Data-Driven Predictive Control of Building Energy Consumption under the IoT Architecture

Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system limitations) over the prediction horizon. Howeve...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 2020; no. 2020; pp. 1 - 20
Main Authors Zhao, Xing, Wu, Hao, Yang, Shundong, Wang, Biao, Qin, Yude, Ke, Ji, Yang, Hang
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system limitations) over the prediction horizon. However, due to the buildings’ heterogeneous nature, control-oriented physical models’ development may be cost and time prohibitive. Data-driven predictive control, integration of the “Internet of Things”, provides an attempt to bypass the need for physical modeling. This work presents an innovative study on a data-driven predictive control (DPC) for building energy management under the four-tier building energy Internet of Things architecture. Here, we develop a cloud-based SCADA building energy management system framework for the standardization of communication protocols and data formats, which is favorable for advanced control strategies implementation. Two DPC strategies based on building predictive models using the regression tree (RT) and the least-squares boosting (LSBoost) algorithms are presented, which are highly interpretable and easy for different stakeholders (end-user, building energy manager, and/or operator) to operate. The predictive model’s complexity is reduced by efficient feature selection to decrease the variables’ dimensionality and further alleviate the DPC optimization problem’s complexity. The selection is dependent on the principal component analysis (PCA) and the importance of disturbance variables (IoD). The proposed strategies are demonstrated both in residential and office buildings. The results show that the DPC-LSBoost has outperformed the DPC-RT and other existing control strategies (MPC, TDNN) in performance, scalability, and robustness.
AbstractList Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g., energy consumption) subject to constraints (e.g., thermal comfort violations and HVAC system limitations) over the prediction horizon. However, due to the buildings’ heterogeneous nature, control-oriented physical models’ development may be cost and time prohibitive. Data-driven predictive control, integration of the “Internet of Things”, provides an attempt to bypass the need for physical modeling. This work presents an innovative study on a data-driven predictive control (DPC) for building energy management under the four-tier building energy Internet of Things architecture. Here, we develop a cloud-based SCADA building energy management system framework for the standardization of communication protocols and data formats, which is favorable for advanced control strategies implementation. Two DPC strategies based on building predictive models using the regression tree (RT) and the least-squares boosting (LSBoost) algorithms are presented, which are highly interpretable and easy for different stakeholders (end-user, building energy manager, and/or operator) to operate. The predictive model’s complexity is reduced by efficient feature selection to decrease the variables’ dimensionality and further alleviate the DPC optimization problem’s complexity. The selection is dependent on the principal component analysis (PCA) and the importance of disturbance variables (IoD). The proposed strategies are demonstrated both in residential and office buildings. The results show that the DPC-LSBoost has outperformed the DPC-RT and other existing control strategies (MPC, TDNN) in performance, scalability, and robustness.
Author Wang, Biao
Ke, Ji
Yang, Shundong
Wu, Hao
Yang, Hang
Qin, Yude
Zhao, Xing
Author_xml – sequence: 1
  fullname: Zhao, Xing
– sequence: 2
  fullname: Wu, Hao
– sequence: 3
  fullname: Yang, Shundong
– sequence: 4
  fullname: Wang, Biao
– sequence: 5
  fullname: Qin, Yude
– sequence: 6
  fullname: Ke, Ji
– sequence: 7
  fullname: Yang, Hang
BookMark eNqFkN1LwzAUxYNMcJu--SwBH7Uun037OLepg4E-TPCtZGm6ZXTJTFNl_70tHQqC-HQP3N-5l3MGoGed1QBcYnSHMecjgggaJQlLOcMnoI85RVESC9H71nF6BgZVtUUIUURwH7xNZZDR1JsPbeGL17lRodFw4mzwroSugPe1KXNj13BmtV8f2lVV7_bBOAtrm2sPw0bDuVvCsVcbE7QKtdfn4LSQZaUvjnMIXh9my8lTtHh-nE_Gi0jRGIWIxTFpVCGoZEpyJjBLi0QoogsVr0jKOaUc5ytJkUKESSHSQkqVI5XHTKOUDsF1d3fv3Xutq5BtXe1t8zIjTLAUN37eUKSjlHdV5XWRKRNkGyF4acoMo6xtMGsbzI4NNqbbX6a9NzvpD3_hNx2-MTaXn-Y_-qqjdcPoQv7QBDNBMP0CWW6JeQ
CitedBy_id crossref_primary_10_1109_TAI_2024_3404913
crossref_primary_10_1016_j_measen_2023_100980
crossref_primary_10_3390_en16196830
crossref_primary_10_1007_s12053_024_10249_2
crossref_primary_10_1016_j_epsr_2024_111185
crossref_primary_10_3390_app12115473
crossref_primary_10_1016_j_egyr_2022_10_281
crossref_primary_10_1016_j_energy_2023_126934
crossref_primary_10_1016_j_solmat_2024_112822
crossref_primary_10_3390_en16145584
crossref_primary_10_3390_su16052154
crossref_primary_10_1016_j_energy_2022_125703
crossref_primary_10_1016_j_scs_2021_103625
Cites_doi 10.1109/ICSEM.2010.14
10.1155/2019/5741708
10.1109/ACC.2012.6315699
10.1109/ACC.2010.5530680
10.1016/j.arcontrol.2020.09.001
10.1016/S0378-7788(02)00004-X
10.1016/j.apenergy.2018.02.126
10.1016/j.apenergy.2010.04.001
10.1016/j.foar.2012.11.001
10.1007/978-1-4471-6347-3
10.1016/j.egypro.2015.11.701
10.1016/j.jprocont.2014.01.016
10.1016/j.apenergy.2018.02.156
10.1016/j.autcon.2004.06.001
10.1016/j.enbuild.2017.02.012
10.1126/science.1180775
10.1016/j.enbuild.2012.08.002
10.1016/j.apenergy.2011.03.009
10.1016/j.jprocont.2020.02.007
10.1016/j.enbuild.2011.09.022
10.1787/9789264202955-en
10.1016/j.enbuild.2017.06.027
10.23919/ACC.2017.7962928
10.1155/2019/9245392
10.1109/TCST.2011.2124461
10.1155/2019/6059343
10.1016/B978-0-12-409548-9.10199-X
10.1155/2018/5781363
10.1109/AINA.2010.187
10.3384/ecp1511851
10.1155/2017/5921523
10.1145/2993422.2993582
ContentType Journal Article
Copyright Copyright © 2020 Ji Ke et al.
Copyright © 2020 Ji Ke et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2020 Ji Ke et al.
– notice: Copyright © 2020 Ji Ke et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2020/8849541
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Guo, Hongzhi
Editor_xml – sequence: 1
  givenname: Hongzhi
  surname: Guo
  fullname: Guo, Hongzhi
EndPage 20
ExternalDocumentID 10_1155_2020_8849541
1214721
GrantInformation_xml – fundername: Key Fund of Shaanxi Province Natural Science Basic Research Program
  grantid: 2019LZ-06
– fundername: National Internet of Things Integrated Innovation and Integration
  grantid: 2018-470
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAJEY
AAONW
AAZKR
ABIJN
ABPVW
ACBWZ
ACCFJ
ACGFO
ACXQS
ADBBV
ADIZJ
ADJCN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFZJQ
AHFXO
AIAGR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HVGLF
HZ~
I-F
IAO
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LH4
LITHE
LP6
LP7
LW6
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
WYUIH
XPP
XV2
~IA
~WT
ITC
RHU
RHW
AAYXX
ACCMX
CITATION
PHGZM
PHGZT
7SC
7SP
7XB
8FD
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-4662c36f73a4ca547149f87c2efc6b29553351dba30c024a779faacd0cd64e093
IEDL.DBID BENPR
ISSN 1530-8669
IngestDate Fri Jul 25 09:31:36 EDT 2025
Tue Jul 01 00:39:24 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Sun Jun 02 18:55:11 EDT 2024
Tue Nov 26 17:10:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-4662c36f73a4ca547149f87c2efc6b29553351dba30c024a779faacd0cd64e093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2495-4506
0000-0002-3443-2130
OpenAccessLink https://www.proquest.com/docview/2474913355?pq-origsite=%requestingapplication%
PQID 2474913355
PQPubID 2034344
PageCount 20
ParticipantIDs proquest_journals_2474913355
crossref_citationtrail_10_1155_2020_8849541
crossref_primary_10_1155_2020_8849541
hindawi_primary_10_1155_2020_8849541
emarefa_primary_1214721
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
27
G. L. Lei (39) 1999; 22
D. Gyalistras (15) 2010
J. R. New (26) 2012; 5
28
M. del Mar Castilla (14) 2014
29
30
31
10
32
33
12
34
35
36
37
38
17
18
19
M. M. Abdelrahman (1) 2020
S. Bhardwaj (11) 2010; 2
P. Mell (13) 2011
2
3
4
5
6
7
8
9
K. W. Roth (16) 2002
40
20
21
References_xml – ident: 40
  doi: 10.1109/ICSEM.2010.14
– ident: 7
  doi: 10.1155/2019/5741708
– volume-title: The Nist Definition of Cloud Computing
  year: 2011
  ident: 13
– ident: 34
  doi: 10.1109/ACC.2012.6315699
– volume: 2
  start-page: 60
  issue: 1
  year: 2010
  ident: 11
  article-title: Cloud computing: a study of infrastructure as a service (IAAS)
  publication-title: International Journal of Engineering and Information Technology
– ident: 37
– ident: 22
  doi: 10.1109/ACC.2010.5530680
– ident: 5
  doi: 10.1016/j.arcontrol.2020.09.001
– ident: 38
  doi: 10.1016/S0378-7788(02)00004-X
– volume-title: A three-tier architecture visual-programming platform for building-lifecycle data management
  year: 2020
  ident: 1
– ident: 31
  doi: 10.1016/j.apenergy.2018.02.126
– volume-title: Clima-RHEVA World Congress
  year: 2010
  ident: 15
  article-title: Analysis of energy savings potentials for integrated room automation
– ident: 19
  doi: 10.1016/j.apenergy.2010.04.001
– ident: 17
  doi: 10.1016/j.foar.2012.11.001
– volume-title: Comfort control in buildings, chapter 4
  year: 2014
  ident: 14
  doi: 10.1007/978-1-4471-6347-3
– ident: 36
  doi: 10.1016/j.egypro.2015.11.701
– ident: 24
  doi: 10.1016/j.jprocont.2014.01.016
– ident: 18
  doi: 10.1016/j.apenergy.2018.02.156
– ident: 2
  doi: 10.1016/j.autcon.2004.06.001
– ident: 27
  doi: 10.1016/j.enbuild.2017.02.012
– ident: 4
  doi: 10.1126/science.1180775
– ident: 29
  doi: 10.1016/j.enbuild.2012.08.002
– ident: 23
  doi: 10.1016/j.apenergy.2011.03.009
– ident: 32
  doi: 10.1016/j.jprocont.2020.02.007
– ident: 21
  doi: 10.1016/j.enbuild.2011.09.022
– ident: 3
  doi: 10.1787/9789264202955-en
– ident: 28
  doi: 10.1016/j.enbuild.2017.06.027
– ident: 25
  doi: 10.23919/ACC.2017.7962928
– ident: 10
  doi: 10.1155/2019/9245392
– volume: 5
  start-page: 270
  issue: 1
  year: 2012
  ident: 26
  article-title: Autotune e+ building energy models
  publication-title: Proceedings of SimBuild
– ident: 20
  doi: 10.1109/TCST.2011.2124461
– ident: 6
  doi: 10.1155/2019/6059343
– ident: 33
  doi: 10.1016/B978-0-12-409548-9.10199-X
– ident: 9
  doi: 10.1155/2018/5781363
– ident: 12
  doi: 10.1109/AINA.2010.187
– volume-title: Energy Consumption Characteristics of Commercial Building Hvac Systems Volume III: Energy Savings Potential
  year: 2002
  ident: 16
– ident: 35
  doi: 10.3384/ecp1511851
– volume: 22
  start-page: 40
  issue: 2
  year: 1999
  ident: 39
  article-title: Human comfort index forecast of Nanchang
  publication-title: Jiangxi Meteorological Science & Technology
– ident: 8
  doi: 10.1155/2017/5921523
– ident: 30
  doi: 10.1145/2993422.2993582
SSID ssj0003021
Score 2.2966774
Snippet Model predictive control is theoretically suitable for optimal control of the building, which provides a framework for optimizing a given cost function (e.g.,...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Communication
Complexity
Computer architecture
Cost function
Emissions
Energy consumption
Energy efficiency
Energy management
Green buildings
HVAC equipment
Internet of Things
Neural networks
Office buildings
Optimal control
Optimization
Prediction models
Predictive control
Principal components analysis
Protocol (computers)
Regression analysis
Simulation
Standardization
Supervisory control and data acquisition
Thermal comfort
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86GOhB_HY6JYd5kmLaJm16nPtgCoqHDXorSZqgoJt0Ff99X9psTofoLSVpDu8l7_1-ecl7CHWIIZILyj0hciAokVJewoX0KM9VbIhmsjrTvX-IRhN6l7LUJUmar4fwwdtZek6uOQckbx-ob8ICs6R8lC4NbkgClxaVeDyKksX99h__fvM8Tf0qoAHuqPlkye_H85oxrjzMcBftOGiIu7Uu99CGnu6j7ZWEgQco7YtSeP3Cmij8WNggizVXuFdfOMczg29cnWs8qF712S5YbJVhwPbBWIEB8uHb2Rh3V2IIh2gyHIx7I8_VRvBUGJESpBoF0DJxKKgSDFwMTQyPVaCNimSQMIBxzM-lCIkCNyziODFCqJyoPKKaJOERakxnU32CMCAQIg0QRT8xNAe8IYFzyMBX3Pc1U6yFrhZyy5RLHG7rV7xkFYFgLLNSzpyUW-hyOfqtTpjxy7hjp4KvYbZmUgA9HaeSPyZoL_SVuX03zwIa0wRoN2On_5vlDG3Zz_pQpY0aZfGuzwFmlPKiWmSfwoDHZQ
  priority: 102
  providerName: Hindawi Publishing
Title Data-Driven Predictive Control of Building Energy Consumption under the IoT Architecture
URI https://search.emarefa.net/detail/BIM-1214721
https://dx.doi.org/10.1155/2020/8849541
https://www.proquest.com/docview/2474913355
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA9uY6AP4rfTOfIwn6QsbZM2fZJ9OgXHGBvsrSRpg4Juc5v473vpsk0R9aWkJAR6l_7ufpfkDqEq0URyQbkjRAIEJVDKibiQDuWJCjVJmcxiuo-9oDuiD2M2tgG3hT1WucbEDKiTqTIx8ppHQxoBoWLsdvbmmKpRZnfVltDIoQJAMOd5VGi0e_3BBot94tmMqcThQRCtj74zZlg_qXEOBIG634xSMX0V0ABLVXwyvPjj-QdOZ8anc4D2rdeI6ys1H6KddHKE9r7kEjxG45ZYCqc1N-iF-3Oz_2KQDDdXZ9HxVOOGLYGN29mFP9MFH5ZhBjZ3yeYYvEF8Px3i-pfthRM06rSHza5jyyY4yg_IEgQeeNDSoS-oEgysD400D5WXahVIL2Lg4TE3kcInCiy0CMNIC6ESopKApiTyT1F-Mp2k5wiDc0KkBg7pRpom4IpIoCPScxV33ZQpVkI3a7nFyuYUN6UtXuKMWzAWGynHVsoldL0ZPVvl0vhl3JlVwXaYKafkQU_VquSfCcprfcX2l1zE2wV08Xf3Jdo1k63iLGWUX87f0yvwPJaygnK8c1exiwzeWgMPnoPu-BMGKtXo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6iiHoQ367PHPQkxTRN2vQgoq7rri88rLC3mqQJCrqr64r4p_yNTtrUB6KevBUSQpkZvplvkplBaINYooRkIpAyB4ISax2kQqqAiVwnlhiuipzu2XncvGTHHd4ZQq9VLYx7VllhYgHUeU-7HPk2ZQlLgVBxvnv_ELipUe52tRqhUZrFiXl5Bsr2uNOqg343KW0ctg-agZ8qEOgoJgP4n5jCl00iybTkAM4stSLR1FgdK5pyCIB4mCsZEQ0OTCZJaqXUOdF5zEzRfAkgf4RF4MldZXrj6B35I0J9f1YSiDhOq4f2nLscA9kWAugIC7-4wFFzJ-ED_OLotWPhzzffvELh6hpTaNLHqHivNKppNGS6M2jiU-fCWdSpy4EM6n2Hlfii7257HG7ig_LlO-5ZvO8HbuPDorzQLYEYC4TCrnKtjyH2xK1eG-99usyYQ5f_Is55NNztdc0iwhAKEWWBsYapZTkEPgrIj6KhFmFouOY1tFXJLdO-g7kbpHGbFUyG88xJOfNSrqHN9933ZeeOH_YteBV8bHPDmyisbHiV_HHASqWvzAPAY_Zhrku_L6-jsWb77DQ7bZ2fLKNxd3CZ4VlBw4P-k1mFmGeg1gpDw-jqvy37DaXmDkk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fSxwxEB7kRNGHYuvvas2DPsly2Vyym30oot4dntbjEIV7W5NsQgt6p-cV6b_Wv87JblYtxfbJt0BC2J0ZvpkvmcwA7FJHtVRcRkoVSFASY6JMKh1xWZjUUSt0eaZ73k9OrvjpUAxn4Hf9FsanVdaYWAJ1MTb-jLzJeMozJFRCNF1Iixi0uwd395HvIOVvWut2GpWJnNlfj0jfHr722qjrPca6ncvjkyh0GIhMK6FT_LaE4cilLcWNEgjUPHMyNcw6k2iWCQyGRFxo1aIGnZlK08wpZQpqioTbshATwv9s6llRA2aPOv3BxbMfaFEWqrXSSCZJVqfd4x8wDNKaUiI54fEfDnHO3iocoJec--45-eOPv3xE6fi6S_AhRKzksDKxjzBjR59g8VUdw2UYttVURe2JR04ymPi7H4-i5LjKgydjR45C-23SKR8b-ikUZIlXxL9jmxCMRElvfEkOX11trMDVuwh0FRqj8ciuA8HAiGqH_DXOHC8wDNJIhTSLjYxjK4zYgP1abrkJ9cx9W42bvOQ1QuReynmQ8gbsPa--q-p4vLFuLajgZZlv5cRwZjeo5D8bbNX6ygMcPOQvxrv57-kdmEerzr_1-mefYcHvWx33bEFjOvlptzEAmuovwdIIXL-3cT8B-QUT2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Predictive+Control+of+Building+Energy+Consumption+under+the+IoT+Architecture&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Zhao%2C+Xing&rft.au=Wu%2C+Hao&rft.au=Yang%2C+Shundong&rft.au=Wang%2C+Biao&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1155%2F2020%2F8849541&rft.externalDBID=ADJCN&rft.externalDocID=1214721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon