Data-Driven Predictive Control of Building Energy Consumption under the IoT Architecture
Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system limitations) over the prediction horizon. Howeve...
Saved in:
Published in | Wireless communications and mobile computing Vol. 2020; no. 2020; pp. 1 - 20 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system limitations) over the prediction horizon. However, due to the buildings’ heterogeneous nature, control-oriented physical models’ development may be cost and time prohibitive. Data-driven predictive control, integration of the “Internet of Things”, provides an attempt to bypass the need for physical modeling. This work presents an innovative study on a data-driven predictive control (DPC) for building energy management under the four-tier building energy Internet of Things architecture. Here, we develop a cloud-based SCADA building energy management system framework for the standardization of communication protocols and data formats, which is favorable for advanced control strategies implementation. Two DPC strategies based on building predictive models using the regression tree (RT) and the least-squares boosting (LSBoost) algorithms are presented, which are highly interpretable and easy for different stakeholders (end-user, building energy manager, and/or operator) to operate. The predictive model’s complexity is reduced by efficient feature selection to decrease the variables’ dimensionality and further alleviate the DPC optimization problem’s complexity. The selection is dependent on the principal component analysis (PCA) and the importance of disturbance variables (IoD). The proposed strategies are demonstrated both in residential and office buildings. The results show that the DPC-LSBoost has outperformed the DPC-RT and other existing control strategies (MPC, TDNN) in performance, scalability, and robustness. |
---|---|
AbstractList | Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system limitations) over the prediction horizon. However, due to the buildings’ heterogeneous nature, control-oriented physical models’ development may be cost and time prohibitive. Data-driven predictive control, integration of the “Internet of Things”, provides an attempt to bypass the need for physical modeling. This work presents an innovative study on a data-driven predictive control (DPC) for building energy management under the four-tier building energy Internet of Things architecture. Here, we develop a cloud-based SCADA building energy management system framework for the standardization of communication protocols and data formats, which is favorable for advanced control strategies implementation. Two DPC strategies based on building predictive models using the regression tree (RT) and the least-squares boosting (LSBoost) algorithms are presented, which are highly interpretable and easy for different stakeholders (end-user, building energy manager, and/or operator) to operate. The predictive model’s complexity is reduced by efficient feature selection to decrease the variables’ dimensionality and further alleviate the DPC optimization problem’s complexity. The selection is dependent on the principal component analysis (PCA) and the importance of disturbance variables (IoD). The proposed strategies are demonstrated both in residential and office buildings. The results show that the DPC-LSBoost has outperformed the DPC-RT and other existing control strategies (MPC, TDNN) in performance, scalability, and robustness. |
Author | Wang, Biao Ke, Ji Yang, Shundong Wu, Hao Yang, Hang Qin, Yude Zhao, Xing |
Author_xml | – sequence: 1 fullname: Zhao, Xing – sequence: 2 fullname: Wu, Hao – sequence: 3 fullname: Yang, Shundong – sequence: 4 fullname: Wang, Biao – sequence: 5 fullname: Qin, Yude – sequence: 6 fullname: Ke, Ji – sequence: 7 fullname: Yang, Hang |
BookMark | eNqFkN1LwzAUxYNMcJu--SwBH7Uun037OLepg4E-TPCtZGm6ZXTJTFNl_70tHQqC-HQP3N-5l3MGoGed1QBcYnSHMecjgggaJQlLOcMnoI85RVESC9H71nF6BgZVtUUIUURwH7xNZZDR1JsPbeGL17lRodFw4mzwroSugPe1KXNj13BmtV8f2lVV7_bBOAtrm2sPw0bDuVvCsVcbE7QKtdfn4LSQZaUvjnMIXh9my8lTtHh-nE_Gi0jRGIWIxTFpVCGoZEpyJjBLi0QoogsVr0jKOaUc5ytJkUKESSHSQkqVI5XHTKOUDsF1d3fv3Xutq5BtXe1t8zIjTLAUN37eUKSjlHdV5XWRKRNkGyF4acoMo6xtMGsbzI4NNqbbX6a9NzvpD3_hNx2-MTaXn-Y_-qqjdcPoQv7QBDNBMP0CWW6JeQ |
CitedBy_id | crossref_primary_10_1109_TAI_2024_3404913 crossref_primary_10_1016_j_measen_2023_100980 crossref_primary_10_3390_en16196830 crossref_primary_10_1007_s12053_024_10249_2 crossref_primary_10_1016_j_epsr_2024_111185 crossref_primary_10_3390_app12115473 crossref_primary_10_1016_j_egyr_2022_10_281 crossref_primary_10_1016_j_energy_2023_126934 crossref_primary_10_1016_j_solmat_2024_112822 crossref_primary_10_3390_en16145584 crossref_primary_10_3390_su16052154 crossref_primary_10_1016_j_energy_2022_125703 crossref_primary_10_1016_j_scs_2021_103625 |
Cites_doi | 10.1109/ICSEM.2010.14 10.1155/2019/5741708 10.1109/ACC.2012.6315699 10.1109/ACC.2010.5530680 10.1016/j.arcontrol.2020.09.001 10.1016/S0378-7788(02)00004-X 10.1016/j.apenergy.2018.02.126 10.1016/j.apenergy.2010.04.001 10.1016/j.foar.2012.11.001 10.1007/978-1-4471-6347-3 10.1016/j.egypro.2015.11.701 10.1016/j.jprocont.2014.01.016 10.1016/j.apenergy.2018.02.156 10.1016/j.autcon.2004.06.001 10.1016/j.enbuild.2017.02.012 10.1126/science.1180775 10.1016/j.enbuild.2012.08.002 10.1016/j.apenergy.2011.03.009 10.1016/j.jprocont.2020.02.007 10.1016/j.enbuild.2011.09.022 10.1787/9789264202955-en 10.1016/j.enbuild.2017.06.027 10.23919/ACC.2017.7962928 10.1155/2019/9245392 10.1109/TCST.2011.2124461 10.1155/2019/6059343 10.1016/B978-0-12-409548-9.10199-X 10.1155/2018/5781363 10.1109/AINA.2010.187 10.3384/ecp1511851 10.1155/2017/5921523 10.1145/2993422.2993582 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Ji Ke et al. Copyright © 2020 Ji Ke et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2020 Ji Ke et al. – notice: Copyright © 2020 Ji Ke et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1155/2020/8849541 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-8677 |
Editor | Guo, Hongzhi |
Editor_xml | – sequence: 1 givenname: Hongzhi surname: Guo fullname: Guo, Hongzhi |
EndPage | 20 |
ExternalDocumentID | 10_1155_2020_8849541 1214721 |
GrantInformation_xml | – fundername: Key Fund of Shaanxi Province Natural Science Basic Research Program grantid: 2019LZ-06 – fundername: National Internet of Things Integrated Innovation and Integration grantid: 2018-470 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW AAZKR ABIJN ABPVW ACBWZ ACCFJ ACGFO ACXQS ADBBV ADIZJ ADJCN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFKRA AFZJQ AHFXO AIAGR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ARCSS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS EDO EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HVGLF HZ~ I-F IAO ITG ITH IX1 JPC K7- KQQ LAW LH4 LITHE LP6 LP7 LW6 M0N MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL WYUIH XPP XV2 ~IA ~WT ITC RHU RHW AAYXX ACCMX CITATION PHGZM PHGZT 7SC 7SP 7XB 8FD 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c360t-4662c36f73a4ca547149f87c2efc6b29553351dba30c024a779faacd0cd64e093 |
IEDL.DBID | BENPR |
ISSN | 1530-8669 |
IngestDate | Fri Jul 25 09:31:36 EDT 2025 Tue Jul 01 00:39:24 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Sun Jun 02 18:55:11 EDT 2024 Tue Nov 26 17:10:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-4662c36f73a4ca547149f87c2efc6b29553351dba30c024a779faacd0cd64e093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2495-4506 0000-0002-3443-2130 |
OpenAccessLink | https://www.proquest.com/docview/2474913355?pq-origsite=%requestingapplication% |
PQID | 2474913355 |
PQPubID | 2034344 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2474913355 crossref_citationtrail_10_1155_2020_8849541 crossref_primary_10_1155_2020_8849541 hindawi_primary_10_1155_2020_8849541 emarefa_primary_1214721 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Oxford |
PublicationTitle | Wireless communications and mobile computing |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 23 24 25 27 G. L. Lei (39) 1999; 22 D. Gyalistras (15) 2010 J. R. New (26) 2012; 5 28 M. del Mar Castilla (14) 2014 29 30 31 10 32 33 12 34 35 36 37 38 17 18 19 M. M. Abdelrahman (1) 2020 S. Bhardwaj (11) 2010; 2 P. Mell (13) 2011 2 3 4 5 6 7 8 9 K. W. Roth (16) 2002 40 20 21 |
References_xml | – ident: 40 doi: 10.1109/ICSEM.2010.14 – ident: 7 doi: 10.1155/2019/5741708 – volume-title: The Nist Definition of Cloud Computing year: 2011 ident: 13 – ident: 34 doi: 10.1109/ACC.2012.6315699 – volume: 2 start-page: 60 issue: 1 year: 2010 ident: 11 article-title: Cloud computing: a study of infrastructure as a service (IAAS) publication-title: International Journal of Engineering and Information Technology – ident: 37 – ident: 22 doi: 10.1109/ACC.2010.5530680 – ident: 5 doi: 10.1016/j.arcontrol.2020.09.001 – ident: 38 doi: 10.1016/S0378-7788(02)00004-X – volume-title: A three-tier architecture visual-programming platform for building-lifecycle data management year: 2020 ident: 1 – ident: 31 doi: 10.1016/j.apenergy.2018.02.126 – volume-title: Clima-RHEVA World Congress year: 2010 ident: 15 article-title: Analysis of energy savings potentials for integrated room automation – ident: 19 doi: 10.1016/j.apenergy.2010.04.001 – ident: 17 doi: 10.1016/j.foar.2012.11.001 – volume-title: Comfort control in buildings, chapter 4 year: 2014 ident: 14 doi: 10.1007/978-1-4471-6347-3 – ident: 36 doi: 10.1016/j.egypro.2015.11.701 – ident: 24 doi: 10.1016/j.jprocont.2014.01.016 – ident: 18 doi: 10.1016/j.apenergy.2018.02.156 – ident: 2 doi: 10.1016/j.autcon.2004.06.001 – ident: 27 doi: 10.1016/j.enbuild.2017.02.012 – ident: 4 doi: 10.1126/science.1180775 – ident: 29 doi: 10.1016/j.enbuild.2012.08.002 – ident: 23 doi: 10.1016/j.apenergy.2011.03.009 – ident: 32 doi: 10.1016/j.jprocont.2020.02.007 – ident: 21 doi: 10.1016/j.enbuild.2011.09.022 – ident: 3 doi: 10.1787/9789264202955-en – ident: 28 doi: 10.1016/j.enbuild.2017.06.027 – ident: 25 doi: 10.23919/ACC.2017.7962928 – ident: 10 doi: 10.1155/2019/9245392 – volume: 5 start-page: 270 issue: 1 year: 2012 ident: 26 article-title: Autotune e+ building energy models publication-title: Proceedings of SimBuild – ident: 20 doi: 10.1109/TCST.2011.2124461 – ident: 6 doi: 10.1155/2019/6059343 – ident: 33 doi: 10.1016/B978-0-12-409548-9.10199-X – ident: 9 doi: 10.1155/2018/5781363 – ident: 12 doi: 10.1109/AINA.2010.187 – volume-title: Energy Consumption Characteristics of Commercial Building Hvac Systems Volume III: Energy Savings Potential year: 2002 ident: 16 – ident: 35 doi: 10.3384/ecp1511851 – volume: 22 start-page: 40 issue: 2 year: 1999 ident: 39 article-title: Human comfort index forecast of Nanchang publication-title: Jiangxi Meteorological Science & Technology – ident: 8 doi: 10.1155/2017/5921523 – ident: 30 doi: 10.1145/2993422.2993582 |
SSID | ssj0003021 |
Score | 2.2966774 |
Snippet | Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g.,... |
SourceID | proquest crossref hindawi emarefa |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Communication Complexity Computer architecture Cost function Emissions Energy consumption Energy efficiency Energy management Green buildings HVAC equipment Internet of Things Neural networks Office buildings Optimal control Optimization Prediction models Predictive control Principal components analysis Protocol (computers) Regression analysis Simulation Standardization Supervisory control and data acquisition Thermal comfort |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86GOhB_HY6JYd5kmLaJm16nPtgCoqHDXorSZqgoJt0Ff99X9psTofoLSVpDu8l7_1-ecl7CHWIIZILyj0hciAokVJewoX0KM9VbIhmsjrTvX-IRhN6l7LUJUmar4fwwdtZek6uOQckbx-ob8ICs6R8lC4NbkgClxaVeDyKksX99h__fvM8Tf0qoAHuqPlkye_H85oxrjzMcBftOGiIu7Uu99CGnu6j7ZWEgQco7YtSeP3Cmij8WNggizVXuFdfOMczg29cnWs8qF712S5YbJVhwPbBWIEB8uHb2Rh3V2IIh2gyHIx7I8_VRvBUGJESpBoF0DJxKKgSDFwMTQyPVaCNimSQMIBxzM-lCIkCNyziODFCqJyoPKKaJOERakxnU32CMCAQIg0QRT8xNAe8IYFzyMBX3Pc1U6yFrhZyy5RLHG7rV7xkFYFgLLNSzpyUW-hyOfqtTpjxy7hjp4KvYbZmUgA9HaeSPyZoL_SVuX03zwIa0wRoN2On_5vlDG3Zz_pQpY0aZfGuzwFmlPKiWmSfwoDHZQ priority: 102 providerName: Hindawi Publishing |
Title | Data-Driven Predictive Control of Building Energy Consumption under the IoT Architecture |
URI | https://search.emarefa.net/detail/BIM-1214721 https://dx.doi.org/10.1155/2020/8849541 https://www.proquest.com/docview/2474913355 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA9uY6AP4rfTOfIwn6QsbZM2fZJ9OgXHGBvsrSRpg4Juc5v473vpsk0R9aWkJAR6l_7ufpfkDqEq0URyQbkjRAIEJVDKibiQDuWJCjVJmcxiuo-9oDuiD2M2tgG3hT1WucbEDKiTqTIx8ppHQxoBoWLsdvbmmKpRZnfVltDIoQJAMOd5VGi0e_3BBot94tmMqcThQRCtj74zZlg_qXEOBIG634xSMX0V0ABLVXwyvPjj-QdOZ8anc4D2rdeI6ys1H6KddHKE9r7kEjxG45ZYCqc1N-iF-3Oz_2KQDDdXZ9HxVOOGLYGN29mFP9MFH5ZhBjZ3yeYYvEF8Px3i-pfthRM06rSHza5jyyY4yg_IEgQeeNDSoS-oEgysD400D5WXahVIL2Lg4TE3kcInCiy0CMNIC6ESopKApiTyT1F-Mp2k5wiDc0KkBg7pRpom4IpIoCPScxV33ZQpVkI3a7nFyuYUN6UtXuKMWzAWGynHVsoldL0ZPVvl0vhl3JlVwXaYKafkQU_VquSfCcprfcX2l1zE2wV08Xf3Jdo1k63iLGWUX87f0yvwPJaygnK8c1exiwzeWgMPnoPu-BMGKtXo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6iiHoQ367PHPQkxTRN2vQgoq7rri88rLC3mqQJCrqr64r4p_yNTtrUB6KevBUSQpkZvplvkplBaINYooRkIpAyB4ISax2kQqqAiVwnlhiuipzu2XncvGTHHd4ZQq9VLYx7VllhYgHUeU-7HPk2ZQlLgVBxvnv_ELipUe52tRqhUZrFiXl5Bsr2uNOqg343KW0ctg-agZ8qEOgoJgP4n5jCl00iybTkAM4stSLR1FgdK5pyCIB4mCsZEQ0OTCZJaqXUOdF5zEzRfAkgf4RF4MldZXrj6B35I0J9f1YSiDhOq4f2nLscA9kWAugIC7-4wFFzJ-ED_OLotWPhzzffvELh6hpTaNLHqHivNKppNGS6M2jiU-fCWdSpy4EM6n2Hlfii7257HG7ig_LlO-5ZvO8HbuPDorzQLYEYC4TCrnKtjyH2xK1eG-99usyYQ5f_Is55NNztdc0iwhAKEWWBsYapZTkEPgrIj6KhFmFouOY1tFXJLdO-g7kbpHGbFUyG88xJOfNSrqHN9933ZeeOH_YteBV8bHPDmyisbHiV_HHASqWvzAPAY_Zhrku_L6-jsWb77DQ7bZ2fLKNxd3CZ4VlBw4P-k1mFmGeg1gpDw-jqvy37DaXmDkk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fSxwxEB7kRNGHYuvvas2DPsly2Vyym30oot4dntbjEIV7W5NsQgt6p-cV6b_Wv87JblYtxfbJt0BC2J0ZvpkvmcwA7FJHtVRcRkoVSFASY6JMKh1xWZjUUSt0eaZ73k9OrvjpUAxn4Hf9FsanVdaYWAJ1MTb-jLzJeMozJFRCNF1Iixi0uwd395HvIOVvWut2GpWJnNlfj0jfHr722qjrPca6ncvjkyh0GIhMK6FT_LaE4cilLcWNEgjUPHMyNcw6k2iWCQyGRFxo1aIGnZlK08wpZQpqioTbshATwv9s6llRA2aPOv3BxbMfaFEWqrXSSCZJVqfd4x8wDNKaUiI54fEfDnHO3iocoJec--45-eOPv3xE6fi6S_AhRKzksDKxjzBjR59g8VUdw2UYttVURe2JR04ymPi7H4-i5LjKgydjR45C-23SKR8b-ikUZIlXxL9jmxCMRElvfEkOX11trMDVuwh0FRqj8ciuA8HAiGqH_DXOHC8wDNJIhTSLjYxjK4zYgP1abrkJ9cx9W42bvOQ1QuReynmQ8gbsPa--q-p4vLFuLajgZZlv5cRwZjeo5D8bbNX6ygMcPOQvxrv57-kdmEerzr_1-mefYcHvWx33bEFjOvlptzEAmuovwdIIXL-3cT8B-QUT2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Predictive+Control+of+Building+Energy+Consumption+under+the+IoT+Architecture&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Zhao%2C+Xing&rft.au=Wu%2C+Hao&rft.au=Yang%2C+Shundong&rft.au=Wang%2C+Biao&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1155%2F2020%2F8849541&rft.externalDBID=ADJCN&rft.externalDocID=1214721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |