A Novel Approach for Heartbeat Rate Estimation Using 3-D Lidar and Multibeam MIMO Doppler Radar

Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as Doppler sensors, the goal of these tasks is to detect subtle movements associated with heart movements. The detection is either used to recon...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 24; pp. 31259 - 31277
Main Authors Bouazizi, Mondher, Yamamoto, Kohei, Endo, Koji, Ohtsuki, Tomoaki
Format Journal Article
LanguageEnglish
Published New York IEEE 15.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as Doppler sensors, the goal of these tasks is to detect subtle movements associated with heart movements. The detection is either used to reconstruct the R-peaks, thus the heartbeat detection, or simply identify the HR. However, due to the nature of the faint movements of the chest caused by the heart beats, unless the person is still, such movements are overwhelmingly obscured by the motion of the person. That being the case, we are interested in this work in identifying such instances where the person is not in motion, in which case, we measure their heartbeats and HR. To do so, we use a combination of a 3-D light detection and ranging (LiDAR) and a multiple-input multiple-output (MIMO) Doppler Radar. The former's objective is to recognize when the person is still, in which case their position and distance from the sensors are reported. The latter's objective is to create a beam directed toward the person's detected chest and measure the reflected signal, for heartbeat detection, HR, or respiration rate (RR) estimation. Our experiments demonstrate that determining the subject's location and distance and identifying their chest position using LiDAR, then collecting the data accordingly using the Doppler radar leads to better HR detection and R-R intervals (RRIs) estimation. For five different scenarios, the RRI estimation error reaches values between 112 and 231 ms.
AbstractList Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as Doppler sensors, the goal of these tasks is to detect subtle movements associated with heart movements. The detection is either used to reconstruct the R-peaks, thus the heartbeat detection, or simply identify the HR. However, due to the nature of the faint movements of the chest caused by the heart beats, unless the person is still, such movements are overwhelmingly obscured by the motion of the person. That being the case, we are interested in this work in identifying such instances where the person is not in motion, in which case, we measure their heartbeats and HR. To do so, we use a combination of a 3-D light detection and ranging (LiDAR) and a multiple-input multiple-output (MIMO) Doppler Radar. The former's objective is to recognize when the person is still, in which case their position and distance from the sensors are reported. The latter's objective is to create a beam directed toward the person's detected chest and measure the reflected signal, for heartbeat detection, HR, or respiration rate (RR) estimation. Our experiments demonstrate that determining the subject's location and distance and identifying their chest position using LiDAR, then collecting the data accordingly using the Doppler radar leads to better HR detection and R-R intervals (RRIs) estimation. For five different scenarios, the RRI estimation error reaches values between 112 and 231 ms.
Author Ohtsuki, Tomoaki
Yamamoto, Kohei
Endo, Koji
Bouazizi, Mondher
Author_xml – sequence: 1
  givenname: Mondher
  orcidid: 0000-0001-7055-9318
  surname: Bouazizi
  fullname: Bouazizi, Mondher
  email: bouazizi@ohtsuki.ics.keio.ac.jp
  organization: Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan
– sequence: 2
  givenname: Kohei
  surname: Yamamoto
  fullname: Yamamoto, Kohei
  email: yamamoto@ohtsuki.ics.keio.ac.jp
  organization: Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan
– sequence: 3
  givenname: Koji
  surname: Endo
  fullname: Endo, Koji
  email: k.endo@ohtsuki.ics.keio.ac.jp
  organization: Graduate School of Science and Technology, Keio University, Yokohama, Japan
– sequence: 4
  givenname: Tomoaki
  orcidid: 0000-0003-3961-1426
  surname: Ohtsuki
  fullname: Ohtsuki, Tomoaki
  email: ohtsuki@ics.keio.ac.jp
  organization: Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Yokohama, Japan
BookMark eNp9kD1PwzAQhi0EEm3hByAxWGJOsX1JHI8VLbSoHxJQic1ynAsEhSQ4LhL_noR2QAxMd8P73Kt7huS4qisk5IKzMedMXd8_ztZjwQSMAYCFUhyRAY-iJOAyTI77HVgQgnw-JcO2fWOMKxnJAdETuq4_saSTpnG1sa80rx2do3E-RePpg_FIZ60v3o0v6opu26J6oRBM6bLIjKOmyuhqV_qiS7_T1WK1odO6aUp0HdoFzshJbsoWzw9zRLa3s6ebebDc3C1uJsvAQsx8EMU5S1KIMhvnWZIbkXIpZcjBGsxNIlWKYGOGMglVJBJQwHhqFUhU1mYYw4hc7e92X3zssPX6rd65qqvUQjHBhUoi2aX4PmVd3bYOc9247jP3pTnTvUfde9S9R33w2DHyD2ML_yPDO1OU_5KXe7JAxF9NwGMRCfgGGMWApA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3507365
crossref_primary_10_3390_s24216809
Cites_doi 10.1007/s13246-011-0112-2
10.1109/RadarConf2043947.2020.9266600
10.1016/j.micpro.2022.104670
10.1109/CVPR.2017.143
10.1109/CVPR.2005.335
10.1109/ICCV.2017.144
10.1109/TPAMI.2019.2929257
10.1109/CVPR.2016.533
10.1088/1742-6596/2469/1/012026
10.1109/JSEN.2020.2991741
10.1063/1.4818974
10.1145/3478090
10.7554/eLife.47994
10.1109/TMTT.2016.2560159
10.1109/atc55345.2022.9943010
10.1109/TAP.2019.2893337
10.1109/TIM.2015.2479103
10.1109/CVPR.2017.142
10.1162/neco.2006.18.7.1527
10.1023/B:VISI.0000042934.15159.49
10.1109/CVPR.2013.82
10.1109/GLOBECOM46510.2021.9685174
10.3390/s21051774
10.1109/5.726791
10.1109/iccv.2005.48
10.23919/USNC-URSINRSM57467.2022.9881404
10.1109/EMBC.2017.8037598
10.3390/s21113588
10.1109/EMBC.2019.8857830
10.1109/ICASSP39728.2021.9413401
10.1109/TITB.2012.2204760
10.1109/ACCESS.2018.2875737
10.1109/CVPR.2006.212
10.3390/electronics11162505
10.1109/GLOCOM.2018.8647250
10.1109/CVPR.2013.391
10.1109/CVPR.2017.395
10.1109/RadarConf2351548.2023.10149752
10.1007/978-3-319-46466-4_3
10.1109/ICC45855.2022.9838339
10.1109/tbme.2015.2470077
10.1109/TBME.2013.2288319
10.1109/JSEN.2013.2238376
10.1109/ICC.2018.8422997
10.1145/3498361.3538926
10.1109/TMTT.2017.2721407
10.1007/978-3-030-01216-8_44
10.1109/CVPR.2018.00742
10.1109/ACCESS.2023.3272895
10.1109/TMTT.2017.2730182
10.1109/INFOCOM41043.2020.9155293
10.1109/ACCESS.2022.3190355
10.1109/ACCESS.2019.2921240
10.3390/s21082735
10.1109/TMTT.2013.2252186
10.1109/TMTT.2013.2256924
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3330472
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 31277
ExternalDocumentID 10_1109_JSEN_2023_3330472
10316252
Genre orig-research
GrantInformation_xml – fundername: Grants-in-Aid for Scientific Research (KAKENHI)
  grantid: YYH3Y07
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c360t-56f08b35dc6fd8fa2b1777413caefa879be3c60e784952839301bc937e9ccde63
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 08:29:39 EDT 2025
Tue Jul 01 04:27:21 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Aug 27 02:24:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-56f08b35dc6fd8fa2b1777413caefa879be3c60e784952839301bc937e9ccde63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3961-1426
0000-0001-7055-9318
PQID 2902129857
PQPubID 75733
PageCount 19
ParticipantIDs crossref_primary_10_1109_JSEN_2023_3330472
proquest_journals_2902129857
crossref_citationtrail_10_1109_JSEN_2023_3330472
ieee_primary_10316252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
Szabo (ref57) 2004
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
(ref1) 2021
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
Krizhevsky (ref16); 25
ref21
ref28
ref27
ref29
Newell (ref59); 30
ref60
References_xml – volume-title: Diagnostic Ultrasound Imaging: Inside Out
  year: 2004
  ident: ref57
– ident: ref53
  doi: 10.1007/s13246-011-0112-2
– ident: ref30
  doi: 10.1109/RadarConf2043947.2020.9266600
– ident: ref42
  doi: 10.1016/j.micpro.2022.104670
– ident: ref12
  doi: 10.1109/CVPR.2017.143
– ident: ref18
  doi: 10.1109/CVPR.2005.335
– ident: ref22
  doi: 10.1109/ICCV.2017.144
– ident: ref11
  doi: 10.1109/TPAMI.2019.2929257
– ident: ref28
  doi: 10.1109/CVPR.2016.533
– ident: ref46
  doi: 10.1088/1742-6596/2469/1/012026
– ident: ref29
  doi: 10.1109/JSEN.2020.2991741
– ident: ref8
  doi: 10.1063/1.4818974
– ident: ref55
  doi: 10.1145/3478090
– ident: ref24
  doi: 10.7554/eLife.47994
– ident: ref54
  doi: 10.1109/TMTT.2016.2560159
– ident: ref41
  doi: 10.1109/atc55345.2022.9943010
– ident: ref56
  doi: 10.1109/TAP.2019.2893337
– ident: ref7
  doi: 10.1109/TIM.2015.2479103
– ident: ref60
  doi: 10.1109/CVPR.2017.142
– ident: ref15
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref17
  doi: 10.1023/B:VISI.0000042934.15159.49
– ident: ref21
  doi: 10.1109/CVPR.2013.82
– ident: ref10
  doi: 10.1109/GLOBECOM46510.2021.9685174
– ident: ref48
  doi: 10.3390/s21051774
– ident: ref14
  doi: 10.1109/5.726791
– ident: ref19
  doi: 10.1109/iccv.2005.48
– ident: ref40
  doi: 10.23919/USNC-URSINRSM57467.2022.9881404
– volume-title: Statistical Handbook of Japan 2021, Japan Statistical Yearbook
  year: 2021
  ident: ref1
– ident: ref50
  doi: 10.1109/EMBC.2017.8037598
– ident: ref37
  doi: 10.3390/s21113588
– ident: ref38
  doi: 10.1109/EMBC.2019.8857830
– ident: ref5
  doi: 10.1109/ICASSP39728.2021.9413401
– ident: ref6
  doi: 10.1109/TITB.2012.2204760
– ident: ref35
  doi: 10.1109/ACCESS.2018.2875737
– ident: ref25
  doi: 10.1109/CVPR.2006.212
– ident: ref43
  doi: 10.3390/electronics11162505
– ident: ref4
  doi: 10.1109/GLOCOM.2018.8647250
– ident: ref20
  doi: 10.1109/CVPR.2013.391
– ident: ref26
  doi: 10.1109/CVPR.2017.395
– ident: ref47
  doi: 10.1109/RadarConf2351548.2023.10149752
– ident: ref58
  doi: 10.1007/978-3-319-46466-4_3
– ident: ref13
  doi: 10.1109/ICC45855.2022.9838339
– ident: ref9
  doi: 10.1109/tbme.2015.2470077
– ident: ref51
  doi: 10.1109/TBME.2013.2288319
– ident: ref52
  doi: 10.1109/JSEN.2013.2238376
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref59
  article-title: Associative embedding: End-to-end learning for joint detection and grouping
– ident: ref39
  doi: 10.1109/ICC.2018.8422997
– ident: ref31
  doi: 10.1145/3498361.3538926
– ident: ref33
  doi: 10.1109/TMTT.2017.2721407
– ident: ref23
  doi: 10.1007/978-3-030-01216-8_44
– ident: ref27
  doi: 10.1109/CVPR.2018.00742
– ident: ref45
  doi: 10.1109/ACCESS.2023.3272895
– ident: ref34
  doi: 10.1109/TMTT.2017.2730182
– ident: ref32
  doi: 10.1109/INFOCOM41043.2020.9155293
– ident: ref44
  doi: 10.1109/ACCESS.2022.3190355
– ident: ref36
  doi: 10.1109/ACCESS.2019.2921240
– volume: 25
  start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref16
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref49
  doi: 10.3390/s21082735
– ident: ref3
  doi: 10.1109/TMTT.2013.2252186
– ident: ref2
  doi: 10.1109/TMTT.2013.2256924
SSID ssj0019757
Score 2.408096
Snippet Noncontact heartbeat detection and heart rate (HR) estimation have been hot topics of research over the last few years. By employing wireless sensors, such as...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31259
SubjectTerms 3-D light detection and ranging (Lidar)
Chest
deep learning (DL)
depth image
Doppler radar
Estimation
Heart beat
Heart rate
heart rate (HR) estimation
Laser radar
Lidar
MIMO communication
Monitoring
pose detection
Radar detection
Sensors
Title A Novel Approach for Heartbeat Rate Estimation Using 3-D Lidar and Multibeam MIMO Doppler Radar
URI https://ieeexplore.ieee.org/document/10316252
https://www.proquest.com/docview/2902129857
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swELYGLxsPsDHQOgryw56QEtw4seNHRIsKWosEQ-pb5NhngYB2Kukk-PWcHRfBJtDe8nAXWfpy5-9i33eE_MgkGNBZnnBhIclzJzCktE1ylVnuCmAWfL_zaCyGl_nppJjEZvXQCwMA4fIZpP4xnOXbmVn4X2UHfiQB8nXMuCtYubXNWs9HBkoGWU-MYJbkXE7iEWaPqYPTi8E49XPCU-7Ld5m92oTCVJV_UnHYX443yHi5svZayU26aOrUPP4l2vjfS_9M1iPTpIftp_GFfIDpJll7oT-4ST7GEehXD19JdUjHsz-ADlFlnCKdpUMMhKbGfE3PkZTSASaEtteRhrsGlCd9-vPa6jnVU0tDNy9a39HRyeiM9mdIcWGOrmiwRS6PB7-OhkmcvpAYLliTFMKxsuaFNcLZ0unMC1Uh_-BGg9OlVDVwIxjIEmssJCkKU0VtkO2AMsaC4NtkdTqbwjdCa9wGWSmdRymH3KlCg5Gldj3BbObqDmFLOCoTpcn9hIzbKpQoTFUewcojWEUEO2T_2eV3q8vxnvGWR-SFYQtGh3SXoFcxdO-rTHnVe1UW8vsbbjvkk3-7v9TSK7pktZkvYBepSVPvhU_yCboS3TE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcigceJRWBAr4ABek3Tr2vnzgUJFUSZsECVopt8VrjwUCEpRuQOW_8Ff62zr2bqICglslbnuY2Yf97czYnvkG4LnI0aAWSSQzi1GSuIx-KW2jRAkrXYrcoq93Hk-ywWlyNE2nG_BzXQuDiCH5DGN_Gc7y7dws_VbZvm9JQPG6aHMoj_H8O63Qzl4NezSdL4Q47J-8HkRtE4HIyIzXUZo5XlQytSZztnBaeL4lcqPSaHS6yFWF0mQc84KWCuRrFSG-MuS0URljMZN03xtwkwKNVDTlYetDCpUHIlGyGTxKZD5tD027XO0fvetPYt-ZPJZ-wyAXv7i90MflD-MfPNrhXbhYjUWTyPIpXtZVbH78RhP53w7WPbjTxtLsoAH_fdjA2TbcvsKwuA1bbZP3D-cPoDxgk_k3JIWWR51RwM4G9N51RR6JvaWwm_XJ5DXVnCxkUzAZ9djoo9ULpmeWhXplkv7CxsPxG9abUxCPC1IlgR04vZav3YXN2XyGD4FV5Oh5kTuPigQTp1KNJi-062bcCld1gK-mvzQt-brvAfK5DIswrkqPmNIjpmwR04GXa5WvDfPIv4R3PAKuCDaT34G9FcjK1jidlUJ5Xn9VpPmjv6g9g63ByXhUjoaT48dwyz_Jp_B00z3YrBdLfEKBWF09Db8Dg_fXDalL47g7Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+for+Heartbeat+Rate+Estimation+Using+3-D+Lidar+and+Multibeam+MIMO+Doppler+Radar&rft.jtitle=IEEE+sensors+journal&rft.au=Bouazizi%2C+Mondher&rft.au=Yamamoto%2C+Kohei&rft.au=Endo%2C+Koji&rft.au=Ohtsuki%2C+Tomoaki&rft.date=2023-12-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=23&rft.issue=24&rft.spage=31259&rft.epage=31277&rft_id=info:doi/10.1109%2FJSEN.2023.3330472&rft.externalDocID=10316252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon