A Novel Approach for Heartbeat Rate Estimation Using 3-D Lidar and Multibeam MIMO Doppler Radar
Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as Doppler sensors, the goal of these tasks is to detect subtle movements associated with heart movements. The detection is either used to recon...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 24; pp. 31259 - 31277 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as Doppler sensors, the goal of these tasks is to detect subtle movements associated with heart movements. The detection is either used to reconstruct the R-peaks, thus the heartbeat detection, or simply identify the HR. However, due to the nature of the faint movements of the chest caused by the heart beats, unless the person is still, such movements are overwhelmingly obscured by the motion of the person. That being the case, we are interested in this work in identifying such instances where the person is not in motion, in which case, we measure their heartbeats and HR. To do so, we use a combination of a 3-D light detection and ranging (LiDAR) and a multiple-input multiple-output (MIMO) Doppler Radar. The former's objective is to recognize when the person is still, in which case their position and distance from the sensors are reported. The latter's objective is to create a beam directed toward the person's detected chest and measure the reflected signal, for heartbeat detection, HR, or respiration rate (RR) estimation. Our experiments demonstrate that determining the subject's location and distance and identifying their chest position using LiDAR, then collecting the data accordingly using the Doppler radar leads to better HR detection and R-R intervals (RRIs) estimation. For five different scenarios, the RRI estimation error reaches values between 112 and 231 ms. |
---|---|
AbstractList | Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as Doppler sensors, the goal of these tasks is to detect subtle movements associated with heart movements. The detection is either used to reconstruct the R-peaks, thus the heartbeat detection, or simply identify the HR. However, due to the nature of the faint movements of the chest caused by the heart beats, unless the person is still, such movements are overwhelmingly obscured by the motion of the person. That being the case, we are interested in this work in identifying such instances where the person is not in motion, in which case, we measure their heartbeats and HR. To do so, we use a combination of a 3-D light detection and ranging (LiDAR) and a multiple-input multiple-output (MIMO) Doppler Radar. The former's objective is to recognize when the person is still, in which case their position and distance from the sensors are reported. The latter's objective is to create a beam directed toward the person's detected chest and measure the reflected signal, for heartbeat detection, HR, or respiration rate (RR) estimation. Our experiments demonstrate that determining the subject's location and distance and identifying their chest position using LiDAR, then collecting the data accordingly using the Doppler radar leads to better HR detection and R-R intervals (RRIs) estimation. For five different scenarios, the RRI estimation error reaches values between 112 and 231 ms. |
Author | Ohtsuki, Tomoaki Yamamoto, Kohei Endo, Koji Bouazizi, Mondher |
Author_xml | – sequence: 1 givenname: Mondher orcidid: 0000-0001-7055-9318 surname: Bouazizi fullname: Bouazizi, Mondher email: bouazizi@ohtsuki.ics.keio.ac.jp organization: Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan – sequence: 2 givenname: Kohei surname: Yamamoto fullname: Yamamoto, Kohei email: yamamoto@ohtsuki.ics.keio.ac.jp organization: Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan – sequence: 3 givenname: Koji surname: Endo fullname: Endo, Koji email: k.endo@ohtsuki.ics.keio.ac.jp organization: Graduate School of Science and Technology, Keio University, Yokohama, Japan – sequence: 4 givenname: Tomoaki orcidid: 0000-0003-3961-1426 surname: Ohtsuki fullname: Ohtsuki, Tomoaki email: ohtsuki@ics.keio.ac.jp organization: Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan |
BookMark | eNp9kD1PwzAQhi0EEm3hByAxWGJOsX1JHI8VLbSoHxJQic1ynAsEhSQ4LhL_noR2QAxMd8P73Kt7huS4qisk5IKzMedMXd8_ztZjwQSMAYCFUhyRAY-iJOAyTI77HVgQgnw-JcO2fWOMKxnJAdETuq4_saSTpnG1sa80rx2do3E-RePpg_FIZ60v3o0v6opu26J6oRBM6bLIjKOmyuhqV_qiS7_T1WK1odO6aUp0HdoFzshJbsoWzw9zRLa3s6ebebDc3C1uJsvAQsx8EMU5S1KIMhvnWZIbkXIpZcjBGsxNIlWKYGOGMglVJBJQwHhqFUhU1mYYw4hc7e92X3zssPX6rd65qqvUQjHBhUoi2aX4PmVd3bYOc9247jP3pTnTvUfde9S9R33w2DHyD2ML_yPDO1OU_5KXe7JAxF9NwGMRCfgGGMWApA |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3507365 crossref_primary_10_3390_s24216809 |
Cites_doi | 10.1007/s13246-011-0112-2 10.1109/RadarConf2043947.2020.9266600 10.1016/j.micpro.2022.104670 10.1109/CVPR.2017.143 10.1109/CVPR.2005.335 10.1109/ICCV.2017.144 10.1109/TPAMI.2019.2929257 10.1109/CVPR.2016.533 10.1088/1742-6596/2469/1/012026 10.1109/JSEN.2020.2991741 10.1063/1.4818974 10.1145/3478090 10.7554/eLife.47994 10.1109/TMTT.2016.2560159 10.1109/atc55345.2022.9943010 10.1109/TAP.2019.2893337 10.1109/TIM.2015.2479103 10.1109/CVPR.2017.142 10.1162/neco.2006.18.7.1527 10.1023/B:VISI.0000042934.15159.49 10.1109/CVPR.2013.82 10.1109/GLOBECOM46510.2021.9685174 10.3390/s21051774 10.1109/5.726791 10.1109/iccv.2005.48 10.23919/USNC-URSINRSM57467.2022.9881404 10.1109/EMBC.2017.8037598 10.3390/s21113588 10.1109/EMBC.2019.8857830 10.1109/ICASSP39728.2021.9413401 10.1109/TITB.2012.2204760 10.1109/ACCESS.2018.2875737 10.1109/CVPR.2006.212 10.3390/electronics11162505 10.1109/GLOCOM.2018.8647250 10.1109/CVPR.2013.391 10.1109/CVPR.2017.395 10.1109/RadarConf2351548.2023.10149752 10.1007/978-3-319-46466-4_3 10.1109/ICC45855.2022.9838339 10.1109/tbme.2015.2470077 10.1109/TBME.2013.2288319 10.1109/JSEN.2013.2238376 10.1109/ICC.2018.8422997 10.1145/3498361.3538926 10.1109/TMTT.2017.2721407 10.1007/978-3-030-01216-8_44 10.1109/CVPR.2018.00742 10.1109/ACCESS.2023.3272895 10.1109/TMTT.2017.2730182 10.1109/INFOCOM41043.2020.9155293 10.1109/ACCESS.2022.3190355 10.1109/ACCESS.2019.2921240 10.3390/s21082735 10.1109/TMTT.2013.2252186 10.1109/TMTT.2013.2256924 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3330472 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 31277 |
ExternalDocumentID | 10_1109_JSEN_2023_3330472 10316252 |
Genre | orig-research |
GrantInformation_xml | – fundername: Grants-in-Aid for Scientific Research (KAKENHI) grantid: YYH3Y07 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c360t-56f08b35dc6fd8fa2b1777413caefa879be3c60e784952839301bc937e9ccde63 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 08:29:39 EDT 2025 Tue Jul 01 04:27:21 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Aug 27 02:24:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-56f08b35dc6fd8fa2b1777413caefa879be3c60e784952839301bc937e9ccde63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3961-1426 0000-0001-7055-9318 |
PQID | 2902129857 |
PQPubID | 75733 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2023_3330472 proquest_journals_2902129857 crossref_citationtrail_10_1109_JSEN_2023_3330472 ieee_primary_10316252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref19 ref18 Szabo (ref57) 2004 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 (ref1) 2021 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 Krizhevsky (ref16); 25 ref21 ref28 ref27 ref29 Newell (ref59); 30 ref60 |
References_xml | – volume-title: Diagnostic Ultrasound Imaging: Inside Out year: 2004 ident: ref57 – ident: ref53 doi: 10.1007/s13246-011-0112-2 – ident: ref30 doi: 10.1109/RadarConf2043947.2020.9266600 – ident: ref42 doi: 10.1016/j.micpro.2022.104670 – ident: ref12 doi: 10.1109/CVPR.2017.143 – ident: ref18 doi: 10.1109/CVPR.2005.335 – ident: ref22 doi: 10.1109/ICCV.2017.144 – ident: ref11 doi: 10.1109/TPAMI.2019.2929257 – ident: ref28 doi: 10.1109/CVPR.2016.533 – ident: ref46 doi: 10.1088/1742-6596/2469/1/012026 – ident: ref29 doi: 10.1109/JSEN.2020.2991741 – ident: ref8 doi: 10.1063/1.4818974 – ident: ref55 doi: 10.1145/3478090 – ident: ref24 doi: 10.7554/eLife.47994 – ident: ref54 doi: 10.1109/TMTT.2016.2560159 – ident: ref41 doi: 10.1109/atc55345.2022.9943010 – ident: ref56 doi: 10.1109/TAP.2019.2893337 – ident: ref7 doi: 10.1109/TIM.2015.2479103 – ident: ref60 doi: 10.1109/CVPR.2017.142 – ident: ref15 doi: 10.1162/neco.2006.18.7.1527 – ident: ref17 doi: 10.1023/B:VISI.0000042934.15159.49 – ident: ref21 doi: 10.1109/CVPR.2013.82 – ident: ref10 doi: 10.1109/GLOBECOM46510.2021.9685174 – ident: ref48 doi: 10.3390/s21051774 – ident: ref14 doi: 10.1109/5.726791 – ident: ref19 doi: 10.1109/iccv.2005.48 – ident: ref40 doi: 10.23919/USNC-URSINRSM57467.2022.9881404 – volume-title: Statistical Handbook of Japan 2021, Japan Statistical Yearbook year: 2021 ident: ref1 – ident: ref50 doi: 10.1109/EMBC.2017.8037598 – ident: ref37 doi: 10.3390/s21113588 – ident: ref38 doi: 10.1109/EMBC.2019.8857830 – ident: ref5 doi: 10.1109/ICASSP39728.2021.9413401 – ident: ref6 doi: 10.1109/TITB.2012.2204760 – ident: ref35 doi: 10.1109/ACCESS.2018.2875737 – ident: ref25 doi: 10.1109/CVPR.2006.212 – ident: ref43 doi: 10.3390/electronics11162505 – ident: ref4 doi: 10.1109/GLOCOM.2018.8647250 – ident: ref20 doi: 10.1109/CVPR.2013.391 – ident: ref26 doi: 10.1109/CVPR.2017.395 – ident: ref47 doi: 10.1109/RadarConf2351548.2023.10149752 – ident: ref58 doi: 10.1007/978-3-319-46466-4_3 – ident: ref13 doi: 10.1109/ICC45855.2022.9838339 – ident: ref9 doi: 10.1109/tbme.2015.2470077 – ident: ref51 doi: 10.1109/TBME.2013.2288319 – ident: ref52 doi: 10.1109/JSEN.2013.2238376 – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref59 article-title: Associative embedding: End-to-end learning for joint detection and grouping – ident: ref39 doi: 10.1109/ICC.2018.8422997 – ident: ref31 doi: 10.1145/3498361.3538926 – ident: ref33 doi: 10.1109/TMTT.2017.2721407 – ident: ref23 doi: 10.1007/978-3-030-01216-8_44 – ident: ref27 doi: 10.1109/CVPR.2018.00742 – ident: ref45 doi: 10.1109/ACCESS.2023.3272895 – ident: ref34 doi: 10.1109/TMTT.2017.2730182 – ident: ref32 doi: 10.1109/INFOCOM41043.2020.9155293 – ident: ref44 doi: 10.1109/ACCESS.2022.3190355 – ident: ref36 doi: 10.1109/ACCESS.2019.2921240 – volume: 25 start-page: 1097 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: ImageNet classification with deep convolutional neural networks – ident: ref49 doi: 10.3390/s21082735 – ident: ref3 doi: 10.1109/TMTT.2013.2252186 – ident: ref2 doi: 10.1109/TMTT.2013.2256924 |
SSID | ssj0019757 |
Score | 2.408096 |
Snippet | Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31259 |
SubjectTerms | 3-D light detection and ranging (Lidar) Chest deep learning (DL) depth image Doppler radar Estimation Heart beat Heart rate heart rate (HR) estimation Laser radar Lidar MIMO communication Monitoring pose detection Radar detection Sensors |
Title | A Novel Approach for Heartbeat Rate Estimation Using 3-D Lidar and Multibeam MIMO Doppler Radar |
URI | https://ieeexplore.ieee.org/document/10316252 https://www.proquest.com/docview/2902129857 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swELYGLxsPsDHQOgryw56QEtw4seNHRIsKWosEQ-pb5NhngYB2Kukk-PWcHRfBJtDe8nAXWfpy5-9i33eE_MgkGNBZnnBhIclzJzCktE1ylVnuCmAWfL_zaCyGl_nppJjEZvXQCwMA4fIZpP4xnOXbmVn4X2UHfiQB8nXMuCtYubXNWs9HBkoGWU-MYJbkXE7iEWaPqYPTi8E49XPCU-7Ld5m92oTCVJV_UnHYX443yHi5svZayU26aOrUPP4l2vjfS_9M1iPTpIftp_GFfIDpJll7oT-4ST7GEehXD19JdUjHsz-ADlFlnCKdpUMMhKbGfE3PkZTSASaEtteRhrsGlCd9-vPa6jnVU0tDNy9a39HRyeiM9mdIcWGOrmiwRS6PB7-OhkmcvpAYLliTFMKxsuaFNcLZ0unMC1Uh_-BGg9OlVDVwIxjIEmssJCkKU0VtkO2AMsaC4NtkdTqbwjdCa9wGWSmdRymH3KlCg5Gldj3BbObqDmFLOCoTpcn9hIzbKpQoTFUewcojWEUEO2T_2eV3q8vxnvGWR-SFYQtGh3SXoFcxdO-rTHnVe1UW8vsbbjvkk3-7v9TSK7pktZkvYBepSVPvhU_yCboS3TE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcigceJRWBAr4ABek3Tr2vnzgUJFUSZsECVopt8VrjwUCEpRuQOW_8Ff62zr2bqICglslbnuY2Yf97czYnvkG4LnI0aAWSSQzi1GSuIx-KW2jRAkrXYrcoq93Hk-ywWlyNE2nG_BzXQuDiCH5DGN_Gc7y7dws_VbZvm9JQPG6aHMoj_H8O63Qzl4NezSdL4Q47J-8HkRtE4HIyIzXUZo5XlQytSZztnBaeL4lcqPSaHS6yFWF0mQc84KWCuRrFSG-MuS0URljMZN03xtwkwKNVDTlYetDCpUHIlGyGTxKZD5tD027XO0fvetPYt-ZPJZ-wyAXv7i90MflD-MfPNrhXbhYjUWTyPIpXtZVbH78RhP53w7WPbjTxtLsoAH_fdjA2TbcvsKwuA1bbZP3D-cPoDxgk_k3JIWWR51RwM4G9N51RR6JvaWwm_XJ5DXVnCxkUzAZ9djoo9ULpmeWhXplkv7CxsPxG9abUxCPC1IlgR04vZav3YXN2XyGD4FV5Oh5kTuPigQTp1KNJi-062bcCld1gK-mvzQt-brvAfK5DIswrkqPmNIjpmwR04GXa5WvDfPIv4R3PAKuCDaT34G9FcjK1jidlUJ5Xn9VpPmjv6g9g63ByXhUjoaT48dwyz_Jp_B00z3YrBdLfEKBWF09Db8Dg_fXDalL47g7Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+for+Heartbeat+Rate+Estimation+Using+3-D+Lidar+and+Multibeam+MIMO+Doppler+Radar&rft.jtitle=IEEE+sensors+journal&rft.au=Bouazizi%2C+Mondher&rft.au=Yamamoto%2C+Kohei&rft.au=Endo%2C+Koji&rft.au=Ohtsuki%2C+Tomoaki&rft.date=2023-12-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=23&rft.issue=24&rft.spage=31259&rft.epage=31277&rft_id=info:doi/10.1109%2FJSEN.2023.3330472&rft.externalDocID=10316252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |