Semi-empirical analysis of leptons in gases in crossed electric and magnetic fields. I. Electrons in helium

In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide nume...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 159; no. 19
Main Authors Hildebrandt, Malte, Robson, Robert E.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.11.2023
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/5.0172593

Cover

Abstract In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to “off-the-shelf” simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature.
AbstractList In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to “off-the-shelf” simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature.
In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to "off-the-shelf" simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature.In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to "off-the-shelf" simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature.
Author Hildebrandt, Malte
Robson, Robert E.
Author_xml – sequence: 1
  givenname: Malte
  surname: Hildebrandt
  fullname: Hildebrandt, Malte
  organization: Paul Scherrer Institut, PSI
– sequence: 2
  givenname: Robert E.
  surname: Robson
  fullname: Robson, Robert E.
  organization: James Cook University
BookMark eNp90E9LwzAYBvAgCm7Tg98g4EWFdm_Spm2OMqYOBh7Uc0nTtzMz_WPTHvbt7bp5GeIpCfyeN7zPlJxXdYWE3DDwGUTBXPjAYi5kcEYmDBLpxZGEczIB4MyTEUSXZOrcFmDPwgn5esPSeFg2pjVaWaoqZXfOOFoX1GLT1ZWjpqIb5XC86LZ2DnOKFnU3RIZATku1qbAbHoVBmzufrny6HMEx_onW9OUVuSiUdXh9PGfk42n5vnjx1q_Pq8Xj2tNBBJ0XBjKJBEt4koU6EHGRMwZZUkCmFQoZc8niMMoiLjQPGRdxqFQASSJjpQumimBG7g5zm7b-7tF1aWmcRmtVhXXvUp5IzmMAKQZ6e0K3dd8OHYwqkGL4AQZ1f1Dj9i0WadOaUrW7lEG6rz0V6bH2wc5PrDad6kxdda0y9s_EwyHhfuU_438AyG-Reg
CODEN JCPSA6
CitedBy_id crossref_primary_10_1063_5_0172598
Cites_doi 10.1016/s0168-9002(98)01233-9
10.1002/j.1538-7305.1953.tb01426.x
10.1063/5.0172598
10.1103/physreva.15.1847
10.1071/ph840035
10.1016/0301-0104(81)85111-7
10.1071/ph670369
10.1098/rstl.1867.0004
10.1103/physrevlett.97.194801
10.1007/s12127-011-0079-4
10.1088/0022-3727/14/1/004
10.1071/ph940279
10.1088/0953-4075/31/23/020
10.1063/1.4768421
10.1049/ip-a-1.1980.0034
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0172593
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_5_0172593
jcp
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c360t-4398651828b4c357fd110b8f0bcae597291746b625c2412574aa308897acf1af3
IEDL.DBID AJDQP
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 08:51:26 EDT 2025
Sun Jun 29 16:12:53 EDT 2025
Sun Jul 06 05:08:54 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Fri Jun 21 00:10:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-4398651828b4c357fd110b8f0bcae597291746b625c2412574aa308897acf1af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9425-5543
0000-0003-2613-4229
OpenAccessLink http://dx.doi.org/10.1063/5.0172593
PQID 2893952410
PQPubID 2050685
PageCount 6
ParticipantIDs crossref_primary_10_1063_5_0172593
proquest_journals_2893952410
crossref_citationtrail_10_1063_5_0172593
proquest_miscellaneous_2892270095
scitation_primary_10_1063_5_0172593
PublicationCentury 2000
PublicationDate 20231121
2023-11-21
PublicationDateYYYYMMDD 2023-11-21
PublicationDate_xml – month: 11
  year: 2023
  text: 20231121
  day: 21
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Robson (c17) 1984; 37
Viehland, Lin, Mason (c16) 1981; 54
Hildebrandt, Robson, Garland (c22) 2023; 159
Milloy, Crompton (c19) 1977; 15
Heylen (c7) 1980; 127
Maxwell (c14) 1867; 157
Crompton, Elford, Jory (c18) 1967; 20
Robson, Nicoletopoulos, Hildebrandt, White (c12) 2012; 137
Wannier (c15) 1953; 32
Kücükarpaci, Saelee, Lucas (c20) 1981; 14
Senba (c11) 1998; 31
Viehland (c10) 2012; 15
Robson (c8) 1994; 47
Taqqu (c9) 2006; 97
Biagi (c4) 1999; 421
(2023112111394168500_c9) 2006; 97
(2023112111394168500_c21) 2006
2023112111394168500_c23
(2023112111394168500_c3) 2018
(2023112111394168500_c4) 1999; 421
(2023112111394168500_c10) 2012; 15
(2023112111394168500_c12) 2012; 137
(2023112111394168500_c15) 1953; 32
(2023112111394168500_c17) 1984; 37
2023112111394168500_c6
(2023112111394168500_c14) 1867; 157
(2023112111394168500_c11) 1998; 31
(2023112111394168500_c16) 1981; 54
(2023112111394168500_c22) 2023; 159
(2023112111394168500_c18) 1967; 20
(2023112111394168500_c19) 1977; 15
(2023112111394168500_c7) 1980; 127
2023112111394168500_c5
(2023112111394168500_c8) 1994; 47
(2023112111394168500_c13) 1983
(2023112111394168500_c1) 1988
(2023112111394168500_c20) 1981; 14
(2023112111394168500_c2) 2018
References_xml – volume: 14
  start-page: 9
  year: 1981
  ident: c20
  article-title: Electron swarm parameters in helium and neon
  publication-title: J. Phys. D: Appl. Phys.
– volume: 47
  start-page: 279
  year: 1994
  ident: c8
  article-title: Approximate formulas for ion and electron transport coefficients in crossed electric and magnetic fields
  publication-title: Aust. J. Phys.
– volume: 159
  start-page: 194116
  year: 2023
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 157
  start-page: 49
  year: 1867
  ident: c14
  article-title: On the dynamical theory of gases
  publication-title: Philos. Trans. R. Soc. London
– volume: 31
  start-page: 5233
  year: 1998
  ident: c11
  article-title: Muon spin depolarization in noble gases during slowing down in a longitudinal magnetic field
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 421
  start-page: 234
  year: 1999
  ident: c4
  article-title: Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields
  publication-title: Nucl. Instrum. Meth. A
– volume: 15
  start-page: 21
  year: 2012
  ident: c10
  article-title: Zero-field mobilities in helium: Highly accurate values for use in ion mobility spectrometry
  publication-title: Int. J. Ion Mobil. Spec.
– volume: 20
  start-page: 369
  year: 1967
  ident: c18
  article-title: The momentum transfer cross section for electrons in helium
  publication-title: Aust. J. Phys.
– volume: 54
  start-page: 341
  year: 1981
  ident: c16
  article-title: Kinetic theory of drift-tube experiments with polyatomic species
  publication-title: Chem. Phys.
– volume: 32
  start-page: 170
  year: 1953
  ident: c15
  article-title: Motion of gaseous ions in strong electric fields
  publication-title: Bell Syst. Tech. J.
– volume: 37
  start-page: 35
  year: 1984
  ident: c17
  article-title: Generalized Einstein relation and negative differential conductivity in gases
  publication-title: Aust. J. Phys.
– volume: 15
  start-page: 1847
  year: 1977
  ident: c19
  article-title: Momentum-transfer cross section for electron-helium collisions in the range 4–12 eV
  publication-title: Phys. Rev. A
– volume: 97
  start-page: 194801
  year: 2006
  ident: c9
  article-title: Compression and extraction of stopped muons
  publication-title: Phys. Rev. Lett.
– volume: 137
  start-page: 214112
  year: 2012
  ident: c12
  article-title: Fundamental issues in fluid modeling: Direct substitution and aliasing methods
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 221
  year: 1980
  ident: c7
  article-title: Electrical ionisation and breakdown of gases in a crossed magnetic field
  publication-title: IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ. Rev.
– volume-title: Microcomputer Quantum Mechanics
  year: 1983
  ident: 2023112111394168500_c13
– volume: 421
  start-page: 234
  year: 1999
  ident: 2023112111394168500_c4
  article-title: Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/s0168-9002(98)01233-9
– volume: 32
  start-page: 170
  year: 1953
  ident: 2023112111394168500_c15
  article-title: Motion of gaseous ions in strong electric fields
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1953.tb01426.x
– volume: 159
  start-page: 194116
  year: 2023
  ident: 2023112111394168500_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0172598
– volume-title: Fundamentals of Charged Particle Transport in Gases and Condensed Matter
  year: 2018
  ident: 2023112111394168500_c3
– volume: 15
  start-page: 1847
  year: 1977
  ident: 2023112111394168500_c19
  article-title: Momentum-transfer cross section for electron-helium collisions in the range 4–12 eV
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.15.1847
– volume: 37
  start-page: 35
  year: 1984
  ident: 2023112111394168500_c17
  article-title: Generalized Einstein relation and negative differential conductivity in gases
  publication-title: Aust. J. Phys.
  doi: 10.1071/ph840035
– ident: 2023112111394168500_c5
– volume: 54
  start-page: 341
  year: 1981
  ident: 2023112111394168500_c16
  article-title: Kinetic theory of drift-tube experiments with polyatomic species
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(81)85111-7
– volume: 20
  start-page: 369
  year: 1967
  ident: 2023112111394168500_c18
  article-title: The momentum transfer cross section for electrons in helium
  publication-title: Aust. J. Phys.
  doi: 10.1071/ph670369
– ident: 2023112111394168500_c6
– volume: 157
  start-page: 49
  year: 1867
  ident: 2023112111394168500_c14
  article-title: On the dynamical theory of gases
  publication-title: Philos. Trans. R. Soc. London
  doi: 10.1098/rstl.1867.0004
– volume: 97
  start-page: 194801
  year: 2006
  ident: 2023112111394168500_c9
  article-title: Compression and extraction of stopped muons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.97.194801
– ident: 2023112111394168500_c23
  article-title: Semi-empirical analysis of leptons in gases in crossed electric and magnetic fields, Part III: Data-driven methods for approximating transport data
– volume: 15
  start-page: 21
  year: 2012
  ident: 2023112111394168500_c10
  article-title: Zero-field mobilities in helium: Highly accurate values for use in ion mobility spectrometry
  publication-title: Int. J. Ion Mobil. Spec.
  doi: 10.1007/s12127-011-0079-4
– volume-title: Transport Properties of Ions in Gases
  year: 1988
  ident: 2023112111394168500_c1
– volume-title: Gaseous Ion Mobility, Diffusion, and Reaction
  year: 2018
  ident: 2023112111394168500_c2
– volume: 14
  start-page: 9
  year: 1981
  ident: 2023112111394168500_c20
  article-title: Electron swarm parameters in helium and neon
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/14/1/004
– volume: 47
  start-page: 279
  year: 1994
  ident: 2023112111394168500_c8
  article-title: Approximate formulas for ion and electron transport coefficients in crossed electric and magnetic fields
  publication-title: Aust. J. Phys.
  doi: 10.1071/ph940279
– volume-title: Gaseous Electronics - Theory and Practice
  year: 2006
  ident: 2023112111394168500_c21
– volume: 31
  start-page: 5233
  year: 1998
  ident: 2023112111394168500_c11
  article-title: Muon spin depolarization in noble gases during slowing down in a longitudinal magnetic field
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/31/23/020
– volume: 137
  start-page: 214112
  year: 2012
  ident: 2023112111394168500_c12
  article-title: Fundamental issues in fluid modeling: Direct substitution and aliasing methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4768421
– volume: 127
  start-page: 221
  year: 1980
  ident: 2023112111394168500_c7
  article-title: Electrical ionisation and breakdown of gases in a crossed magnetic field
  publication-title: IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ. Rev.
  doi: 10.1049/ip-a-1.1980.0034
SSID ssj0001724
Score 2.4409857
Snippet In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward transport...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crossed fields
Electric fields
Electron swarms
Electrons
Empirical equations
First principles
Helium
Leptons
Magnetic fields
Magnetic properties
Momentum transfer
Muons
Physics
Transport equations
Transport theory
Title Semi-empirical analysis of leptons in gases in crossed electric and magnetic fields. I. Electrons in helium
URI http://dx.doi.org/10.1063/5.0172593
https://www.proquest.com/docview/2893952410
https://www.proquest.com/docview/2892270095
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEL4gxOCLUdSIIqnigy_DbV277ZHwI0jEaNDEt6XrOiTCIAL_v9exoSaa-Las16y59vZ9l7veAVzHMmSRKU1DlwMzHCdCk_LQrtBViBgyDsG4vuA8fOD9F2fwyl4L0Pgjgs_prS6r6SJJpztQspEc20UotQadp8ftDxeHs2LLlqEJeV5A6Pvkn7DzxSXLCDSbmPc3WOkdwH7GB0lrs4GHUFBJBcrtvA1bBXbTHE25PIL3Eb401GwxSct6EJHVEyHzmEzVAknckkwSMkZcSh_SlaiIbDrdTCROiMhMjBN9b5GkqWvLJrlrkm7WCied9aamk_XsGF563ed238h6JRiScnNlIK_wOENnwQsdSZkbR4jroReboRQKnQYb3TKHh-jtSMRstFNHCKpTnFwhY0vE9ASKyTxRp0B8T_omghuPkZwoKoTkcWjZduR7ri-kW4WbXJVBrjzdz2IapAFtTgMWZFqvwtVWdLGpnvGbUC3fjyAzoGWAfiD1GS7VrMLldhhVr-MZIlHzdSpj67i5z6rQ2O7j3x86-5fUOezplvL6vqFt1aC4-lirCyQeq7COB68zvB_VswP4Cb-h0Vo
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCI0L4inGMzwOXDq6pknbI-Kh8RQIkLhVaZpCYesquv1_nCwdIIHErWodNXLq-rNsfwY4yGTCUle6jqYDc3w_RZMK0a4wVEgZIg7BuG5wvrnl3Sf_8pk929oc3QuDm6jaIi9NEv9NlkdWgU4PMeeo_CIc4PRIE24GCN_pNMwEmtCyATPHl6f3d5NfMT62NMwdR0P1mlro--KfDukLZTbRBY2z4d8czvkCzFukSI7HO1uEKVUsQfOkHtC2BLOmelNWy_D-gDcd1S9zQ_hBhGUaIYOM9FSJ8K4ieUFe0GOZC7MTlZLxDJxc4oKU9MVLoTsaiSlqq9rkok3O7JAcs-pV9fJRfwWezs8eT7qOnaLgSMrdoYOII-QMw4gw8SVlQZaix0_CzE2kUBhOeBiw-TzBOEiiN0cL9oWguvgpEDLriIyuQqMYFGoNSBTKyEW3xzOELYoKIXmWdDwvjcIgEjJowWGtyrhWnp500YtNqpvTmMVW6y3Ym4iWY16N34Q26_OIrWlVMUaINGK4VbcFu5PHqHqd6RCFGoyMjKcz6hFrwf7kHP9-0fq_pHag2X28uY6vL26vNmBOD57XXYleZxMaw4-R2kJ4Mky27Uf4CU6X3Ms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-empirical+analysis+of+leptons+in+gases+in+crossed+electric+and+magnetic+fields.+I.+Electrons+in+helium&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Hildebrandt%2C+Malte&rft.au=Robson%2C+Robert+E.&rft.date=2023-11-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=159&rft.issue=19&rft_id=info:doi/10.1063%2F5.0172593&rft.externalDocID=jcp
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon