Semi-empirical analysis of leptons in gases in crossed electric and magnetic fields. I. Electrons in helium
In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide nume...
Saved in:
Published in | The Journal of chemical physics Vol. 159; no. 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/5.0172593 |
Cover
Abstract | In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to “off-the-shelf” simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature. |
---|---|
AbstractList | In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to “off-the-shelf” simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature. In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to "off-the-shelf" simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature.In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to "off-the-shelf" simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature. |
Author | Hildebrandt, Malte Robson, Robert E. |
Author_xml | – sequence: 1 givenname: Malte surname: Hildebrandt fullname: Hildebrandt, Malte organization: Paul Scherrer Institut, PSI – sequence: 2 givenname: Robert E. surname: Robson fullname: Robson, Robert E. organization: James Cook University |
BookMark | eNp90E9LwzAYBvAgCm7Tg98g4EWFdm_Spm2OMqYOBh7Uc0nTtzMz_WPTHvbt7bp5GeIpCfyeN7zPlJxXdYWE3DDwGUTBXPjAYi5kcEYmDBLpxZGEczIB4MyTEUSXZOrcFmDPwgn5esPSeFg2pjVaWaoqZXfOOFoX1GLT1ZWjpqIb5XC86LZ2DnOKFnU3RIZATku1qbAbHoVBmzufrny6HMEx_onW9OUVuSiUdXh9PGfk42n5vnjx1q_Pq8Xj2tNBBJ0XBjKJBEt4koU6EHGRMwZZUkCmFQoZc8niMMoiLjQPGRdxqFQASSJjpQumimBG7g5zm7b-7tF1aWmcRmtVhXXvUp5IzmMAKQZ6e0K3dd8OHYwqkGL4AQZ1f1Dj9i0WadOaUrW7lEG6rz0V6bH2wc5PrDad6kxdda0y9s_EwyHhfuU_438AyG-Reg |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1063_5_0172598 |
Cites_doi | 10.1016/s0168-9002(98)01233-9 10.1002/j.1538-7305.1953.tb01426.x 10.1063/5.0172598 10.1103/physreva.15.1847 10.1071/ph840035 10.1016/0301-0104(81)85111-7 10.1071/ph670369 10.1098/rstl.1867.0004 10.1103/physrevlett.97.194801 10.1007/s12127-011-0079-4 10.1088/0022-3727/14/1/004 10.1071/ph940279 10.1088/0953-4075/31/23/020 10.1063/1.4768421 10.1049/ip-a-1.1980.0034 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0172593 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10_1063_5_0172593 jcp |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c360t-4398651828b4c357fd110b8f0bcae597291746b625c2412574aa308897acf1af3 |
IEDL.DBID | AJDQP |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 08:51:26 EDT 2025 Sun Jun 29 16:12:53 EDT 2025 Sun Jul 06 05:08:54 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Fri Jun 21 00:10:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-4398651828b4c357fd110b8f0bcae597291746b625c2412574aa308897acf1af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9425-5543 0000-0003-2613-4229 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0172593 |
PQID | 2893952410 |
PQPubID | 2050685 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1063_5_0172593 proquest_journals_2893952410 crossref_citationtrail_10_1063_5_0172593 proquest_miscellaneous_2892270095 scitation_primary_10_1063_5_0172593 |
PublicationCentury | 2000 |
PublicationDate | 20231121 2023-11-21 |
PublicationDateYYYYMMDD | 2023-11-21 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231121 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Robson (c17) 1984; 37 Viehland, Lin, Mason (c16) 1981; 54 Hildebrandt, Robson, Garland (c22) 2023; 159 Milloy, Crompton (c19) 1977; 15 Heylen (c7) 1980; 127 Maxwell (c14) 1867; 157 Crompton, Elford, Jory (c18) 1967; 20 Robson, Nicoletopoulos, Hildebrandt, White (c12) 2012; 137 Wannier (c15) 1953; 32 Kücükarpaci, Saelee, Lucas (c20) 1981; 14 Senba (c11) 1998; 31 Viehland (c10) 2012; 15 Robson (c8) 1994; 47 Taqqu (c9) 2006; 97 Biagi (c4) 1999; 421 (2023112111394168500_c9) 2006; 97 (2023112111394168500_c21) 2006 2023112111394168500_c23 (2023112111394168500_c3) 2018 (2023112111394168500_c4) 1999; 421 (2023112111394168500_c10) 2012; 15 (2023112111394168500_c12) 2012; 137 (2023112111394168500_c15) 1953; 32 (2023112111394168500_c17) 1984; 37 2023112111394168500_c6 (2023112111394168500_c14) 1867; 157 (2023112111394168500_c11) 1998; 31 (2023112111394168500_c16) 1981; 54 (2023112111394168500_c22) 2023; 159 (2023112111394168500_c18) 1967; 20 (2023112111394168500_c19) 1977; 15 (2023112111394168500_c7) 1980; 127 2023112111394168500_c5 (2023112111394168500_c8) 1994; 47 (2023112111394168500_c13) 1983 (2023112111394168500_c1) 1988 (2023112111394168500_c20) 1981; 14 (2023112111394168500_c2) 2018 |
References_xml | – volume: 14 start-page: 9 year: 1981 ident: c20 article-title: Electron swarm parameters in helium and neon publication-title: J. Phys. D: Appl. Phys. – volume: 47 start-page: 279 year: 1994 ident: c8 article-title: Approximate formulas for ion and electron transport coefficients in crossed electric and magnetic fields publication-title: Aust. J. Phys. – volume: 159 start-page: 194116 year: 2023 ident: c22 publication-title: J. Chem. Phys. – volume: 157 start-page: 49 year: 1867 ident: c14 article-title: On the dynamical theory of gases publication-title: Philos. Trans. R. Soc. London – volume: 31 start-page: 5233 year: 1998 ident: c11 article-title: Muon spin depolarization in noble gases during slowing down in a longitudinal magnetic field publication-title: J. Phys. B: At., Mol. Opt. Phys. – volume: 421 start-page: 234 year: 1999 ident: c4 article-title: Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields publication-title: Nucl. Instrum. Meth. A – volume: 15 start-page: 21 year: 2012 ident: c10 article-title: Zero-field mobilities in helium: Highly accurate values for use in ion mobility spectrometry publication-title: Int. J. Ion Mobil. Spec. – volume: 20 start-page: 369 year: 1967 ident: c18 article-title: The momentum transfer cross section for electrons in helium publication-title: Aust. J. Phys. – volume: 54 start-page: 341 year: 1981 ident: c16 article-title: Kinetic theory of drift-tube experiments with polyatomic species publication-title: Chem. Phys. – volume: 32 start-page: 170 year: 1953 ident: c15 article-title: Motion of gaseous ions in strong electric fields publication-title: Bell Syst. Tech. J. – volume: 37 start-page: 35 year: 1984 ident: c17 article-title: Generalized Einstein relation and negative differential conductivity in gases publication-title: Aust. J. Phys. – volume: 15 start-page: 1847 year: 1977 ident: c19 article-title: Momentum-transfer cross section for electron-helium collisions in the range 4–12 eV publication-title: Phys. Rev. A – volume: 97 start-page: 194801 year: 2006 ident: c9 article-title: Compression and extraction of stopped muons publication-title: Phys. Rev. Lett. – volume: 137 start-page: 214112 year: 2012 ident: c12 article-title: Fundamental issues in fluid modeling: Direct substitution and aliasing methods publication-title: J. Chem. Phys. – volume: 127 start-page: 221 year: 1980 ident: c7 article-title: Electrical ionisation and breakdown of gases in a crossed magnetic field publication-title: IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ. Rev. – volume-title: Microcomputer Quantum Mechanics year: 1983 ident: 2023112111394168500_c13 – volume: 421 start-page: 234 year: 1999 ident: 2023112111394168500_c4 article-title: Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields publication-title: Nucl. Instrum. Meth. A doi: 10.1016/s0168-9002(98)01233-9 – volume: 32 start-page: 170 year: 1953 ident: 2023112111394168500_c15 article-title: Motion of gaseous ions in strong electric fields publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1953.tb01426.x – volume: 159 start-page: 194116 year: 2023 ident: 2023112111394168500_c22 publication-title: J. Chem. Phys. doi: 10.1063/5.0172598 – volume-title: Fundamentals of Charged Particle Transport in Gases and Condensed Matter year: 2018 ident: 2023112111394168500_c3 – volume: 15 start-page: 1847 year: 1977 ident: 2023112111394168500_c19 article-title: Momentum-transfer cross section for electron-helium collisions in the range 4–12 eV publication-title: Phys. Rev. A doi: 10.1103/physreva.15.1847 – volume: 37 start-page: 35 year: 1984 ident: 2023112111394168500_c17 article-title: Generalized Einstein relation and negative differential conductivity in gases publication-title: Aust. J. Phys. doi: 10.1071/ph840035 – ident: 2023112111394168500_c5 – volume: 54 start-page: 341 year: 1981 ident: 2023112111394168500_c16 article-title: Kinetic theory of drift-tube experiments with polyatomic species publication-title: Chem. Phys. doi: 10.1016/0301-0104(81)85111-7 – volume: 20 start-page: 369 year: 1967 ident: 2023112111394168500_c18 article-title: The momentum transfer cross section for electrons in helium publication-title: Aust. J. Phys. doi: 10.1071/ph670369 – ident: 2023112111394168500_c6 – volume: 157 start-page: 49 year: 1867 ident: 2023112111394168500_c14 article-title: On the dynamical theory of gases publication-title: Philos. Trans. R. Soc. London doi: 10.1098/rstl.1867.0004 – volume: 97 start-page: 194801 year: 2006 ident: 2023112111394168500_c9 article-title: Compression and extraction of stopped muons publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.97.194801 – ident: 2023112111394168500_c23 article-title: Semi-empirical analysis of leptons in gases in crossed electric and magnetic fields, Part III: Data-driven methods for approximating transport data – volume: 15 start-page: 21 year: 2012 ident: 2023112111394168500_c10 article-title: Zero-field mobilities in helium: Highly accurate values for use in ion mobility spectrometry publication-title: Int. J. Ion Mobil. Spec. doi: 10.1007/s12127-011-0079-4 – volume-title: Transport Properties of Ions in Gases year: 1988 ident: 2023112111394168500_c1 – volume-title: Gaseous Ion Mobility, Diffusion, and Reaction year: 2018 ident: 2023112111394168500_c2 – volume: 14 start-page: 9 year: 1981 ident: 2023112111394168500_c20 article-title: Electron swarm parameters in helium and neon publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/14/1/004 – volume: 47 start-page: 279 year: 1994 ident: 2023112111394168500_c8 article-title: Approximate formulas for ion and electron transport coefficients in crossed electric and magnetic fields publication-title: Aust. J. Phys. doi: 10.1071/ph940279 – volume-title: Gaseous Electronics - Theory and Practice year: 2006 ident: 2023112111394168500_c21 – volume: 31 start-page: 5233 year: 1998 ident: 2023112111394168500_c11 article-title: Muon spin depolarization in noble gases during slowing down in a longitudinal magnetic field publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/0953-4075/31/23/020 – volume: 137 start-page: 214112 year: 2012 ident: 2023112111394168500_c12 article-title: Fundamental issues in fluid modeling: Direct substitution and aliasing methods publication-title: J. Chem. Phys. doi: 10.1063/1.4768421 – volume: 127 start-page: 221 year: 1980 ident: 2023112111394168500_c7 article-title: Electrical ionisation and breakdown of gases in a crossed magnetic field publication-title: IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ. Rev. doi: 10.1049/ip-a-1.1980.0034 |
SSID | ssj0001724 |
Score | 2.4409857 |
Snippet | In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crossed fields Electric fields Electron swarms Electrons Empirical equations First principles Helium Leptons Magnetic fields Magnetic properties Momentum transfer Muons Physics Transport equations Transport theory |
Title | Semi-empirical analysis of leptons in gases in crossed electric and magnetic fields. I. Electrons in helium |
URI | http://dx.doi.org/10.1063/5.0172593 https://www.proquest.com/docview/2893952410 https://www.proquest.com/docview/2892270095 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEL4gxOCLUdSIIqnigy_DbV277ZHwI0jEaNDEt6XrOiTCIAL_v9exoSaa-Las16y59vZ9l7veAVzHMmSRKU1DlwMzHCdCk_LQrtBViBgyDsG4vuA8fOD9F2fwyl4L0Pgjgs_prS6r6SJJpztQspEc20UotQadp8ftDxeHs2LLlqEJeV5A6Pvkn7DzxSXLCDSbmPc3WOkdwH7GB0lrs4GHUFBJBcrtvA1bBXbTHE25PIL3Eb401GwxSct6EJHVEyHzmEzVAknckkwSMkZcSh_SlaiIbDrdTCROiMhMjBN9b5GkqWvLJrlrkm7WCied9aamk_XsGF563ed238h6JRiScnNlIK_wOENnwQsdSZkbR4jroReboRQKnQYb3TKHh-jtSMRstFNHCKpTnFwhY0vE9ASKyTxRp0B8T_omghuPkZwoKoTkcWjZduR7ri-kW4WbXJVBrjzdz2IapAFtTgMWZFqvwtVWdLGpnvGbUC3fjyAzoGWAfiD1GS7VrMLldhhVr-MZIlHzdSpj67i5z6rQ2O7j3x86-5fUOezplvL6vqFt1aC4-lirCyQeq7COB68zvB_VswP4Cb-h0Vo |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCI0L4inGMzwOXDq6pknbI-Kh8RQIkLhVaZpCYesquv1_nCwdIIHErWodNXLq-rNsfwY4yGTCUle6jqYDc3w_RZMK0a4wVEgZIg7BuG5wvrnl3Sf_8pk929oc3QuDm6jaIi9NEv9NlkdWgU4PMeeo_CIc4PRIE24GCN_pNMwEmtCyATPHl6f3d5NfMT62NMwdR0P1mlro--KfDukLZTbRBY2z4d8czvkCzFukSI7HO1uEKVUsQfOkHtC2BLOmelNWy_D-gDcd1S9zQ_hBhGUaIYOM9FSJ8K4ieUFe0GOZC7MTlZLxDJxc4oKU9MVLoTsaiSlqq9rkok3O7JAcs-pV9fJRfwWezs8eT7qOnaLgSMrdoYOII-QMw4gw8SVlQZaix0_CzE2kUBhOeBiw-TzBOEiiN0cL9oWguvgpEDLriIyuQqMYFGoNSBTKyEW3xzOELYoKIXmWdDwvjcIgEjJowWGtyrhWnp500YtNqpvTmMVW6y3Ym4iWY16N34Q26_OIrWlVMUaINGK4VbcFu5PHqHqd6RCFGoyMjKcz6hFrwf7kHP9-0fq_pHag2X28uY6vL26vNmBOD57XXYleZxMaw4-R2kJ4Mky27Uf4CU6X3Ms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-empirical+analysis+of+leptons+in+gases+in+crossed+electric+and+magnetic+fields.+I.+Electrons+in+helium&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Hildebrandt%2C+Malte&rft.au=Robson%2C+Robert+E.&rft.date=2023-11-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=159&rft.issue=19&rft_id=info:doi/10.1063%2F5.0172593&rft.externalDocID=jcp |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |