Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina
The mechanisms by which multipotent progenitor cells are directed to alternative cell identities during the histogenesis of the vertebrate central nervous system are likely to involve several different types of signaling systems. Recent evidence indicates that 9-cis retinoic acid, which acts through...
Saved in:
Published in | Development (Cambridge) Vol. 121; no. 11; pp. 3777 - 3785 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Limited
01.11.1995
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The mechanisms by which multipotent progenitor cells are directed to alternative cell identities during the histogenesis of the vertebrate central nervous system are likely to involve several different types of signaling systems. Recent evidence indicates that 9-cis retinoic acid, which acts through members of the steroid/thyroid superfamily of receptors, directs progenitor cells to the rod photoreceptor cell fate. We now report that another effector of this family of receptors, thyroid hormone, induces an increase in the number of cone photoreceptors that develop in embryonic rat retinal cultures, and that combinations of 9-cis retinoic acid and triiodothyronine cause isolated progenitor cells to differentiate as either rods or cones, depending on the relative concentrations of the ligands. These results implicate thyroid hormone in CNS cell fate determination, and suggest that different photoreceptor phenotypes may be modulated through the formation of thyroid/retinoid receptor heterodimers. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.121.11.3777 |