Efficient and Robust Certification of Genuine Multipartite Entanglement in Noisy Quantum Error Correction Circuits
Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of...
Saved in:
Published in | PRX quantum Vol. 2; no. 2; p. 020304 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
01.04.2021
|
Online Access | Get full text |
ISSN | 2691-3399 2691-3399 |
DOI | 10.1103/PRXQuantum.2.020304 |
Cover
Abstract | Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of physical qubits. We introduce a conditional witnessing technique to certify GME that is efficient in the number of subsystems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that the detection of entanglement in a linear number of bipartitions by a number of measurements that also scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of separating the state from the convex hull of biseparable states, yielding an improved finesse and robustness compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depolarizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate set that makes it suitable for experimental applications. |
---|---|
AbstractList | Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of physical qubits. We introduce a conditional witnessing technique to certify GME that is efficient in the number of subsystems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that the detection of entanglement in a linear number of bipartitions by a number of measurements that also scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of separating the state from the convex hull of biseparable states, yielding an improved finesse and robustness compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depolarizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate set that makes it suitable for experimental applications. |
ArticleNumber | 020304 |
Author | Bermudez, Alejandro Rodriguez-Blanco, Andrea Shahandeh, Farid Müller, Markus |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-0034-8846 surname: Rodriguez-Blanco fullname: Rodriguez-Blanco, Andrea – sequence: 2 givenname: Alejandro surname: Bermudez fullname: Bermudez, Alejandro – sequence: 3 givenname: Markus surname: Müller fullname: Müller, Markus – sequence: 4 givenname: Farid surname: Shahandeh fullname: Shahandeh, Farid |
BookMark | eNp9UclKBDEUDKKgjvMFXvIDPWbtSY7StAu4DgreQibLEOlJJJ0--Pf2LKh48PQe9ajiVdUpOIwpOgDOMZphjOjF0-LtedCxDOsZmSGCKGIH4ITUEleUSnn4az8G075_RwgRjilm8gTk1vtggosF6mjhIi2HvsDG5RJGXJeQIkweXrs4hOjg_dCV8KHHa3GwjUXHVefWG3aI8CGF_hPuf4FtzinDJuXszFamCdkMofRn4MjrrnfT_ZyA16v2pbmp7h6vb5vLu8rQGpWKcmuxXdacW--xrxHWow2xZKJmc8Gxt3yJCcMMWSkZsVQQrwVn0mgmBNN0Am53ujbpd_WRw1rnT5V0UFsg5ZXaGDGdU9JYIxgS2s8lM5JrTixHlom5nzM2RjoBdKdlcur77Py3HkZq04L6aUERtWthZMk_LBPKNtOSdej-5X4Bi9iThg |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_4_023059 crossref_primary_10_1103_PhysRevA_104_042410 crossref_primary_10_1103_PhysRevA_109_052211 crossref_primary_10_1103_PRXQuantum_3_030322 crossref_primary_10_1103_PhysRevResearch_6_023035 crossref_primary_10_1103_PhysRevA_109_052417 crossref_primary_10_1103_PhysRevA_111_012413 crossref_primary_10_1103_PhysRevA_107_052409 crossref_primary_10_1103_PhysRevApplied_21_024016 crossref_primary_10_1103_PhysRevA_111_032423 crossref_primary_10_1103_PRXQuantum_5_040340 crossref_primary_10_22331_q_2022_04_25_695 crossref_primary_10_1103_PhysRevX_12_011032 |
Cites_doi | 10.1103/PhysRevLett.82.1835 10.1038/35005011 10.1103/PhysRevLett.122.060502 10.1038/nature01492 10.1103/PhysRevLett.97.150504 10.1103/PhysRevA.40.4277 10.1103/PhysRevA.79.022318 10.1103/PhysRevA.62.022311 10.1103/PhysRevLett.97.180501 10.1038/nature16184 10.1088/1367-2630/aac485 10.1038/s41586-020-2667-0 10.1016/S0375-9601(96)00706-2 10.1038/nature00784 10.1103/PhysRevLett.96.170502 10.1016/S0375-9601(01)00142-6 10.1103/PhysRevX.7.041061 10.1103/PhysRevLett.104.210501 10.1103/PhysRevX.9.031045 10.1126/science.1253742 10.1098/rspa.2002.1097 10.1137/S0097539799359385 10.1038/s41586-020-03079-6 10.1038/nature09416 10.1103/PhysRevA.100.062307 10.1103/PhysRevLett.98.020501 10.1103/PhysRevA.62.052310 10.1103/PhysRevLett.92.027901 10.1126/science.aar7053 10.1103/PhysRevA.72.022340 10.1088/0953-4075/42/15/154013 10.1103/PhysRevLett.111.110503 10.1103/PhysRevA.101.012301 10.1103/PhysRevLett.109.080501 10.1103/PhysRevA.52.R2493 10.1103/PhysRevA.79.012312 10.1038/s41567-019-0733-z 10.1103/PhysRevLett.118.110502 10.1116/1.5126186 10.1126/sciadv.1701074 10.1103/PhysRevA.70.062317 10.1063/1.5100160 10.1103/PhysRevA.71.042306 10.1038/nature08812 10.1016/S0375-9601(00)00401-1 10.1103/PhysRevLett.115.020403 10.1364/OPTICA.2.000523 10.1016/j.physrep.2009.02.004 10.1126/science.1203329 10.1007/s00340-016-6527-4 10.1103/PhysRevLett.98.110502 10.1088/1367-2630/ab84b3 10.1103/PhysRevA.54.1098 10.1016/j.physrep.2008.09.003 10.1103/PhysRevA.90.033410 10.1103/PhysRevA.100.032325 10.1103/PhysRevLett.121.050502 10.1103/PhysRevA.69.032313 10.1017/CBO9780511535048 10.1103/PhysRevLett.113.220501 10.1038/s41534-019-0200-9 10.1103/PRXQuantum.1.010302 10.1103/PhysRevLett.113.260502 10.1038/s41567-020-0920-y 10.1038/s41566-017-0007-1 10.1103/PhysRevLett.77.793 10.1103/PhysRevLett.97.220407 10.22331/q-2018-02-08-53 10.1103/PhysRevLett.81.5932 10.1103/PhysRevA.99.022330 10.1038/nnano.2014.216 10.1103/RevModPhys.87.307 10.1038/nature01494 10.1088/0953-4075/36/3/319 10.1103/PhysRevLett.102.090502 10.1103/PhysRevLett.117.060504 10.1146/annurev-conmatphys-031119-050605 10.1088/1367-2630/aab341 10.1038/ncomms7979 10.1038/srep45045 10.1103/PhysRevA.71.032333 10.1038/s41586-019-1666-5 10.1038/nature03074 10.1103/PhysRevLett.74.4091 10.1063/1.5088164 10.1103/RevModPhys.81.865 10.1103/PhysRevLett.119.150503 10.1038/s41534-019-0181-8 10.1103/PhysRevLett.77.3260 10.1088/1367-2630/15/12/123012 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PRXQuantum.2.020304 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2691-3399 |
ExternalDocumentID | oai_doaj_org_article_9cdc8408af794c95a52d50d487f74420 10_1103_PRXQuantum_2_020304 |
GroupedDBID | 3MX AAYXX AFGMR ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
ID | FETCH-LOGICAL-c360t-35dd1db655dff1f601a6918b48647851fd5b124140d9942d382fa8549ca4884a3 |
IEDL.DBID | DOA |
ISSN | 2691-3399 |
IngestDate | Wed Aug 27 01:24:40 EDT 2025 Tue Jul 01 03:18:21 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-35dd1db655dff1f601a6918b48647851fd5b124140d9942d382fa8549ca4884a3 |
ORCID | 0000-0002-0034-8846 |
OpenAccessLink | https://doaj.org/article/9cdc8408af794c95a52d50d487f74420 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cdc8408af794c95a52d50d487f74420 crossref_primary_10_1103_PRXQuantum_2_020304 crossref_citationtrail_10_1103_PRXQuantum_2_020304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | PRX quantum |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | I. Bengtsson (PRXQuantum.2.020304Cc50R1) 2006 D. M. Greenberger (PRXQuantum.2.020304Cc42R1) 1989 PRXQuantum.2.020304Cc82R1 PRXQuantum.2.020304Cc80R1 PRXQuantum.2.020304Cc44R1 PRXQuantum.2.020304Cc65R1 PRXQuantum.2.020304Cc103R1 PRXQuantum.2.020304Cc23R1 PRXQuantum.2.020304Cc67R1 PRXQuantum.2.020304Cc88R1 PRXQuantum.2.020304Cc105R1 PRXQuantum.2.020304Cc40R1 PRXQuantum.2.020304Cc61R1 PRXQuantum.2.020304Cc86R1 PRXQuantum.2.020304Cc63R1 PRXQuantum.2.020304Cc84R1 PRXQuantum.2.020304Cc29R1 F. Gaitan (PRXQuantum.2.020304Cc9R1) 2007 PRXQuantum.2.020304Cc25R1 PRXQuantum.2.020304Cc48R1 PRXQuantum.2.020304Cc69R1 PRXQuantum.2.020304Cc27R1 J. Eisert (PRXQuantum.2.020304Cc46R1) 2007 PRXQuantum.2.020304Cc70R1 PRXQuantum.2.020304Cc91R1 PRXQuantum.2.020304Cc7R1 PRXQuantum.2.020304Cc5R1 PRXQuantum.2.020304Cc32R1 PRXQuantum.2.020304Cc55R1 PRXQuantum.2.020304Cc78R1 PRXQuantum.2.020304Cc34R1 PRXQuantum.2.020304Cc57R1 PRXQuantum.2.020304Cc76R1 PRXQuantum.2.020304Cc99R1 PRXQuantum.2.020304Cc1R1 PRXQuantum.2.020304Cc51R1 PRXQuantum.2.020304Cc74R1 PRXQuantum.2.020304Cc97R1 PRXQuantum.2.020304Cc11R1 PRXQuantum.2.020304Cc30R1 PRXQuantum.2.020304Cc53R1 PRXQuantum.2.020304Cc72R1 PRXQuantum.2.020304Cc95R1 PRXQuantum.2.020304Cc17R1 M. A. Nielsen (PRXQuantum.2.020304Cc8R1) 2000 PRXQuantum.2.020304Cc15R1 PRXQuantum.2.020304Cc36R1 PRXQuantum.2.020304Cc19R1 PRXQuantum.2.020304Cc38R1 PRXQuantum.2.020304Cc81R1 PRXQuantum.2.020304Cc60R1 PRXQuantum.2.020304Cc106R1 PRXQuantum.2.020304Cc20R1 PRXQuantum.2.020304Cc43R1 PRXQuantum.2.020304Cc66R1 PRXQuantum.2.020304Cc89R1 PRXQuantum.2.020304Cc102R1 PRXQuantum.2.020304Cc45R1 PRXQuantum.2.020304Cc68R1 PRXQuantum.2.020304Cc87R1 PRXQuantum.2.020304Cc104R1 PRXQuantum.2.020304Cc24R1 PRXQuantum.2.020304Cc62R1 PRXQuantum.2.020304Cc85R1 PRXQuantum.2.020304Cc41R1 PRXQuantum.2.020304Cc64R1 PRXQuantum.2.020304Cc83R1 PRXQuantum.2.020304Cc100R1 PRXQuantum.2.020304Cc47R1 PRXQuantum.2.020304Cc26R1 S. Gharibian (PRXQuantum.2.020304Cc22R1) 2010; 10 PRXQuantum.2.020304Cc28R1 PRXQuantum.2.020304Cc92R1 PRXQuantum.2.020304Cc90R1 PRXQuantum.2.020304Cc6R1 PRXQuantum.2.020304Cc33R1 PRXQuantum.2.020304Cc54R1 PRXQuantum.2.020304Cc79R1 PRXQuantum.2.020304Cc4R1 PRXQuantum.2.020304Cc35R1 PRXQuantum.2.020304Cc56R1 PRXQuantum.2.020304Cc77R1 PRXQuantum.2.020304Cc98R1 PRXQuantum.2.020304Cc2R1 PRXQuantum.2.020304Cc12R1 PRXQuantum.2.020304Cc75R1 PRXQuantum.2.020304Cc96R1 PRXQuantum.2.020304Cc10R1 PRXQuantum.2.020304Cc31R1 PRXQuantum.2.020304Cc52R1 PRXQuantum.2.020304Cc16R1 PRXQuantum.2.020304Cc14R1 PRXQuantum.2.020304Cc58R1 PRXQuantum.2.020304Cc18R1 PRXQuantum.2.020304Cc39R1 |
References_xml | – ident: PRXQuantum.2.020304Cc81R1 doi: 10.1103/PhysRevLett.82.1835 – ident: PRXQuantum.2.020304Cc83R1 doi: 10.1038/35005011 – ident: PRXQuantum.2.020304Cc61R1 doi: 10.1103/PhysRevLett.122.060502 – ident: PRXQuantum.2.020304Cc84R1 doi: 10.1038/nature01492 – ident: PRXQuantum.2.020304Cc57R1 doi: 10.1103/PhysRevLett.97.150504 – ident: PRXQuantum.2.020304Cc47R1 doi: 10.1103/PhysRevA.40.4277 – ident: PRXQuantum.2.020304Cc52R1 doi: 10.1103/PhysRevA.79.022318 – ident: PRXQuantum.2.020304Cc82R1 doi: 10.1103/PhysRevA.62.022311 – ident: PRXQuantum.2.020304Cc35R1 doi: 10.1103/PhysRevLett.97.180501 – ident: PRXQuantum.2.020304Cc80R1 doi: 10.1038/nature16184 – ident: PRXQuantum.2.020304Cc62R1 doi: 10.1088/1367-2630/aac485 – ident: PRXQuantum.2.020304Cc70R1 doi: 10.1038/s41586-020-2667-0 – ident: PRXQuantum.2.020304Cc23R1 doi: 10.1016/S0375-9601(96)00706-2 – ident: PRXQuantum.2.020304Cc89R1 doi: 10.1038/nature00784 – ident: PRXQuantum.2.020304Cc31R1 doi: 10.1103/PhysRevLett.96.170502 – ident: PRXQuantum.2.020304Cc51R1 doi: 10.1016/S0375-9601(01)00142-6 – ident: PRXQuantum.2.020304Cc4R1 doi: 10.1103/PhysRevX.7.041061 – ident: PRXQuantum.2.020304Cc106R1 doi: 10.1103/PhysRevLett.104.210501 – ident: PRXQuantum.2.020304Cc99R1 doi: 10.1103/PhysRevX.9.031045 – ident: PRXQuantum.2.020304Cc16R1 doi: 10.1126/science.1253742 – ident: PRXQuantum.2.020304Cc20R1 doi: 10.1098/rspa.2002.1097 – ident: PRXQuantum.2.020304Cc38R1 doi: 10.1137/S0097539799359385 – ident: PRXQuantum.2.020304Cc95R1 doi: 10.1038/s41586-020-03079-6 – ident: PRXQuantum.2.020304Cc17R1 doi: 10.1038/nature09416 – ident: PRXQuantum.2.020304Cc45R1 doi: 10.1103/PhysRevA.100.062307 – ident: PRXQuantum.2.020304Cc44R1 doi: 10.1103/PhysRevLett.98.020501 – ident: PRXQuantum.2.020304Cc25R1 doi: 10.1103/PhysRevA.62.052310 – ident: PRXQuantum.2.020304Cc34R1 doi: 10.1103/PhysRevLett.92.027901 – ident: PRXQuantum.2.020304Cc104R1 doi: 10.1126/science.aar7053 – ident: PRXQuantum.2.020304Cc29R1 doi: 10.1103/PhysRevA.72.022340 – ident: PRXQuantum.2.020304Cc85R1 doi: 10.1088/0953-4075/42/15/154013 – ident: PRXQuantum.2.020304Cc26R1 doi: 10.1103/PhysRevLett.111.110503 – ident: PRXQuantum.2.020304Cc33R1 doi: 10.1103/PhysRevA.101.012301 – ident: PRXQuantum.2.020304Cc90R1 doi: 10.1103/PhysRevLett.109.080501 – ident: PRXQuantum.2.020304Cc5R1 doi: 10.1103/PhysRevA.52.R2493 – ident: PRXQuantum.2.020304Cc86R1 doi: 10.1103/PhysRevA.79.012312 – ident: PRXQuantum.2.020304Cc97R1 doi: 10.1038/s41567-019-0733-z – ident: PRXQuantum.2.020304Cc32R1 doi: 10.1103/PhysRevLett.118.110502 – ident: PRXQuantum.2.020304Cc79R1 doi: 10.1116/1.5126186 – ident: PRXQuantum.2.020304Cc14R1 doi: 10.1126/sciadv.1701074 – ident: PRXQuantum.2.020304Cc53R1 doi: 10.1103/PhysRevA.70.062317 – ident: PRXQuantum.2.020304Cc100R1 doi: 10.1063/1.5100160 – ident: PRXQuantum.2.020304Cc56R1 doi: 10.1103/PhysRevA.71.042306 – ident: PRXQuantum.2.020304Cc1R1 doi: 10.1038/nature08812 – volume-title: Bell’s Theorem, Quantum Theory and Conceptions of the Universe year: 1989 ident: PRXQuantum.2.020304Cc42R1 – ident: PRXQuantum.2.020304Cc24R1 doi: 10.1016/S0375-9601(00)00401-1 – ident: PRXQuantum.2.020304Cc92R1 doi: 10.1103/PhysRevLett.115.020403 – ident: PRXQuantum.2.020304Cc103R1 doi: 10.1364/OPTICA.2.000523 – ident: PRXQuantum.2.020304Cc105R1 doi: 10.1016/j.physrep.2009.02.004 – ident: PRXQuantum.2.020304Cc69R1 doi: 10.1126/science.1203329 – ident: PRXQuantum.2.020304Cc88R1 doi: 10.1007/s00340-016-6527-4 – ident: PRXQuantum.2.020304Cc55R1 doi: 10.1103/PhysRevLett.98.110502 – ident: PRXQuantum.2.020304Cc63R1 doi: 10.1088/1367-2630/ab84b3 – ident: PRXQuantum.2.020304Cc6R1 doi: 10.1103/PhysRevA.54.1098 – volume: 10 start-page: 343 year: 2010 ident: PRXQuantum.2.020304Cc22R1 publication-title: Quantum Inf. Comput. – ident: PRXQuantum.2.020304Cc67R1 doi: 10.1016/j.physrep.2008.09.003 – volume-title: Quantum Error Correction and Fault Tolerant Quantum Computing year: 2007 ident: PRXQuantum.2.020304Cc9R1 – ident: PRXQuantum.2.020304Cc91R1 doi: 10.1103/PhysRevA.90.033410 – volume-title: Quantum Computation and Quantum Information year: 2000 ident: PRXQuantum.2.020304Cc8R1 – ident: PRXQuantum.2.020304Cc74R1 doi: 10.1103/PhysRevA.100.032325 – ident: PRXQuantum.2.020304Cc39R1 doi: 10.1103/PhysRevLett.121.050502 – ident: PRXQuantum.2.020304Cc102R1 doi: 10.1103/PhysRevA.69.032313 – volume-title: Geometry of Quantum States: An Introduction to Quantum Entanglement year: 2006 ident: PRXQuantum.2.020304Cc50R1 doi: 10.1017/CBO9780511535048 – ident: PRXQuantum.2.020304Cc76R1 doi: 10.1103/PhysRevLett.113.220501 – ident: PRXQuantum.2.020304Cc28R1 doi: 10.1038/s41534-019-0200-9 – ident: PRXQuantum.2.020304Cc41R1 doi: 10.1103/PRXQuantum.1.010302 – ident: PRXQuantum.2.020304Cc48R1 doi: 10.1103/PhysRevLett.113.260502 – ident: PRXQuantum.2.020304Cc19R1 doi: 10.1038/s41567-020-0920-y – ident: PRXQuantum.2.020304Cc75R1 doi: 10.1038/s41566-017-0007-1 – volume-title: Lectures on Quantum Information year: 2007 ident: PRXQuantum.2.020304Cc46R1 – ident: PRXQuantum.2.020304Cc7R1 doi: 10.1103/PhysRevLett.77.793 – ident: PRXQuantum.2.020304Cc11R1 doi: 10.1103/PhysRevLett.97.220407 – ident: PRXQuantum.2.020304Cc40R1 doi: 10.22331/q-2018-02-08-53 – ident: PRXQuantum.2.020304Cc58R1 doi: 10.1103/PhysRevLett.81.5932 – ident: PRXQuantum.2.020304Cc72R1 doi: 10.1103/PhysRevA.99.022330 – ident: PRXQuantum.2.020304Cc98R1 doi: 10.1038/nnano.2014.216 – ident: PRXQuantum.2.020304Cc36R1 doi: 10.1103/RevModPhys.87.307 – ident: PRXQuantum.2.020304Cc65R1 doi: 10.1038/nature01494 – ident: PRXQuantum.2.020304Cc10R1 doi: 10.1088/0953-4075/36/3/319 – ident: PRXQuantum.2.020304Cc12R1 doi: 10.1103/PhysRevLett.102.090502 – ident: PRXQuantum.2.020304Cc77R1 doi: 10.1103/PhysRevLett.117.060504 – ident: PRXQuantum.2.020304Cc96R1 doi: 10.1146/annurev-conmatphys-031119-050605 – ident: PRXQuantum.2.020304Cc15R1 doi: 10.1088/1367-2630/aab341 – ident: PRXQuantum.2.020304Cc18R1 doi: 10.1038/ncomms7979 – ident: PRXQuantum.2.020304Cc60R1 doi: 10.1038/srep45045 – ident: PRXQuantum.2.020304Cc54R1 doi: 10.1103/PhysRevA.71.032333 – ident: PRXQuantum.2.020304Cc2R1 doi: 10.1038/s41586-019-1666-5 – ident: PRXQuantum.2.020304Cc68R1 doi: 10.1038/nature03074 – ident: PRXQuantum.2.020304Cc64R1 doi: 10.1103/PhysRevLett.74.4091 – ident: PRXQuantum.2.020304Cc66R1 doi: 10.1063/1.5088164 – ident: PRXQuantum.2.020304Cc27R1 doi: 10.1103/RevModPhys.81.865 – ident: PRXQuantum.2.020304Cc78R1 doi: 10.1103/PhysRevLett.119.150503 – ident: PRXQuantum.2.020304Cc30R1 doi: 10.1038/s41534-019-0181-8 – ident: PRXQuantum.2.020304Cc43R1 doi: 10.1103/PhysRevLett.77.3260 – ident: PRXQuantum.2.020304Cc87R1 doi: 10.1088/1367-2630/15/12/123012 |
SSID | ssj0002513149 |
Score | 2.2727954 |
Snippet | Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 020304 |
Title | Efficient and Robust Certification of Genuine Multipartite Entanglement in Noisy Quantum Error Correction Circuits |
URI | https://doaj.org/article/9cdc8408af794c95a52d50d487f74420 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn_gmB49W0zTpNkddqougqCjsreQpC9ou3fbgxd_uJK3rnvTipYeSlulk6MzXfvMNQqeZ0F4zhUU0NSaCfJxEQjoVERc7K4h2KkgK3d2n4xd2O-GTpVFfnhPWyQN3jrsQ2mgAIZl0EDlacMmp4cRAne2GjNGA1okgS2DKv4MhaydQ-_cyQzFJLh6eJo8tGNu-n9Nz__utH832nYqWFPtDarneQOt9TYgvO1s20Yott9Bq4Gbq-Taq8yDzANkBA-zHT5Vq5w0eeUK067-44crhG1u2UDLi0FI78w_WWJyXUPy9dhRxPC3xfTWdf-DeRJzXdVXjkR_QEdob8Gha63bazHfQy3X-PBpH_aiESCcpaaKEGxMblXJuHHgZUJZMRZwplvleUh47wxVkckBTRghGTZJRJzPAhl7UPGMy2UWDsirtHsLEWK2kcpIrySjsm7VC2NgyYQi1Q76P6LfXCt3riPtxFm9FwBMkKX5cXdCic_U-OltcNOtkNH5ffuW3Y7HUa2CHExAZRR8ZxV-RcfAfNzlEa9SzWAJX5wgNmrq1x1CGNOokRBwc7z7zL7Sl3o4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Robust+Certification+of+Genuine+Multipartite+Entanglement+in+Noisy+Quantum+Error+Correction+Circuits&rft.jtitle=PRX+quantum&rft.au=Andrea+Rodriguez-Blanco&rft.au=Alejandro+Bermudez&rft.au=Markus+M%C3%BCller&rft.au=Farid+Shahandeh&rft.date=2021-04-01&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=2&rft.issue=2&rft.spage=020304&rft_id=info:doi/10.1103%2FPRXQuantum.2.020304&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9cdc8408af794c95a52d50d487f74420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |