nat.
– volume: 571
  start-page: 257
  issue: 7764
  year: 2019
  ident: 10.1016/j.geoderma.2023.116562_b0305
  article-title: National food production stabilized by crop diversity
  publication-title: Nature
  doi: 10.1038/s41586-019-1316-y
– volume: 86
  issue: 13
  year: 2020
  ident: 10.1016/j.geoderma.2023.116562_b0105
  article-title: Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.00322-20
– volume: 17
  start-page: 1
  year: 2022
  ident: 10.1016/j.geoderma.2023.116562_b0315
  article-title: Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity
  publication-title: Environ. Microbiome
  doi: 10.1186/s40793-021-00396-9
– volume: 7
  start-page: 335
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2023.116562_b0050
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 566
  start-page: 949
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0125
  article-title: Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.073
– volume: 18
  start-page: 761
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2023.116562_b0335
  article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12453
– ident: 10.1016/j.geoderma.2023.116562_b0165
  doi: 10.1016/j.soilbio.2021.108143
– volume: 10
  start-page: 1891
  issue: 8
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0245
  article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.261
– start-page: 315
  year: 1990
  ident: 10.1016/j.geoderma.2023.116562_b0370
– volume: 108
  start-page: 4516
  issue: supplement_1
  year: 2011
  ident: 10.1016/j.geoderma.2023.116562_b0055
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1000080107
– volume: 6
  start-page: 8159
  year: 2015
  ident: 10.1016/j.geoderma.2023.116562_b0205
  article-title: The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9159
– ident: 10.1016/j.geoderma.2023.116562_b0380
  doi: 10.1016/j.envint.2021.106438
– volume: 8
  start-page: 14349
  year: 2017
  ident: 10.1016/j.geoderma.2023.116562_b0270
  article-title: Soil networks become more connected and take up more carbon as nature restoration progresses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14349
– volume: 210
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2023.116562_b0140
  article-title: Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.04.034
– volume: 2
  start-page: 28
  year: 2021
  ident: 10.1016/j.geoderma.2023.116562_b0135
  article-title: Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems
  publication-title: Nat. Food
  doi: 10.1038/s43016-020-00210-8
– volume: 78
  start-page: 243
  year: 2014
  ident: 10.1016/j.geoderma.2023.116562_b0255
  article-title: Crop rotation complexity regulates the decomposition of high and low quality residues
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.07.027
– volume: 19
  start-page: 21
  year: 2010
  ident: 10.1016/j.geoderma.2023.116562_b0330
  article-title: Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2009.04480.x
– volume: 65
  start-page: 86
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0275
  article-title: Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.05.009
– volume: 8
  start-page: 23
  year: 2003
  ident: 10.1016/j.geoderma.2023.116562_b0320
  article-title: Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures
  publication-title: Methods Psychological Res.
– ident: 10.1016/j.geoderma.2023.116562_b0410
  doi: 10.1016/j.soilbio.2021.108219
– volume: 95
  start-page: 447
  issue: 3
  year: 2015
  ident: 10.1016/j.geoderma.2023.116562_b0095
  article-title: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations
  publication-title: J. Sci. Food Agr.
  doi: 10.1002/jsfa.6565
– volume: 6
  start-page: 7387
  issue: 20
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0325
  article-title: Root exudate cock-tails: the link between plant diversity and soil microorganisms?
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.2454
– volume: 10
  start-page: 4841
  year: 2019
  ident: 10.1016/j.geoderma.2023.116562_b0350
  article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12798-y
– ident: 10.1016/j.geoderma.2023.116562_b0120
– volume: 41
  start-page: 597
  year: 2013
  ident: 10.1016/j.geoderma.2023.116562_b0160
  article-title: The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1160
– volume: 59
  start-page: 215
  issue: 4
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0340
  article-title: The impact of crop rotation on soil microbial diversity: a meta-analysis
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2016.04.001
– ident: 10.1016/j.geoderma.2023.116562_b0225
  doi: 10.1016/j.agee.2021.107550
– volume: 309
  start-page: 570
  issue: 5734
  year: 2005
  ident: 10.1016/j.geoderma.2023.116562_b0130
  article-title: Global consequences of land use
  publication-title: Science
  doi: 10.1126/science.1111772
– volume: 27
  start-page: 4697
  issue: 19
  year: 2021
  ident: 10.1016/j.geoderma.2023.116562_b0020
  article-title: Positive but variable effects of crop diversification on biodiversity and ecosystem services
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.15747
– ident: 10.1016/j.geoderma.2023.116562_b0200
  doi: 10.1111/gcb.15917
– volume: 58
  start-page: 403
  issue: 4
  year: 2022
  ident: 10.1016/j.geoderma.2023.116562_b0415
  article-title: Long-term sod-based rotation promotes beneficial root microbiomes and increases crop productivity
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-022-01626-z
– volume: 2
  start-page: 284
  issue: 3
  year: 2020
  ident: 10.1016/j.geoderma.2023.116562_b0040
  article-title: Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in north America
  publication-title: One Earth
  doi: 10.1016/j.oneear.2020.02.007
– ident: 10.1016/j.geoderma.2023.116562_b0230
  doi: 10.1016/j.agee.2021.107389
– volume: 19
  start-page: 249
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2023.116562_b0260
  article-title: Low multifunctional redundancy of soil fungal diversity at multiple scales
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12560
– ident: 10.1016/j.geoderma.2023.116562_b0065
  doi: 10.1111/gcb.15487
SSID ssj0017020
Score 2.5941243
Snippet •Crop diversity promoted soil microbial network complexity and multifunctionality.•Intermediate management intensities promoted soil microbial network...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116562
SubjectTerms Crop diversity index
Management intensity
Microbial community composition
Microbial diversity
Network complexity
Soil multifunctionality
Title Crop rotational diversity enhances soil microbiome network complexity and multifunctionality
URI https://dx.doi.org/10.1016/j.geoderma.2023.116562
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl47Za2adIex3BMxZ0c7CCUpkm0Y2tHN8GTf7v56pgg7OCpNOSV8vL6Psrv_R4A91JKlAjGvSDMVYHCMvVJZZh7COcZlgRxZKYovEzIeIqfZtGsBYZNL4yGVTrfb3268dZupe-02V8Vhe7x9Qk19CGmQ1P7YYyptvLe9xbm4VPkqBl94undO13Cc3VGeuCY4R8Kwp5hogn-DlA7QWd0Ao5dtggH9oVOQUuUZ-Bo8F47xgxxDt6GdbWCdbVxf_Ugb5AWUJQf-kzXcF0VC7gsLOfSUsDSYr-hwZOLL703Kzk04EId6OyT1PIFmI4eXodjz41M8PKQoI0XZSpC5zxmugyjScCxH8eSYhFJgnlOAsRkgjiNib5KonbmLMaSMkSQiHl4CdplVYorABlXkV5QkUidZaGYIVWq4YjxkGRhxKIOiBo9pbnjE9djLRZpAxybp41-U63f1Oq3A_pbuZVl1NgrkTTHkP6yjVS5_T2y1_-QvQGH-s7C_W5Be1N_ijuVgmxY19hYFxwMHp_Hk64p5H8Ay5ffOQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na4MwFA-lPWw7jH2y7jOHXV1TjVGPpazY9ePUQg-DYEyyWVot1sH-_CUaSweDHnYSYp7Ie_G9l_h7vwfAs5QSBYJxy3ZitUFhkfqkIswthOMIS4I4KrsoTKYknOO3hbtogH5dC6Nhlcb3Vz699NZmpGO02dkkia7x7RKvpA8pKzSVH25pdiq3CVq94Sic7n4meMiwM3aJpQX2CoWXyky651hJQWQ7LyUZjf13jNqLO4MzcGoSRtir3ukcNER6AU56H7khzRCX4L2fZxuYZ4U52IO8BltAkX5qs27hNktWcJ1UtEtrAdMK_g1LSLn41nOjlMMSX6hjXfUkNXwF5oPXWT-0TNcEK3YIKiw3UkE65j7TOzEvsDnu-r70sHAlwTwmNmIyQNzzib5KombGzMfSY4gg4XPnGjTTLBU3ADKugr3wRCB1ooV8htRuDbuMOyRyXOa2gVvricaGUlx3tljRGju2pLV-qdYvrfTbBp2d3KYi1TgoEdRmoL-WB1We_4Ds7T9kn8BROJuM6Xg4Hd2BY32nQv_dg2aRf4kHlZEU7NGsuB81reD1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+rotational+diversity+enhances+soil+microbiome+network+complexity+and+multifunctionality&rft.jtitle=Geoderma&rft.au=Yang%2C+Xue&rft.au=Hu%2C+Hang-Wei&rft.au=Yang%2C+Gao-Wen&rft.au=Cui%2C+Zhen-Ling&rft.date=2023-08-01&rft.issn=0016-7061&rft.volume=436&rft.spage=116562&rft_id=info:doi/10.1016%2Fj.geoderma.2023.116562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2023_116562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon