Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength
This paper proposes a computational framework to describe the biodegradation of magnesium (Mg)-based bone implants. It is based on a sequential combination of two models: an electrochemical corrosion model to compute the mass loss of the implant over several weeks combined with a mechanical model to...
Saved in:
Published in | International journal of mechanical sciences Vol. 220; p. 107143 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a computational framework to describe the biodegradation of magnesium (Mg)-based bone implants. It is based on a sequential combination of two models: an electrochemical corrosion model to compute the mass loss of the implant over several weeks combined with a mechanical model to assess its residual mechanical strength. The first model uses a peridynamic (PD) corrosion model to tackle the complex moving boundary of the corroding material in an efficient manner. The results of this corrosion simulation are mapped to a finite element (FE) model by way of a damage variable. Subsequently, the FE model is used for mechanical analysis. To use PD for such a complex problem, we proposed three innovative improvements compared to state-of-the-art PD models: (1) application of an adaptive multi-grid discretization in space and an implicit time-stepping algorithm enabling an efficient simulation of the complex implant geometry over prolonged periods, (2) novel non-local Dirichlet absorbing boundary conditions to truncate the simulation domain in the close neighborhood of the implant of interest without prohibitive losses of accuracy, and (3) selection of suitable non-local kernel functions and parameter calibration on the basis of experimental data by an evolutionary algorithm. We demonstrate that this framework can capture the loss of implant mass due to corrosion for typical alloys such as Mg-5Gd and Mg-10Gd. Moreover, we point out how this framework can be used in the future to predict the declining mechanical strength of bone screws subject to biocorrosion over several weeks.
[Display omitted]
•Development of a novel framework to model biodegradation of Mg-based implants.•Extension of a peridynamic corrosion model to simulate electrochemical biocorrosion.•Enhancing the numerical performance through a multi-grid approach.•Introduction of a new strategy of calibration for peridynamic corrosion models.•Devising a sequential approach to incorporate a finite element damage analysis. |
---|---|
AbstractList | This paper proposes a computational framework to describe the biodegradation of magnesium (Mg)-based bone implants. It is based on a sequential combination of two models: an electrochemical corrosion model to compute the mass loss of the implant over several weeks combined with a mechanical model to assess its residual mechanical strength. The first model uses a peridynamic (PD) corrosion model to tackle the complex moving boundary of the corroding material in an efficient manner. The results of this corrosion simulation are mapped to a finite element (FE) model by way of a damage variable. Subsequently, the FE model is used for mechanical analysis. To use PD for such a complex problem, we proposed three innovative improvements compared to state-of-the-art PD models: (1) application of an adaptive multi-grid discretization in space and an implicit time-stepping algorithm enabling an efficient simulation of the complex implant geometry over prolonged periods, (2) novel non-local Dirichlet absorbing boundary conditions to truncate the simulation domain in the close neighborhood of the implant of interest without prohibitive losses of accuracy, and (3) selection of suitable non-local kernel functions and parameter calibration on the basis of experimental data by an evolutionary algorithm. We demonstrate that this framework can capture the loss of implant mass due to corrosion for typical alloys such as Mg-5Gd and Mg-10Gd. Moreover, we point out how this framework can be used in the future to predict the declining mechanical strength of bone screws subject to biocorrosion over several weeks.
[Display omitted]
•Development of a novel framework to model biodegradation of Mg-based implants.•Extension of a peridynamic corrosion model to simulate electrochemical biocorrosion.•Enhancing the numerical performance through a multi-grid approach.•Introduction of a new strategy of calibration for peridynamic corrosion models.•Devising a sequential approach to incorporate a finite element damage analysis. |
ArticleNumber | 107143 |
Author | Hermann, Alexander Zeller-Plumhoff, Berit Shojaei, Arman Höche, Daniel Cyron, Christian J. Steglich, Dirk |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-9731-3286 surname: Hermann fullname: Hermann, Alexander email: alexander.hermann@hereon.de organization: Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max–Planck-Str. 1, 21502 Geesthacht, Germany – sequence: 2 givenname: Arman orcidid: 0000-0001-8638-8285 surname: Shojaei fullname: Shojaei, Arman organization: Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max–Planck-Str. 1, 21502 Geesthacht, Germany – sequence: 3 givenname: Dirk orcidid: 0000-0001-5457-7110 surname: Steglich fullname: Steglich, Dirk organization: Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max–Planck-Str. 1, 21502 Geesthacht, Germany – sequence: 4 givenname: Daniel surname: Höche fullname: Höche, Daniel organization: Institute of Surface Science, Helmholtz-Zentrum Hereon, Max–Planck-Str. 1, 21502 Geesthacht, Germany – sequence: 5 givenname: Berit orcidid: 0000-0002-7562-9423 surname: Zeller-Plumhoff fullname: Zeller-Plumhoff, Berit organization: Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max–Planck-Straße 1, 21502 Geesthacht, Germany – sequence: 6 givenname: Christian J. orcidid: 0000-0001-8264-0885 surname: Cyron fullname: Cyron, Christian J. organization: Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max–Planck-Str. 1, 21502 Geesthacht, Germany |
BookMark | eNqFkM1KAzEQx4NUsK2-guQFtuZjd1PBg1L8goIXPYdsdlKn7GaXJBV8Cx_Z1OrFS0_DTPL7M_ObkYkfPBByydmCM15fbRe47cFGiwvBhMhDxUt5QqZ8qa4LwWsxIVPGBCtUyeQZmcW4ZYwrVskp-VoNfYMe_YaOELD99KZHS41vqcvjBBQ66MEnGrHfdSbh4CNNA7VmTLsANL0DtUMIQ8wvdHC0hU0wrWk6oE1elGI_dsan-JOZwTFAizbtQQw0QMR2ZzoaUwC_Se_n5NSZLsLFb52Tt4f719VTsX55fF7drQsra5aKsjbcOaE4t6Bc2ajKWQHMVpLXlQDjQNVQLZlqmISSN0KY5TWvmZSizK2Rc3JzyLV59RjAaYvp57wUDHaaM723q7f6z67e29UHuxmv_-FjwN6Ez-Pg7QGEfNwHQtD5B3ibpQSwSbcDHov4BhnWnmM |
CitedBy_id | crossref_primary_10_1016_j_jma_2022_09_029 crossref_primary_10_1016_j_ijmecsci_2024_109734 crossref_primary_10_1007_s11831_024_10129_z crossref_primary_10_1016_j_actbio_2023_04_011 crossref_primary_10_1016_j_camwa_2024_01_006 crossref_primary_10_1016_j_jmps_2024_105694 crossref_primary_10_1016_j_jmrt_2022_10_004 crossref_primary_10_1007_s11012_022_01571_z crossref_primary_10_1016_j_camwa_2023_02_020 crossref_primary_10_1007_s11837_024_06579_2 crossref_primary_10_1038_s41598_022_13961_0 crossref_primary_10_1002_nme_7260 crossref_primary_10_1016_j_camwa_2022_08_027 crossref_primary_10_1016_j_ijmecsci_2023_108913 crossref_primary_10_1007_s40430_023_04558_3 crossref_primary_10_1007_s42102_024_00125_z crossref_primary_10_3390_cmd4020014 crossref_primary_10_1016_j_jmbbm_2023_105939 crossref_primary_10_1088_1361_651X_ac6cfc crossref_primary_10_1016_j_compgeo_2024_106765 crossref_primary_10_3390_math11030662 crossref_primary_10_1016_j_engfracmech_2022_108751 crossref_primary_10_1016_j_engfracmech_2023_109687 crossref_primary_10_1007_s10704_023_00709_8 crossref_primary_10_1016_j_cma_2023_115896 crossref_primary_10_1002_advs_202403543 crossref_primary_10_1007_s00466_024_02450_y crossref_primary_10_3390_su15097621 crossref_primary_10_1016_j_bea_2024_100115 crossref_primary_10_1007_s00366_024_01951_x crossref_primary_10_1115_1_4062289 crossref_primary_10_1080_15376494_2024_2419997 crossref_primary_10_1016_j_ijmecsci_2023_108445 crossref_primary_10_1016_j_cma_2023_115948 crossref_primary_10_1016_j_wear_2023_205110 crossref_primary_10_1007_s00366_022_01656_z |
Cites_doi | 10.1016/j.jma.2021.07.029 10.1002/maco.201709514 10.1016/j.jmps.2020.104203 10.1108/EC-06-2014-0131 10.1149/1945-7111/abbdd0 10.1115/1.4035895 10.1016/j.actbio.2011.05.032 10.1016/j.corsci.2013.01.017 10.1016/j.ijmecsci.2018.06.020 10.1016/j.camwa.2015.12.021 10.1016/j.ijmecsci.2016.11.003 10.1590/1679-78255022 10.1016/j.cma.2020.113515 10.1016/j.cma.2017.11.011 10.1016/j.bioactmat.2018.01.003 10.1016/0001-6160(84)90213-X 10.1016/j.pmatsci.2017.04.011 10.1016/j.actbio.2013.12.059 10.1142/S0218202512500546 10.1016/j.jcp.2019.05.007 10.1016/j.ijmecsci.2021.106301 10.3389/fmats.2019.00201 10.1016/j.bioactmat.2021.04.009 10.1016/j.engfracmech.2019.106708 10.1007/s00466-020-01879-1 10.1016/j.cpc.2015.08.006 10.1016/j.electacta.2017.12.086 10.1016/j.cma.2021.114544 10.1016/j.jmps.2015.02.015 10.1016/j.compstruc.2004.11.026 10.1115/1.3443401 10.1007/s10704-014-9970-4 10.1002/zamm.201700314 10.1016/j.cma.2020.113101 10.1016/j.corsci.2016.04.001 10.1016/j.cma.2020.112856 10.1002/maco.201709461 10.1016/j.electacta.2019.134795 10.1109/4235.985692 10.1016/j.camwa.2017.06.045 10.1063/1.5003915 10.1016/j.corsci.2021.109272 10.1002/cnm.3253 10.1149/2.0071501jes 10.1016/j.ijmecsci.2021.106322 10.1016/j.cma.2019.07.033 10.1007/s00466-014-0979-3 10.1121/1.4948575 10.1002/maco.201911101 10.1007/s10704-019-00363-z 10.1006/jcph.2000.6636 10.1016/S0022-5096(99)00029-0 10.1016/j.ijmecsci.2019.06.008 10.1149/2.0821807jes 10.1016/j.camwa.2013.07.022 10.1007/s42102-018-0004-x 10.5006/2615 10.1016/j.camwa.2021.08.021 10.1016/0022-5096(76)90024-7 10.1016/j.ijheatmasstransfer.2019.05.054 10.1038/s41524-018-0089-4 10.1016/j.cma.2013.05.018 10.1016/j.jmbbm.2019.103411 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ijmecsci.2022.107143 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2162 |
ExternalDocumentID | 10_1016_j_ijmecsci_2022_107143 S0020740322000741 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSZ T5K TN5 UNMZH XPP XSW ZMT ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c360t-46a1ff2711ce7f4b75fc2e0c531652eafe76e5807b03e41b22a89160332441ba3 |
IEDL.DBID | .~1 |
ISSN | 0020-7403 |
IngestDate | Thu Apr 24 23:11:32 EDT 2025 Tue Jul 01 03:06:52 EDT 2025 Fri Feb 23 02:39:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Strength reduction Moving interface Mass loss Non-local diffusion Multi-grid Mg-Gd alloys |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-46a1ff2711ce7f4b75fc2e0c531652eafe76e5807b03e41b22a89160332441ba3 |
ORCID | 0000-0002-7562-9423 0000-0002-9731-3286 0000-0001-5457-7110 0000-0001-8264-0885 0000-0001-8638-8285 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0020740322000741 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijmecsci_2022_107143 crossref_primary_10_1016_j_ijmecsci_2022_107143 elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2022_107143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International journal of mechanical sciences |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shojaei, Hermann, Seleson, Cyron (b30) 2020; 66 Soleimanifar, Boroomand, Mossaiby (b49) 2014; 53 Boland, Grogan, McHugh (b71) 2017; 11 Kremheller, Vuong, Schrefler, Wall (b26) 2019; 35 Lees, Rokkam, Shanbhag, Gunzburger (b29) 2017; 147 Zhao, Shen (b17) 2021; 197 Esmaily, Svensson, Fajardo, Birbilis, Frankel, Virtanen (b42) 2017; 89 Grogan, Leen, McHugh (b69) 2014; 10 Höche (b44) 2015; 162 Winzer, Atrens, Song, Ghali, Dietzel, Kainer (b72) 2005; 7 Frankel, Samaniego, Birbilis (b46) 2013; 70 Ni, Zaccariotto, Zhu, Galvanetto (b11) 2019 Ni, Pesavento, Zaccariotto, Galvanetto, Zhu, Schrefler (b27) 2020; 366 Mai, Soghrati (b6) 2018; 260 Mossaiby, Shojaei, Zaccariotto, Galvanetto (b63) 2017; 74 Gonzalez, Hou, Nidadavolu, Willumeit-Römer, Feyerabend (b34) 2018; 3 Dipasquale, Sarego, Prapamonthon, Yooyen, Shojaei (b18) 2022; 8 Jafarzadeh, Chen, Li, Bobaru (b25) 2019; 323 Behzadinasab, Foster (b10) 2019; 218 Grogan, O’Brien, Leen, McHugh (b68) 2011; 7 Zeller-Plumhoff, Helmholz, Feyerabend, Dose, Wilde, Hipp, Beckmann, Willumeit-Römer, Hammel (b60) 2018; 69 Mossaiby, Shojaei, Boroomand, Zaccariotto, Galvanetto (b35) 2020; 362 Bazazzadeh, Mossaiby, Shojaei (b41) 2020; 223 Brady, Rother, Frith, Ievlev, Leonard, Littrell (b55) 2020; 167 Gießgen, Mittelbach, Höche, Zheludkevich, Kainer (b56) 2019; 70 Mirfatah, Boroomand, Soleimanifar (b53) 2019; 393 Bobaru, Foster, Geubelle, Silling (b19) 2016 Chen, Jafarzadeh, Zhao, Bobaru (b22) 2021; 146 Jafarzadeh, Chen, Bobaru (b23) 2018; 165 Chen, Bobaru (b21) 2015; 78 Zeller-Plumhoff, Laipple, Slominska, Iskhakova, Longo, Hermann (b45) 2021; 6 D’Elia, Gunzburger (b48) 2013; 66 Gurson (b65) 1977; 99 Shojaei, Boroomand, Soleimanifar (b51) 2016; 139 Jafarzadeh, Chen, Bobaru (b24) 2018; 74 Shojaei, Mudric, Zaccariotto, Galvanetto (b39) 2016; 119 Wang, Hu, Zhang, Pan (b31) 2019; 139 Shojaei, Mossaiby, Zaccariotto, Galvanetto (b36) 2019; 356 Eberhart, Kennedy (b57) 1995 Mirfatah, Boroomand (b52) 2021; 100 Hancock, Mackenzie (b67) 1976; 24 Rahimi, Kefal, Yildiz (b16) 2021; 197 Mai, Soghrati, Buchheit (b7) 2016; 110 Silling (b8) 2000; 48 Seleson, Littlewood (b33) 2016; 71 Zeller-Plumhoff, Gile, Priebe, Slominska, Boll, Wiese (b61) 2021; 182 Shojaei, Boroomand, Mossaiby (b50) 2015 Du, Gunzburger, Lehoucq, Zhou (b9) 2013; 23 Wang, Xu, Huang (b14) 2019; 159 Chen, Bobaru (b28) 2015; 197 Osher, Fedkiw (b4) 2001; 169 Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz (b64) 1999 Harmuth, Wiese, Bohlen, Ebel, Willumeit-Römer (b62) 2019; 6 Zaccariotto, Mudric, Tomasi, Shojaei, Galvanetto (b40) 2018; 330 Dahms, Höche, Ahmad Agha, Feyerabend, Willumeit-Römer (b43) 2018; 69 Ansari, Xiao, Hu, Li, Luo, Shi (b5) 2018; 4 Krüger, Zeller-Plumhoff, Wiese, Yi, Zuber, Wieland (b47) 2021; 9 Gartzke, Julmi, Klose, Waselau, Meyer-Lindenberg, Maier (b1) 2020; 101 Seleson, Gunzburger, Parks (b32) 2013; 266 Shojaei, Hermann, Cyron, Seleson, Silling (b54) 2022; 391 Clerc, Kennedy (b58) 2002; 6 Zeller-Plumhoff, Laipple, Slominska, Iskhakova, Longo, Hermann (b59) 2021; 6 Diehl, Prudhomme, Lévesque (b20) 2019; 1 Boland, Grogan, Conway, Mchugh (b70) 2016 Silling, Askari (b13) 2005; 83 Ma, Zhou, Markert (b2) 2018; 98 Tvergaard, Needleman (b66) 1984; 32 Höche D, Isakovic J. Level-set modeling of galvanic corrosion of magnesium. In: International conference on magnesium alloys and their applications, vol. 9, Vancouver. 2012, p. 325–31. Dipasquale, Zaccariotto, Galvanetto (b37) 2014; 190 Bazazzadeh, Zaccariotto, Galvanetto (b15) 2019; 16 Shojaei, Mossaiby, Zaccariotto, Galvanetto (b12) 2018; 144 Ongaro, Seleson, Galvanetto, Ni, Zaccariotto (b38) 2021; 381 Höche (10.1016/j.ijmecsci.2022.107143_b44) 2015; 162 Silling (10.1016/j.ijmecsci.2022.107143_b8) 2000; 48 Du (10.1016/j.ijmecsci.2022.107143_b9) 2013; 23 Jafarzadeh (10.1016/j.ijmecsci.2022.107143_b24) 2018; 74 Ni (10.1016/j.ijmecsci.2022.107143_b11) 2019 Zeller-Plumhoff (10.1016/j.ijmecsci.2022.107143_b45) 2021; 6 Lees (10.1016/j.ijmecsci.2022.107143_b29) 2017; 147 Shojaei (10.1016/j.ijmecsci.2022.107143_b39) 2016; 119 Winzer (10.1016/j.ijmecsci.2022.107143_b72) 2005; 7 Dipasquale (10.1016/j.ijmecsci.2022.107143_b18) 2022; 8 Ma (10.1016/j.ijmecsci.2022.107143_b2) 2018; 98 Zaccariotto (10.1016/j.ijmecsci.2022.107143_b40) 2018; 330 D’Elia (10.1016/j.ijmecsci.2022.107143_b48) 2013; 66 Shojaei (10.1016/j.ijmecsci.2022.107143_b36) 2019; 356 Ansari (10.1016/j.ijmecsci.2022.107143_b5) 2018; 4 Jafarzadeh (10.1016/j.ijmecsci.2022.107143_b23) 2018; 165 Gießgen (10.1016/j.ijmecsci.2022.107143_b56) 2019; 70 Dipasquale (10.1016/j.ijmecsci.2022.107143_b37) 2014; 190 Grogan (10.1016/j.ijmecsci.2022.107143_b69) 2014; 10 Anderson (10.1016/j.ijmecsci.2022.107143_b64) 1999 Krüger (10.1016/j.ijmecsci.2022.107143_b47) 2021; 9 Diehl (10.1016/j.ijmecsci.2022.107143_b20) 2019; 1 Wang (10.1016/j.ijmecsci.2022.107143_b31) 2019; 139 Mirfatah (10.1016/j.ijmecsci.2022.107143_b53) 2019; 393 Jafarzadeh (10.1016/j.ijmecsci.2022.107143_b25) 2019; 323 Seleson (10.1016/j.ijmecsci.2022.107143_b32) 2013; 266 Gonzalez (10.1016/j.ijmecsci.2022.107143_b34) 2018; 3 Shojaei (10.1016/j.ijmecsci.2022.107143_b30) 2020; 66 Ni (10.1016/j.ijmecsci.2022.107143_b27) 2020; 366 Clerc (10.1016/j.ijmecsci.2022.107143_b58) 2002; 6 Bazazzadeh (10.1016/j.ijmecsci.2022.107143_b15) 2019; 16 Behzadinasab (10.1016/j.ijmecsci.2022.107143_b10) 2019; 218 Mossaiby (10.1016/j.ijmecsci.2022.107143_b35) 2020; 362 Zeller-Plumhoff (10.1016/j.ijmecsci.2022.107143_b59) 2021; 6 Ongaro (10.1016/j.ijmecsci.2022.107143_b38) 2021; 381 Dahms (10.1016/j.ijmecsci.2022.107143_b43) 2018; 69 Chen (10.1016/j.ijmecsci.2022.107143_b28) 2015; 197 Gartzke (10.1016/j.ijmecsci.2022.107143_b1) 2020; 101 Osher (10.1016/j.ijmecsci.2022.107143_b4) 2001; 169 Shojaei (10.1016/j.ijmecsci.2022.107143_b51) 2016; 139 Silling (10.1016/j.ijmecsci.2022.107143_b13) 2005; 83 Tvergaard (10.1016/j.ijmecsci.2022.107143_b66) 1984; 32 Chen (10.1016/j.ijmecsci.2022.107143_b22) 2021; 146 Seleson (10.1016/j.ijmecsci.2022.107143_b33) 2016; 71 Mossaiby (10.1016/j.ijmecsci.2022.107143_b63) 2017; 74 Mai (10.1016/j.ijmecsci.2022.107143_b6) 2018; 260 Bazazzadeh (10.1016/j.ijmecsci.2022.107143_b41) 2020; 223 Shojaei (10.1016/j.ijmecsci.2022.107143_b50) 2015 Shojaei (10.1016/j.ijmecsci.2022.107143_b54) 2022; 391 Gurson (10.1016/j.ijmecsci.2022.107143_b65) 1977; 99 Esmaily (10.1016/j.ijmecsci.2022.107143_b42) 2017; 89 Frankel (10.1016/j.ijmecsci.2022.107143_b46) 2013; 70 Shojaei (10.1016/j.ijmecsci.2022.107143_b12) 2018; 144 Wang (10.1016/j.ijmecsci.2022.107143_b14) 2019; 159 Rahimi (10.1016/j.ijmecsci.2022.107143_b16) 2021; 197 Bobaru (10.1016/j.ijmecsci.2022.107143_b19) 2016 Zeller-Plumhoff (10.1016/j.ijmecsci.2022.107143_b60) 2018; 69 Chen (10.1016/j.ijmecsci.2022.107143_b21) 2015; 78 Brady (10.1016/j.ijmecsci.2022.107143_b55) 2020; 167 Harmuth (10.1016/j.ijmecsci.2022.107143_b62) 2019; 6 Boland (10.1016/j.ijmecsci.2022.107143_b70) 2016 Boland (10.1016/j.ijmecsci.2022.107143_b71) 2017; 11 Zhao (10.1016/j.ijmecsci.2022.107143_b17) 2021; 197 Soleimanifar (10.1016/j.ijmecsci.2022.107143_b49) 2014; 53 Grogan (10.1016/j.ijmecsci.2022.107143_b68) 2011; 7 Mai (10.1016/j.ijmecsci.2022.107143_b7) 2016; 110 Mirfatah (10.1016/j.ijmecsci.2022.107143_b52) 2021; 100 Kremheller (10.1016/j.ijmecsci.2022.107143_b26) 2019; 35 Eberhart (10.1016/j.ijmecsci.2022.107143_b57) 1995 Zeller-Plumhoff (10.1016/j.ijmecsci.2022.107143_b61) 2021; 182 10.1016/j.ijmecsci.2022.107143_b3 Hancock (10.1016/j.ijmecsci.2022.107143_b67) 1976; 24 |
References_xml | – volume: 10 start-page: 2313 year: 2014 end-page: 2322 ident: b69 article-title: A physical corrosion model for bioabsorbable metal stents publication-title: Acta Biomater – year: 2015 ident: b50 article-title: A simple meshless method for challenging engineering problems publication-title: Eng Comput – volume: 48 start-page: 175 year: 2000 end-page: 209 ident: b8 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J Mech Phys Solids – volume: 381 year: 2021 ident: b38 article-title: Overall equilibrium in the coupling of peridynamics and classical continuum mechanics publication-title: Comput Methods Appl Mech Engrg – volume: 167 year: 2020 ident: b55 article-title: Temporal evolution of corrosion film nano-porosity and magnesium alloy hydrogen penetration in NaCl solution publication-title: J Electrochem Soc – volume: 70 start-page: 104 year: 2013 end-page: 111 ident: b46 article-title: Evolution of hydrogen at dissolving magnesium surfaces publication-title: Corros Sci – volume: 9 start-page: 2207 year: 2021 end-page: 2222 ident: b47 article-title: Assessing the microstructure and in vitro degradation behavior of mg-xgd screw implants using publication-title: Journal of Magnesium and Alloys – volume: 11 year: 2017 ident: b71 article-title: Computational modeling of the mechanical performance of a magnesium stent undergoing uniform and pitting corrosion in a remodeling artery publication-title: J Med Devices – year: 2016 ident: b19 article-title: Handbook of peridynamic modeling – volume: 197 year: 2021 ident: b16 article-title: An improved ordinary-state based peridynamic formulation for modeling FGMs with sharp interface transitions publication-title: Int J Mech Sci – volume: 356 start-page: 629 year: 2019 end-page: 651 ident: b36 article-title: A local collocation method to construct Dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems publication-title: Comput Methods Appl Mech Engrg – volume: 66 start-page: 773 year: 2020 end-page: 793 ident: b30 article-title: Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models publication-title: Comput Mech – start-page: 1198 year: 2016 end-page: 1203 ident: b70 article-title: Computer simulation of the mechanical behaviour of implanted biodegradable stents in a remodelling artery, vol. 68 – volume: 4 start-page: 1 year: 2018 end-page: 9 ident: b5 article-title: Phase-field model of pitting corrosion kinetics in metallic materials publication-title: Npj Comput Mater – volume: 197 year: 2021 ident: b17 article-title: A nonlocal model for dislocations with embedded discontinuity peridynamics publication-title: Int J Mech Sci – volume: 362 year: 2020 ident: b35 article-title: Local Dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems publication-title: Comput Methods Appl Mech Engrg – volume: 1 start-page: 14 year: 2019 end-page: 35 ident: b20 article-title: A review of benchmark experiments for the validation of peridynamics models publication-title: J Peridynam Nonlocal Model – volume: 139 start-page: 948 year: 2019 end-page: 962 ident: b31 article-title: Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics publication-title: Int J Heat Mass Transfer – volume: 7 start-page: 3523 year: 2011 end-page: 3533 ident: b68 article-title: A corrosion model for bioabsorbable metallic stents publication-title: Acta Biomater – volume: 98 start-page: 2223 year: 2018 end-page: 2238 ident: b2 article-title: Numerical simulation of the tissue differentiation and corrosion process of biodegradable magnesium implants during bone fracture healing publication-title: ZAMM Z. Angew. Math. Mech. ZAMM. – volume: 35 year: 2019 ident: b26 article-title: An approach for vascular tumor growth based on a hybrid embedded/homogenized treatment of the vasculature within a multiphase porous medium model publication-title: Int J Numer Methods Biomed Eng – volume: 100 start-page: 99 year: 2021 end-page: 125 ident: b52 article-title: On the simulation of image-based cellular materials in a meshless style publication-title: Comput Math Appl – volume: 7 start-page: 659 year: 2005 end-page: 693 ident: b72 article-title: A critical review of the stress corrosion cracking (SCC) of magnesium alloys publication-title: Adv Energy Mater – volume: 218 start-page: 97 year: 2019 end-page: 109 ident: b10 article-title: The third sandia fracture challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal publication-title: Int J Fract – volume: 16 year: 2019 ident: b15 article-title: Fatigue degradation strategies to simulate crack propagation using peridynamic based computational methods publication-title: Lat Am J Solids Struct – volume: 99 start-page: 2 year: 1977 end-page: 15 ident: b65 article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media publication-title: J Eng Mater Technol – volume: 89 start-page: 92 year: 2017 end-page: 193 ident: b42 article-title: Fundamentals and advances in magnesium alloy corrosion publication-title: Prog Mater Sci – start-page: 1 year: 2019 end-page: 16 ident: b11 article-title: Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D publication-title: Mech Adv Mater Struct – volume: 3 start-page: 174 year: 2018 end-page: 185 ident: b34 article-title: Magnesium degradation under physiological conditions - Best practice publication-title: Bioact Mater – volume: 74 start-page: 393 year: 2018 ident: b24 article-title: Peridynamic modeling of repassivation in pitting corrosion of stainless steel publication-title: Corrosion – volume: 366 year: 2020 ident: b27 article-title: Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media publication-title: Comput Methods Appl Mech Engrg – volume: 393 start-page: 351 year: 2019 end-page: 374 ident: b53 article-title: On the solution of 3D problems in physics: from the geometry definition in CAD to the solution by a meshless method publication-title: J Comput Phys – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: b58 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans Evol Comput – volume: 330 start-page: 471 year: 2018 end-page: 497 ident: b40 article-title: Coupling of FEM meshes with peridynamic grids publication-title: Comput Methods Appl Mech Engrg – volume: 8 start-page: 617 year: 2022 end-page: 628 ident: b18 article-title: A stress tensor-based failure criterion for ordinary state-based peridynamic models publication-title: J Appl Comput Mech – volume: 162 start-page: C1 year: 2015 end-page: C11 ident: b44 article-title: Simulation of corrosion product deposit layer growth on bare magnesium galvanically coupled to aluminum publication-title: J Electrochem Soc – volume: 24 start-page: 147 year: 1976 end-page: 169 ident: b67 article-title: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states publication-title: J Mech Phys Solids – reference: Höche D, Isakovic J. Level-set modeling of galvanic corrosion of magnesium. In: International conference on magnesium alloys and their applications, vol. 9, Vancouver. 2012, p. 325–31. – volume: 6 start-page: 4368 year: 2021 end-page: 4376 ident: b45 article-title: Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40 nm publication-title: Bioact Mater – volume: 146 year: 2021 ident: b22 article-title: A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking publication-title: J Mech Phys Solids – volume: 6 start-page: 4368 year: 2021 end-page: 4376 ident: b59 article-title: Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40 nm publication-title: Bioactive Materials – volume: 71 start-page: 2432 year: 2016 end-page: 2448 ident: b33 article-title: Convergence studies in meshfree peridynamic simulations publication-title: Comput Math Appl – volume: 66 start-page: 1245 year: 2013 end-page: 1260 ident: b48 article-title: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator publication-title: Comput Math Appl – volume: 139 start-page: 2613 year: 2016 end-page: 2623 ident: b51 article-title: A meshless method for unbounded acoustic problems publication-title: J Acoust Soc Am – volume: 197 start-page: 51 year: 2015 end-page: 60 ident: b28 article-title: Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion publication-title: Comput Phys Comm – start-page: 39 year: 1995 end-page: 43 ident: b57 article-title: A new optimizer using particle swarm theory publication-title: MHS’95. Proceedings of the sixth international symposium on micro machine and human science – year: 1999 ident: b64 article-title: LAPACK users’ guide – volume: 78 start-page: 352 year: 2015 end-page: 381 ident: b21 article-title: Peridynamic modeling of pitting corrosion damage publication-title: J Mech Phys Solids – volume: 391 year: 2022 ident: b54 article-title: A hybrid meshfree discretization to improve the numerical performance of peridynamic models publication-title: Comput Methods Appl Mech Engrg – volume: 23 start-page: 493 year: 2013 end-page: 540 ident: b9 article-title: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws publication-title: Math Models Methods Appl Sci – volume: 74 start-page: 1856 year: 2017 end-page: 1870 ident: b63 article-title: OpenCL implementation of a high performance 3D peridynamic model on graphics accelerators publication-title: Comput Math Appl – volume: 266 start-page: 185 year: 2013 end-page: 204 ident: b32 article-title: Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains publication-title: Comput Methods Appl Mech Engrg – volume: 144 start-page: 600 year: 2018 end-page: 617 ident: b12 article-title: An adaptive multi-grid peridynamic method for dynamic fracture analysis publication-title: Int J Mech Sci – volume: 223 year: 2020 ident: b41 article-title: An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics publication-title: Eng Fract Mech – volume: 323 year: 2019 ident: b25 article-title: A peridynamic mechano-chemical damage model for stress-assisted corrosion publication-title: Electrochim Acta – volume: 69 start-page: 191 year: 2018 end-page: 196 ident: b43 article-title: A simple model for long-time degradation of magnesium under physiological conditions publication-title: Mater Corros – volume: 147 year: 2017 ident: b29 article-title: The electroneutrality constraint in nonlocal models publication-title: J Chem Phys – volume: 70 start-page: 2247 year: 2019 end-page: 2255 ident: b56 article-title: Enhanced predictive corrosion modeling with implicit corrosion products publication-title: Mater Corros – volume: 69 start-page: 298 year: 2018 end-page: 306 ident: b60 article-title: Quantitative characterization of degradation processes in situ by means of a bioreactor coupled flow chamber under physiological conditions using time-lapse SR publication-title: Mater Corros – volume: 260 start-page: 290 year: 2018 end-page: 304 ident: b6 article-title: New phase field model for simulating galvanic and pitting corrosion processes publication-title: Electrochim Acta – volume: 119 start-page: 419 year: 2016 end-page: 431 ident: b39 article-title: A coupled meshless finite point/peridynamic method for 2D dynamic fracture analysis publication-title: Int J Mech Sci – volume: 110 start-page: 157 year: 2016 end-page: 166 ident: b7 article-title: A phase field model for simulating the pitting corrosion publication-title: Corros Sci – volume: 159 start-page: 336 year: 2019 end-page: 344 ident: b14 article-title: A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture publication-title: Int J Mech Sci – volume: 101 year: 2020 ident: b1 article-title: A simulation model for the degradation of magnesium-based bone implants publication-title: J Mech Behav Biomed Mater – volume: 53 start-page: 1355 year: 2014 end-page: 1374 ident: b49 article-title: A meshless method using local exponential basis functions with weak continuity up to a desired order publication-title: Comput Mech – volume: 169 start-page: 463 year: 2001 end-page: 502 ident: b4 article-title: Level set methods: an overview and some recent results publication-title: J Comput Phys – volume: 83 start-page: 1526 year: 2005 end-page: 1535 ident: b13 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Comput Struct – volume: 190 start-page: 1 year: 2014 end-page: 22 ident: b37 article-title: Crack propagation with adaptive grid refinement in 2D peridynamics publication-title: Int J Fract – volume: 182 year: 2021 ident: b61 article-title: Exploring key ionic interactions for magnesium degradation in simulated body fluid – a data-driven approach publication-title: Corros Sci – volume: 6 year: 2019 ident: b62 article-title: Wide range mechanical customization of Mg-Gd alloys with low degradation rates by extrusion publication-title: Front Mater – volume: 32 start-page: 157 year: 1984 end-page: 169 ident: b66 article-title: Analysis of the cup-cone fracture in a round tensile bar publication-title: Acta Metall – volume: 165 start-page: C362 year: 2018 ident: b23 article-title: Peridynamic modeling of intergranular corrosion damage publication-title: J Electrochem Soc – volume: 9 start-page: 2207 issn: 2213-9567 issue: 6 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b47 article-title: Assessing the microstructure and in vitro degradation behavior of mg-xgd screw implants using μCT publication-title: Journal of Magnesium and Alloys doi: 10.1016/j.jma.2021.07.029 – volume: 69 start-page: 298 issn: 1521-4176 issue: 3 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b60 article-title: Quantitative characterization of degradation processes in situ by means of a bioreactor coupled flow chamber under physiological conditions using time-lapse SRμ CT publication-title: Mater Corros doi: 10.1002/maco.201709514 – volume: 146 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b22 article-title: A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2020.104203 – year: 2015 ident: 10.1016/j.ijmecsci.2022.107143_b50 article-title: A simple meshless method for challenging engineering problems publication-title: Eng Comput doi: 10.1108/EC-06-2014-0131 – volume: 167 issue: 13 year: 2020 ident: 10.1016/j.ijmecsci.2022.107143_b55 article-title: Temporal evolution of corrosion film nano-porosity and magnesium alloy hydrogen penetration in NaCl solution publication-title: J Electrochem Soc doi: 10.1149/1945-7111/abbdd0 – volume: 11 issue: 2 year: 2017 ident: 10.1016/j.ijmecsci.2022.107143_b71 article-title: Computational modeling of the mechanical performance of a magnesium stent undergoing uniform and pitting corrosion in a remodeling artery publication-title: J Med Devices doi: 10.1115/1.4035895 – ident: 10.1016/j.ijmecsci.2022.107143_b3 – volume: 7 start-page: 3523 issue: 9 year: 2011 ident: 10.1016/j.ijmecsci.2022.107143_b68 article-title: A corrosion model for bioabsorbable metallic stents publication-title: Acta Biomater doi: 10.1016/j.actbio.2011.05.032 – volume: 70 start-page: 104 year: 2013 ident: 10.1016/j.ijmecsci.2022.107143_b46 article-title: Evolution of hydrogen at dissolving magnesium surfaces publication-title: Corros Sci doi: 10.1016/j.corsci.2013.01.017 – volume: 144 start-page: 600 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b12 article-title: An adaptive multi-grid peridynamic method for dynamic fracture analysis publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.06.020 – volume: 71 start-page: 2432 issue: 11 year: 2016 ident: 10.1016/j.ijmecsci.2022.107143_b33 article-title: Convergence studies in meshfree peridynamic simulations publication-title: Comput Math Appl doi: 10.1016/j.camwa.2015.12.021 – volume: 119 start-page: 419 year: 2016 ident: 10.1016/j.ijmecsci.2022.107143_b39 article-title: A coupled meshless finite point/peridynamic method for 2D dynamic fracture analysis publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2016.11.003 – volume: 16 issn: 1679-7825 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b15 article-title: Fatigue degradation strategies to simulate crack propagation using peridynamic based computational methods publication-title: Lat Am J Solids Struct doi: 10.1590/1679-78255022 – year: 2016 ident: 10.1016/j.ijmecsci.2022.107143_b19 – volume: 381 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b38 article-title: Overall equilibrium in the coupling of peridynamics and classical continuum mechanics publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.113515 – volume: 330 start-page: 471 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b40 article-title: Coupling of FEM meshes with peridynamic grids publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.11.011 – start-page: 1198 year: 2016 ident: 10.1016/j.ijmecsci.2022.107143_b70 – volume: 3 start-page: 174 issue: 2 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b34 article-title: Magnesium degradation under physiological conditions - Best practice publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2018.01.003 – volume: 32 start-page: 157 issue: 1 year: 1984 ident: 10.1016/j.ijmecsci.2022.107143_b66 article-title: Analysis of the cup-cone fracture in a round tensile bar publication-title: Acta Metall doi: 10.1016/0001-6160(84)90213-X – volume: 89 start-page: 92 year: 2017 ident: 10.1016/j.ijmecsci.2022.107143_b42 article-title: Fundamentals and advances in magnesium alloy corrosion publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2017.04.011 – volume: 10 start-page: 2313 issue: 5 year: 2014 ident: 10.1016/j.ijmecsci.2022.107143_b69 article-title: A physical corrosion model for bioabsorbable metal stents publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.12.059 – volume: 23 start-page: 493 issue: 03 year: 2013 ident: 10.1016/j.ijmecsci.2022.107143_b9 article-title: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202512500546 – volume: 393 start-page: 351 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b53 article-title: On the solution of 3D problems in physics: from the geometry definition in CAD to the solution by a meshless method publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.05.007 – volume: 197 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b17 article-title: A nonlocal model for dislocations with embedded discontinuity peridynamics publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106301 – volume: 6 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b62 article-title: Wide range mechanical customization of Mg-Gd alloys with low degradation rates by extrusion publication-title: Front Mater doi: 10.3389/fmats.2019.00201 – volume: 6 start-page: 4368 issn: 2452-199X issue: 12 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b59 article-title: Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40 nm publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2021.04.009 – volume: 223 year: 2020 ident: 10.1016/j.ijmecsci.2022.107143_b41 article-title: An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.106708 – volume: 66 start-page: 773 issue: 4 year: 2020 ident: 10.1016/j.ijmecsci.2022.107143_b30 article-title: Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models publication-title: Comput Mech doi: 10.1007/s00466-020-01879-1 – volume: 197 start-page: 51 year: 2015 ident: 10.1016/j.ijmecsci.2022.107143_b28 article-title: Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion publication-title: Comput Phys Comm doi: 10.1016/j.cpc.2015.08.006 – start-page: 1 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b11 article-title: Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D publication-title: Mech Adv Mater Struct – volume: 7 start-page: 659 issue: 8 year: 2005 ident: 10.1016/j.ijmecsci.2022.107143_b72 article-title: A critical review of the stress corrosion cracking (SCC) of magnesium alloys publication-title: Adv Energy Mater – volume: 6 start-page: 4368 issue: 12 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b45 article-title: Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40 nm publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.04.009 – volume: 260 start-page: 290 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b6 article-title: New phase field model for simulating galvanic and pitting corrosion processes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.12.086 – volume: 391 issn: 0045-7825 year: 2022 ident: 10.1016/j.ijmecsci.2022.107143_b54 article-title: A hybrid meshfree discretization to improve the numerical performance of peridynamic models publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2021.114544 – start-page: 39 year: 1995 ident: 10.1016/j.ijmecsci.2022.107143_b57 article-title: A new optimizer using particle swarm theory – volume: 78 start-page: 352 year: 2015 ident: 10.1016/j.ijmecsci.2022.107143_b21 article-title: Peridynamic modeling of pitting corrosion damage publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2015.02.015 – volume: 83 start-page: 1526 issue: 17–18 year: 2005 ident: 10.1016/j.ijmecsci.2022.107143_b13 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.11.026 – volume: 99 start-page: 2 year: 1977 ident: 10.1016/j.ijmecsci.2022.107143_b65 article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media publication-title: J Eng Mater Technol doi: 10.1115/1.3443401 – volume: 190 start-page: 1 issue: 1–2 year: 2014 ident: 10.1016/j.ijmecsci.2022.107143_b37 article-title: Crack propagation with adaptive grid refinement in 2D peridynamics publication-title: Int J Fract doi: 10.1007/s10704-014-9970-4 – volume: 98 start-page: 2223 issue: 12 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b2 article-title: Numerical simulation of the tissue differentiation and corrosion process of biodegradable magnesium implants during bone fracture healing publication-title: ZAMM Z. Angew. Math. Mech. ZAMM. doi: 10.1002/zamm.201700314 – volume: 8 start-page: 617 issn: 2383-4536 issue: Issue 2 (In Progress) year: 2022 ident: 10.1016/j.ijmecsci.2022.107143_b18 article-title: A stress tensor-based failure criterion for ordinary state-based peridynamic models publication-title: J Appl Comput Mech – volume: 366 year: 2020 ident: 10.1016/j.ijmecsci.2022.107143_b27 article-title: Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.113101 – volume: 110 start-page: 157 year: 2016 ident: 10.1016/j.ijmecsci.2022.107143_b7 article-title: A phase field model for simulating the pitting corrosion publication-title: Corros Sci doi: 10.1016/j.corsci.2016.04.001 – volume: 362 year: 2020 ident: 10.1016/j.ijmecsci.2022.107143_b35 article-title: Local Dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.112856 – volume: 69 start-page: 191 issue: 2 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b43 article-title: A simple model for long-time degradation of magnesium under physiological conditions publication-title: Mater Corros doi: 10.1002/maco.201709461 – volume: 323 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b25 article-title: A peridynamic mechano-chemical damage model for stress-assisted corrosion publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.134795 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.ijmecsci.2022.107143_b58 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.985692 – year: 1999 ident: 10.1016/j.ijmecsci.2022.107143_b64 – volume: 74 start-page: 1856 issue: 8 year: 2017 ident: 10.1016/j.ijmecsci.2022.107143_b63 article-title: OpenCL implementation of a high performance 3D peridynamic model on graphics accelerators publication-title: Comput Math Appl doi: 10.1016/j.camwa.2017.06.045 – volume: 147 issue: 12 year: 2017 ident: 10.1016/j.ijmecsci.2022.107143_b29 article-title: The electroneutrality constraint in nonlocal models publication-title: J Chem Phys doi: 10.1063/1.5003915 – volume: 182 issn: 0010-938X year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b61 article-title: Exploring key ionic interactions for magnesium degradation in simulated body fluid – a data-driven approach publication-title: Corros Sci doi: 10.1016/j.corsci.2021.109272 – volume: 35 issue: 11 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b26 article-title: An approach for vascular tumor growth based on a hybrid embedded/homogenized treatment of the vasculature within a multiphase porous medium model publication-title: Int J Numer Methods Biomed Eng doi: 10.1002/cnm.3253 – volume: 162 start-page: C1 issue: 1 year: 2015 ident: 10.1016/j.ijmecsci.2022.107143_b44 article-title: Simulation of corrosion product deposit layer growth on bare magnesium galvanically coupled to aluminum publication-title: J Electrochem Soc doi: 10.1149/2.0071501jes – volume: 197 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b16 article-title: An improved ordinary-state based peridynamic formulation for modeling FGMs with sharp interface transitions publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106322 – volume: 356 start-page: 629 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b36 article-title: A local collocation method to construct Dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.07.033 – volume: 53 start-page: 1355 issue: 6 year: 2014 ident: 10.1016/j.ijmecsci.2022.107143_b49 article-title: A meshless method using local exponential basis functions with weak continuity up to a desired order publication-title: Comput Mech doi: 10.1007/s00466-014-0979-3 – volume: 139 start-page: 2613 issue: 5 year: 2016 ident: 10.1016/j.ijmecsci.2022.107143_b51 article-title: A meshless method for unbounded acoustic problems publication-title: J Acoust Soc Am doi: 10.1121/1.4948575 – volume: 70 start-page: 2247 issue: 12 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b56 article-title: Enhanced predictive corrosion modeling with implicit corrosion products publication-title: Mater Corros doi: 10.1002/maco.201911101 – volume: 218 start-page: 97 issue: 1 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b10 article-title: The third sandia fracture challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal publication-title: Int J Fract doi: 10.1007/s10704-019-00363-z – volume: 169 start-page: 463 issue: 2 year: 2001 ident: 10.1016/j.ijmecsci.2022.107143_b4 article-title: Level set methods: an overview and some recent results publication-title: J Comput Phys doi: 10.1006/jcph.2000.6636 – volume: 48 start-page: 175 issue: 1 year: 2000 ident: 10.1016/j.ijmecsci.2022.107143_b8 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(99)00029-0 – volume: 159 start-page: 336 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b14 article-title: A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.06.008 – volume: 165 start-page: C362 issue: 7 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b23 article-title: Peridynamic modeling of intergranular corrosion damage publication-title: J Electrochem Soc doi: 10.1149/2.0821807jes – volume: 66 start-page: 1245 issue: 7 year: 2013 ident: 10.1016/j.ijmecsci.2022.107143_b48 article-title: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator publication-title: Comput Math Appl doi: 10.1016/j.camwa.2013.07.022 – volume: 1 start-page: 14 issue: 1 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b20 article-title: A review of benchmark experiments for the validation of peridynamics models publication-title: J Peridynam Nonlocal Model doi: 10.1007/s42102-018-0004-x – volume: 74 start-page: 393 issue: 4 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b24 article-title: Peridynamic modeling of repassivation in pitting corrosion of stainless steel publication-title: Corrosion doi: 10.5006/2615 – volume: 100 start-page: 99 year: 2021 ident: 10.1016/j.ijmecsci.2022.107143_b52 article-title: On the simulation of image-based cellular materials in a meshless style publication-title: Comput Math Appl doi: 10.1016/j.camwa.2021.08.021 – volume: 24 start-page: 147 year: 1976 ident: 10.1016/j.ijmecsci.2022.107143_b67 article-title: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(76)90024-7 – volume: 139 start-page: 948 year: 2019 ident: 10.1016/j.ijmecsci.2022.107143_b31 article-title: Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.05.054 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ijmecsci.2022.107143_b5 article-title: Phase-field model of pitting corrosion kinetics in metallic materials publication-title: Npj Comput Mater doi: 10.1038/s41524-018-0089-4 – volume: 266 start-page: 185 year: 2013 ident: 10.1016/j.ijmecsci.2022.107143_b32 article-title: Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2013.05.018 – volume: 101 year: 2020 ident: 10.1016/j.ijmecsci.2022.107143_b1 article-title: A simulation model for the degradation of magnesium-based bone implants publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2019.103411 |
SSID | ssj0017053 |
Score | 2.4993038 |
Snippet | This paper proposes a computational framework to describe the biodegradation of magnesium (Mg)-based bone implants. It is based on a sequential combination of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107143 |
SubjectTerms | Mass loss Mg-Gd alloys Moving interface Multi-grid Non-local diffusion Strength reduction |
Title | Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength |
URI | https://dx.doi.org/10.1016/j.ijmecsci.2022.107143 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDI4Qu2yHaU_tiXzYtdB36BGhIbZpnIbErUrz2IqgVNBd9xv2k2f3gZg0icOOTesoip3Yrv3ZjD0oE4XSVsoyvq8tn2vbinQSoiwHwjPa04Gi_x2vk3A89Z9nwazFhg0WhtIq67u_utPL27oe6dW72cvTlDC-Luo_GyWyUoyEYPc5SXn3a5vmQdViqigzukn09Q5KeN5N50stcXL0E10XB3mJ3vlLQe0ondEJO66tRRhUCzplLZ2dsaOdGoLn7BtPdFJ2eQAqWqyqDvMgMgUmJYMSdJUhDpt0Wffq2kCxAilyih4AWoCALiguBt_AyoCi-hGKIFWQrDIN6TJfULZMOScS5msK7hRQxhgA3fUSzwWEOsnei48LNh09vg3HVt1mwZJeaBeWHwrHGJc7jtTc-AkPjHS1LfF0hoGrhdE81EHf5ontad9JXFf0I-pOjbYYPgrvkrUzXM4Vg77gUkToEpqIWps5EcFYbamcsO95aMtcs6DZ21jWNcipFcYibpLN5nHDk5h4Elc8uWa9LV1eVeHYSxE1rIt_yVOMqmIP7c0_aG_ZIT1RvMkJ7li7WH_qezRbiqRTymWHHQyeXsaTHwiL73Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gHIAD4inG0weuZW36PiIEGo_ttEncqjQP6LR11Vau_AZ-MnYfaEhIHDg2raModmK79mczdqVMHEhbKct4nra8UNtWrNMAZdkXrtGu9hX97xgMg_7Ye3zxX9bYbYuFobTK5u6v7_Tqtm5Ges1u9oosI4wvR_1no0TWinGdbXh4fKmNwfXHd54HlYupw8zoJ9HnKzDhyXU2mWmJs6OjyDkOhhV85zcNtaJ17nfZTmMuwk29oj22pvN9tr1SRPCAfeKRTqs2D0BVi1XdYh5ErsBkZFGCrlPEYZnNmmZdSyjnIEVB4QNAExDQB8XF4BuYG1BUQEIRpgrSea4hmxVTSpep5kTCYkHRnRKqIAOgv14BuoBgJ_lr-XbIxvd3o9u-1fRZsKQb2KXlBcIxhoeOI3VovDT0jeTalng8A59rYXQYaD-yw9R2teeknIsopvbUaIzho3CPWCfH5RwziEQoRYw-oYmpt5kTE47VlsoJItdFY6bL_HZvE9kUIadeGNOkzTabJC1PEuJJUvOky3rfdEVdhuNPirhlXfJDoBLUFX_QnvyD9pJt9keD5-T5Yfh0yrboDQWfHP-MdcrFuz5HG6ZMLyoZ_QKF5_EE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+peridynamic+and+finite+element+simulations+to+capture+the+corrosion+of+degradable+bone+implants+and+to+predict+their+residual+strength&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Hermann%2C+Alexander&rft.au=Shojaei%2C+Arman&rft.au=Steglich%2C+Dirk&rft.au=H%C3%B6che%2C+Daniel&rft.date=2022-04-15&rft.pub=Elsevier+Ltd&rft.issn=0020-7403&rft.eissn=1879-2162&rft.volume=220&rft_id=info:doi/10.1016%2Fj.ijmecsci.2022.107143&rft.externalDocID=S0020740322000741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon |