Automatic Parking Controller with a Twin Artificial Neural Network Architecture

We propose an artificial deep neural network- (ANN-) based automatic parking controller that overcomes a stubborn restriction prevalent in traditional approaches. The proposed ANN learns human-like control laws for automatic parking through supervised learning from a training database generated by c...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2019; no. 2019; pp. 1 - 18
Main Authors Moon, Jaeyoung, Kim, Shiho, Bae, Il
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose an artificial deep neural network- (ANN-) based automatic parking controller that overcomes a stubborn restriction prevalent in traditional approaches. The proposed ANN learns human-like control laws for automatic parking through supervised learning from a training database generated by computer-aided optimizations or real experiments. By learning the relationships between the instantaneous vehicle states and the corresponding maneuver parameters, the proposed twin controller yields lateral and longitudinal maneuvering parameters for executing automatic parking tasks in confined spaces. The proposed automatic parking controller exhibits a twin architecture comprising a main agent and its cloned agent. Before the main agent assumes a maneuvering action, the cloned agent predicts the consequences of the maneuvering action through a Collision Checking and Adjustment (CCA) system. The proposed parking agent operates like a human driver in a manner that is characterized by an unplanned trajectory. In addition, the kinematics of the subject vehicle is not exactly modelled for parking control. The simulation results demonstrate that the proposed twin agent emulates the attributes of a human driver such as adaptive control and determines the consequences of the tentative maneuvering action under varying kinematic models of the subject vehicle. We validate the proposed parking controller by simulating the software-in-the-loop architecture using a PreScan simulator in which the dynamics of the virtual vehicle’s behavior resemble a real vehicle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/4801985