Efficient and Robust Certification of Genuine Multipartite Entanglement in Noisy Quantum Error Correction Circuits

Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of...

Full description

Saved in:
Bibliographic Details
Published inPRX quantum Vol. 2; no. 2; p. 020304
Main Authors Rodriguez-Blanco, Andrea, Bermudez, Alejandro, Müller, Markus, Shahandeh, Farid
Format Journal Article
LanguageEnglish
Published American Physical Society 01.04.2021
Online AccessGet full text
ISSN2691-3399
2691-3399
DOI10.1103/PRXQuantum.2.020304

Cover

Abstract Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of physical qubits. We introduce a conditional witnessing technique to certify GME that is efficient in the number of subsystems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that the detection of entanglement in a linear number of bipartitions by a number of measurements that also scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of separating the state from the convex hull of biseparable states, yielding an improved finesse and robustness compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depolarizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate set that makes it suitable for experimental applications.
AbstractList Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of physical qubits. We introduce a conditional witnessing technique to certify GME that is efficient in the number of subsystems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that the detection of entanglement in a linear number of bipartitions by a number of measurements that also scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of separating the state from the convex hull of biseparable states, yielding an improved finesse and robustness compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depolarizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate set that makes it suitable for experimental applications.
ArticleNumber 020304
Author Bermudez, Alejandro
Rodriguez-Blanco, Andrea
Shahandeh, Farid
Müller, Markus
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-0034-8846
  surname: Rodriguez-Blanco
  fullname: Rodriguez-Blanco, Andrea
– sequence: 2
  givenname: Alejandro
  surname: Bermudez
  fullname: Bermudez, Alejandro
– sequence: 3
  givenname: Markus
  surname: Müller
  fullname: Müller, Markus
– sequence: 4
  givenname: Farid
  surname: Shahandeh
  fullname: Shahandeh, Farid
BookMark eNp9UclKBDEUDKKgjvMFXvIDPWbtSY7StAu4DgreQibLEOlJJJ0--Pf2LKh48PQe9ajiVdUpOIwpOgDOMZphjOjF0-LtedCxDOsZmSGCKGIH4ITUEleUSnn4az8G075_RwgRjilm8gTk1vtggosF6mjhIi2HvsDG5RJGXJeQIkweXrs4hOjg_dCV8KHHa3GwjUXHVefWG3aI8CGF_hPuf4FtzinDJuXszFamCdkMofRn4MjrrnfT_ZyA16v2pbmp7h6vb5vLu8rQGpWKcmuxXdacW--xrxHWow2xZKJmc8Gxt3yJCcMMWSkZsVQQrwVn0mgmBNN0Am53ujbpd_WRw1rnT5V0UFsg5ZXaGDGdU9JYIxgS2s8lM5JrTixHlom5nzM2RjoBdKdlcur77Py3HkZq04L6aUERtWthZMk_LBPKNtOSdej-5X4Bi9iThg
CitedBy_id crossref_primary_10_1103_PhysRevResearch_4_023059
crossref_primary_10_1103_PhysRevA_104_042410
crossref_primary_10_1103_PhysRevA_109_052211
crossref_primary_10_1103_PRXQuantum_3_030322
crossref_primary_10_1103_PhysRevResearch_6_023035
crossref_primary_10_1103_PhysRevA_109_052417
crossref_primary_10_1103_PhysRevA_111_012413
crossref_primary_10_1103_PhysRevA_107_052409
crossref_primary_10_1103_PhysRevApplied_21_024016
crossref_primary_10_1103_PhysRevA_111_032423
crossref_primary_10_1103_PRXQuantum_5_040340
crossref_primary_10_22331_q_2022_04_25_695
crossref_primary_10_1103_PhysRevX_12_011032
Cites_doi 10.1103/PhysRevLett.82.1835
10.1038/35005011
10.1103/PhysRevLett.122.060502
10.1038/nature01492
10.1103/PhysRevLett.97.150504
10.1103/PhysRevA.40.4277
10.1103/PhysRevA.79.022318
10.1103/PhysRevA.62.022311
10.1103/PhysRevLett.97.180501
10.1038/nature16184
10.1088/1367-2630/aac485
10.1038/s41586-020-2667-0
10.1016/S0375-9601(96)00706-2
10.1038/nature00784
10.1103/PhysRevLett.96.170502
10.1016/S0375-9601(01)00142-6
10.1103/PhysRevX.7.041061
10.1103/PhysRevLett.104.210501
10.1103/PhysRevX.9.031045
10.1126/science.1253742
10.1098/rspa.2002.1097
10.1137/S0097539799359385
10.1038/s41586-020-03079-6
10.1038/nature09416
10.1103/PhysRevA.100.062307
10.1103/PhysRevLett.98.020501
10.1103/PhysRevA.62.052310
10.1103/PhysRevLett.92.027901
10.1126/science.aar7053
10.1103/PhysRevA.72.022340
10.1088/0953-4075/42/15/154013
10.1103/PhysRevLett.111.110503
10.1103/PhysRevA.101.012301
10.1103/PhysRevLett.109.080501
10.1103/PhysRevA.52.R2493
10.1103/PhysRevA.79.012312
10.1038/s41567-019-0733-z
10.1103/PhysRevLett.118.110502
10.1116/1.5126186
10.1126/sciadv.1701074
10.1103/PhysRevA.70.062317
10.1063/1.5100160
10.1103/PhysRevA.71.042306
10.1038/nature08812
10.1016/S0375-9601(00)00401-1
10.1103/PhysRevLett.115.020403
10.1364/OPTICA.2.000523
10.1016/j.physrep.2009.02.004
10.1126/science.1203329
10.1007/s00340-016-6527-4
10.1103/PhysRevLett.98.110502
10.1088/1367-2630/ab84b3
10.1103/PhysRevA.54.1098
10.1016/j.physrep.2008.09.003
10.1103/PhysRevA.90.033410
10.1103/PhysRevA.100.032325
10.1103/PhysRevLett.121.050502
10.1103/PhysRevA.69.032313
10.1017/CBO9780511535048
10.1103/PhysRevLett.113.220501
10.1038/s41534-019-0200-9
10.1103/PRXQuantum.1.010302
10.1103/PhysRevLett.113.260502
10.1038/s41567-020-0920-y
10.1038/s41566-017-0007-1
10.1103/PhysRevLett.77.793
10.1103/PhysRevLett.97.220407
10.22331/q-2018-02-08-53
10.1103/PhysRevLett.81.5932
10.1103/PhysRevA.99.022330
10.1038/nnano.2014.216
10.1103/RevModPhys.87.307
10.1038/nature01494
10.1088/0953-4075/36/3/319
10.1103/PhysRevLett.102.090502
10.1103/PhysRevLett.117.060504
10.1146/annurev-conmatphys-031119-050605
10.1088/1367-2630/aab341
10.1038/ncomms7979
10.1038/srep45045
10.1103/PhysRevA.71.032333
10.1038/s41586-019-1666-5
10.1038/nature03074
10.1103/PhysRevLett.74.4091
10.1063/1.5088164
10.1103/RevModPhys.81.865
10.1103/PhysRevLett.119.150503
10.1038/s41534-019-0181-8
10.1103/PhysRevLett.77.3260
10.1088/1367-2630/15/12/123012
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PRXQuantum.2.020304
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_9cdc8408af794c95a52d50d487f74420
10_1103_PRXQuantum_2_020304
GroupedDBID 3MX
AAYXX
AFGMR
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c360t-35dd1db655dff1f601a6918b48647851fd5b124140d9942d382fa8549ca4884a3
IEDL.DBID DOA
ISSN 2691-3399
IngestDate Wed Aug 27 01:24:40 EDT 2025
Tue Jul 01 03:18:21 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-35dd1db655dff1f601a6918b48647851fd5b124140d9942d382fa8549ca4884a3
ORCID 0000-0002-0034-8846
OpenAccessLink https://doaj.org/article/9cdc8408af794c95a52d50d487f74420
ParticipantIDs doaj_primary_oai_doaj_org_article_9cdc8408af794c95a52d50d487f74420
crossref_primary_10_1103_PRXQuantum_2_020304
crossref_citationtrail_10_1103_PRXQuantum_2_020304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References I. Bengtsson (PRXQuantum.2.020304Cc50R1) 2006
D. M. Greenberger (PRXQuantum.2.020304Cc42R1) 1989
PRXQuantum.2.020304Cc82R1
PRXQuantum.2.020304Cc80R1
PRXQuantum.2.020304Cc44R1
PRXQuantum.2.020304Cc65R1
PRXQuantum.2.020304Cc103R1
PRXQuantum.2.020304Cc23R1
PRXQuantum.2.020304Cc67R1
PRXQuantum.2.020304Cc88R1
PRXQuantum.2.020304Cc105R1
PRXQuantum.2.020304Cc40R1
PRXQuantum.2.020304Cc61R1
PRXQuantum.2.020304Cc86R1
PRXQuantum.2.020304Cc63R1
PRXQuantum.2.020304Cc84R1
PRXQuantum.2.020304Cc29R1
F. Gaitan (PRXQuantum.2.020304Cc9R1) 2007
PRXQuantum.2.020304Cc25R1
PRXQuantum.2.020304Cc48R1
PRXQuantum.2.020304Cc69R1
PRXQuantum.2.020304Cc27R1
J. Eisert (PRXQuantum.2.020304Cc46R1) 2007
PRXQuantum.2.020304Cc70R1
PRXQuantum.2.020304Cc91R1
PRXQuantum.2.020304Cc7R1
PRXQuantum.2.020304Cc5R1
PRXQuantum.2.020304Cc32R1
PRXQuantum.2.020304Cc55R1
PRXQuantum.2.020304Cc78R1
PRXQuantum.2.020304Cc34R1
PRXQuantum.2.020304Cc57R1
PRXQuantum.2.020304Cc76R1
PRXQuantum.2.020304Cc99R1
PRXQuantum.2.020304Cc1R1
PRXQuantum.2.020304Cc51R1
PRXQuantum.2.020304Cc74R1
PRXQuantum.2.020304Cc97R1
PRXQuantum.2.020304Cc11R1
PRXQuantum.2.020304Cc30R1
PRXQuantum.2.020304Cc53R1
PRXQuantum.2.020304Cc72R1
PRXQuantum.2.020304Cc95R1
PRXQuantum.2.020304Cc17R1
M. A. Nielsen (PRXQuantum.2.020304Cc8R1) 2000
PRXQuantum.2.020304Cc15R1
PRXQuantum.2.020304Cc36R1
PRXQuantum.2.020304Cc19R1
PRXQuantum.2.020304Cc38R1
PRXQuantum.2.020304Cc81R1
PRXQuantum.2.020304Cc60R1
PRXQuantum.2.020304Cc106R1
PRXQuantum.2.020304Cc20R1
PRXQuantum.2.020304Cc43R1
PRXQuantum.2.020304Cc66R1
PRXQuantum.2.020304Cc89R1
PRXQuantum.2.020304Cc102R1
PRXQuantum.2.020304Cc45R1
PRXQuantum.2.020304Cc68R1
PRXQuantum.2.020304Cc87R1
PRXQuantum.2.020304Cc104R1
PRXQuantum.2.020304Cc24R1
PRXQuantum.2.020304Cc62R1
PRXQuantum.2.020304Cc85R1
PRXQuantum.2.020304Cc41R1
PRXQuantum.2.020304Cc64R1
PRXQuantum.2.020304Cc83R1
PRXQuantum.2.020304Cc100R1
PRXQuantum.2.020304Cc47R1
PRXQuantum.2.020304Cc26R1
S. Gharibian (PRXQuantum.2.020304Cc22R1) 2010; 10
PRXQuantum.2.020304Cc28R1
PRXQuantum.2.020304Cc92R1
PRXQuantum.2.020304Cc90R1
PRXQuantum.2.020304Cc6R1
PRXQuantum.2.020304Cc33R1
PRXQuantum.2.020304Cc54R1
PRXQuantum.2.020304Cc79R1
PRXQuantum.2.020304Cc4R1
PRXQuantum.2.020304Cc35R1
PRXQuantum.2.020304Cc56R1
PRXQuantum.2.020304Cc77R1
PRXQuantum.2.020304Cc98R1
PRXQuantum.2.020304Cc2R1
PRXQuantum.2.020304Cc12R1
PRXQuantum.2.020304Cc75R1
PRXQuantum.2.020304Cc96R1
PRXQuantum.2.020304Cc10R1
PRXQuantum.2.020304Cc31R1
PRXQuantum.2.020304Cc52R1
PRXQuantum.2.020304Cc16R1
PRXQuantum.2.020304Cc14R1
PRXQuantum.2.020304Cc58R1
PRXQuantum.2.020304Cc18R1
PRXQuantum.2.020304Cc39R1
References_xml – ident: PRXQuantum.2.020304Cc81R1
  doi: 10.1103/PhysRevLett.82.1835
– ident: PRXQuantum.2.020304Cc83R1
  doi: 10.1038/35005011
– ident: PRXQuantum.2.020304Cc61R1
  doi: 10.1103/PhysRevLett.122.060502
– ident: PRXQuantum.2.020304Cc84R1
  doi: 10.1038/nature01492
– ident: PRXQuantum.2.020304Cc57R1
  doi: 10.1103/PhysRevLett.97.150504
– ident: PRXQuantum.2.020304Cc47R1
  doi: 10.1103/PhysRevA.40.4277
– ident: PRXQuantum.2.020304Cc52R1
  doi: 10.1103/PhysRevA.79.022318
– ident: PRXQuantum.2.020304Cc82R1
  doi: 10.1103/PhysRevA.62.022311
– ident: PRXQuantum.2.020304Cc35R1
  doi: 10.1103/PhysRevLett.97.180501
– ident: PRXQuantum.2.020304Cc80R1
  doi: 10.1038/nature16184
– ident: PRXQuantum.2.020304Cc62R1
  doi: 10.1088/1367-2630/aac485
– ident: PRXQuantum.2.020304Cc70R1
  doi: 10.1038/s41586-020-2667-0
– ident: PRXQuantum.2.020304Cc23R1
  doi: 10.1016/S0375-9601(96)00706-2
– ident: PRXQuantum.2.020304Cc89R1
  doi: 10.1038/nature00784
– ident: PRXQuantum.2.020304Cc31R1
  doi: 10.1103/PhysRevLett.96.170502
– ident: PRXQuantum.2.020304Cc51R1
  doi: 10.1016/S0375-9601(01)00142-6
– ident: PRXQuantum.2.020304Cc4R1
  doi: 10.1103/PhysRevX.7.041061
– ident: PRXQuantum.2.020304Cc106R1
  doi: 10.1103/PhysRevLett.104.210501
– ident: PRXQuantum.2.020304Cc99R1
  doi: 10.1103/PhysRevX.9.031045
– ident: PRXQuantum.2.020304Cc16R1
  doi: 10.1126/science.1253742
– ident: PRXQuantum.2.020304Cc20R1
  doi: 10.1098/rspa.2002.1097
– ident: PRXQuantum.2.020304Cc38R1
  doi: 10.1137/S0097539799359385
– ident: PRXQuantum.2.020304Cc95R1
  doi: 10.1038/s41586-020-03079-6
– ident: PRXQuantum.2.020304Cc17R1
  doi: 10.1038/nature09416
– ident: PRXQuantum.2.020304Cc45R1
  doi: 10.1103/PhysRevA.100.062307
– ident: PRXQuantum.2.020304Cc44R1
  doi: 10.1103/PhysRevLett.98.020501
– ident: PRXQuantum.2.020304Cc25R1
  doi: 10.1103/PhysRevA.62.052310
– ident: PRXQuantum.2.020304Cc34R1
  doi: 10.1103/PhysRevLett.92.027901
– ident: PRXQuantum.2.020304Cc104R1
  doi: 10.1126/science.aar7053
– ident: PRXQuantum.2.020304Cc29R1
  doi: 10.1103/PhysRevA.72.022340
– ident: PRXQuantum.2.020304Cc85R1
  doi: 10.1088/0953-4075/42/15/154013
– ident: PRXQuantum.2.020304Cc26R1
  doi: 10.1103/PhysRevLett.111.110503
– ident: PRXQuantum.2.020304Cc33R1
  doi: 10.1103/PhysRevA.101.012301
– ident: PRXQuantum.2.020304Cc90R1
  doi: 10.1103/PhysRevLett.109.080501
– ident: PRXQuantum.2.020304Cc5R1
  doi: 10.1103/PhysRevA.52.R2493
– ident: PRXQuantum.2.020304Cc86R1
  doi: 10.1103/PhysRevA.79.012312
– ident: PRXQuantum.2.020304Cc97R1
  doi: 10.1038/s41567-019-0733-z
– ident: PRXQuantum.2.020304Cc32R1
  doi: 10.1103/PhysRevLett.118.110502
– ident: PRXQuantum.2.020304Cc79R1
  doi: 10.1116/1.5126186
– ident: PRXQuantum.2.020304Cc14R1
  doi: 10.1126/sciadv.1701074
– ident: PRXQuantum.2.020304Cc53R1
  doi: 10.1103/PhysRevA.70.062317
– ident: PRXQuantum.2.020304Cc100R1
  doi: 10.1063/1.5100160
– ident: PRXQuantum.2.020304Cc56R1
  doi: 10.1103/PhysRevA.71.042306
– ident: PRXQuantum.2.020304Cc1R1
  doi: 10.1038/nature08812
– volume-title: Bell’s Theorem, Quantum Theory and Conceptions of the Universe
  year: 1989
  ident: PRXQuantum.2.020304Cc42R1
– ident: PRXQuantum.2.020304Cc24R1
  doi: 10.1016/S0375-9601(00)00401-1
– ident: PRXQuantum.2.020304Cc92R1
  doi: 10.1103/PhysRevLett.115.020403
– ident: PRXQuantum.2.020304Cc103R1
  doi: 10.1364/OPTICA.2.000523
– ident: PRXQuantum.2.020304Cc105R1
  doi: 10.1016/j.physrep.2009.02.004
– ident: PRXQuantum.2.020304Cc69R1
  doi: 10.1126/science.1203329
– ident: PRXQuantum.2.020304Cc88R1
  doi: 10.1007/s00340-016-6527-4
– ident: PRXQuantum.2.020304Cc55R1
  doi: 10.1103/PhysRevLett.98.110502
– ident: PRXQuantum.2.020304Cc63R1
  doi: 10.1088/1367-2630/ab84b3
– ident: PRXQuantum.2.020304Cc6R1
  doi: 10.1103/PhysRevA.54.1098
– volume: 10
  start-page: 343
  year: 2010
  ident: PRXQuantum.2.020304Cc22R1
  publication-title: Quantum Inf. Comput.
– ident: PRXQuantum.2.020304Cc67R1
  doi: 10.1016/j.physrep.2008.09.003
– volume-title: Quantum Error Correction and Fault Tolerant Quantum Computing
  year: 2007
  ident: PRXQuantum.2.020304Cc9R1
– ident: PRXQuantum.2.020304Cc91R1
  doi: 10.1103/PhysRevA.90.033410
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: PRXQuantum.2.020304Cc8R1
– ident: PRXQuantum.2.020304Cc74R1
  doi: 10.1103/PhysRevA.100.032325
– ident: PRXQuantum.2.020304Cc39R1
  doi: 10.1103/PhysRevLett.121.050502
– ident: PRXQuantum.2.020304Cc102R1
  doi: 10.1103/PhysRevA.69.032313
– volume-title: Geometry of Quantum States: An Introduction to Quantum Entanglement
  year: 2006
  ident: PRXQuantum.2.020304Cc50R1
  doi: 10.1017/CBO9780511535048
– ident: PRXQuantum.2.020304Cc76R1
  doi: 10.1103/PhysRevLett.113.220501
– ident: PRXQuantum.2.020304Cc28R1
  doi: 10.1038/s41534-019-0200-9
– ident: PRXQuantum.2.020304Cc41R1
  doi: 10.1103/PRXQuantum.1.010302
– ident: PRXQuantum.2.020304Cc48R1
  doi: 10.1103/PhysRevLett.113.260502
– ident: PRXQuantum.2.020304Cc19R1
  doi: 10.1038/s41567-020-0920-y
– ident: PRXQuantum.2.020304Cc75R1
  doi: 10.1038/s41566-017-0007-1
– volume-title: Lectures on Quantum Information
  year: 2007
  ident: PRXQuantum.2.020304Cc46R1
– ident: PRXQuantum.2.020304Cc7R1
  doi: 10.1103/PhysRevLett.77.793
– ident: PRXQuantum.2.020304Cc11R1
  doi: 10.1103/PhysRevLett.97.220407
– ident: PRXQuantum.2.020304Cc40R1
  doi: 10.22331/q-2018-02-08-53
– ident: PRXQuantum.2.020304Cc58R1
  doi: 10.1103/PhysRevLett.81.5932
– ident: PRXQuantum.2.020304Cc72R1
  doi: 10.1103/PhysRevA.99.022330
– ident: PRXQuantum.2.020304Cc98R1
  doi: 10.1038/nnano.2014.216
– ident: PRXQuantum.2.020304Cc36R1
  doi: 10.1103/RevModPhys.87.307
– ident: PRXQuantum.2.020304Cc65R1
  doi: 10.1038/nature01494
– ident: PRXQuantum.2.020304Cc10R1
  doi: 10.1088/0953-4075/36/3/319
– ident: PRXQuantum.2.020304Cc12R1
  doi: 10.1103/PhysRevLett.102.090502
– ident: PRXQuantum.2.020304Cc77R1
  doi: 10.1103/PhysRevLett.117.060504
– ident: PRXQuantum.2.020304Cc96R1
  doi: 10.1146/annurev-conmatphys-031119-050605
– ident: PRXQuantum.2.020304Cc15R1
  doi: 10.1088/1367-2630/aab341
– ident: PRXQuantum.2.020304Cc18R1
  doi: 10.1038/ncomms7979
– ident: PRXQuantum.2.020304Cc60R1
  doi: 10.1038/srep45045
– ident: PRXQuantum.2.020304Cc54R1
  doi: 10.1103/PhysRevA.71.032333
– ident: PRXQuantum.2.020304Cc2R1
  doi: 10.1038/s41586-019-1666-5
– ident: PRXQuantum.2.020304Cc68R1
  doi: 10.1038/nature03074
– ident: PRXQuantum.2.020304Cc64R1
  doi: 10.1103/PhysRevLett.74.4091
– ident: PRXQuantum.2.020304Cc66R1
  doi: 10.1063/1.5088164
– ident: PRXQuantum.2.020304Cc27R1
  doi: 10.1103/RevModPhys.81.865
– ident: PRXQuantum.2.020304Cc78R1
  doi: 10.1103/PhysRevLett.119.150503
– ident: PRXQuantum.2.020304Cc30R1
  doi: 10.1038/s41534-019-0181-8
– ident: PRXQuantum.2.020304Cc43R1
  doi: 10.1103/PhysRevLett.77.3260
– ident: PRXQuantum.2.020304Cc87R1
  doi: 10.1088/1367-2630/15/12/123012
SSID ssj0002513149
Score 2.2727954
Snippet Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 020304
Title Efficient and Robust Certification of Genuine Multipartite Entanglement in Noisy Quantum Error Correction Circuits
URI https://doaj.org/article/9cdc8408af794c95a52d50d487f74420
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn_gmB49W0zTpNkddqougqCjsreQpC9ou3fbgxd_uJK3rnvTipYeSlulk6MzXfvMNQqeZ0F4zhUU0NSaCfJxEQjoVERc7K4h2KkgK3d2n4xd2O-GTpVFfnhPWyQN3jrsQ2mgAIZl0EDlacMmp4cRAne2GjNGA1okgS2DKv4MhaydQ-_cyQzFJLh6eJo8tGNu-n9Nz__utH832nYqWFPtDarneQOt9TYgvO1s20Yott9Bq4Gbq-Taq8yDzANkBA-zHT5Vq5w0eeUK067-44crhG1u2UDLi0FI78w_WWJyXUPy9dhRxPC3xfTWdf-DeRJzXdVXjkR_QEdob8Gha63bazHfQy3X-PBpH_aiESCcpaaKEGxMblXJuHHgZUJZMRZwplvleUh47wxVkckBTRghGTZJRJzPAhl7UPGMy2UWDsirtHsLEWK2kcpIrySjsm7VC2NgyYQi1Q76P6LfXCt3riPtxFm9FwBMkKX5cXdCic_U-OltcNOtkNH5ffuW3Y7HUa2CHExAZRR8ZxV-RcfAfNzlEa9SzWAJX5wgNmrq1x1CGNOokRBwc7z7zL7Sl3o4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Robust+Certification+of+Genuine+Multipartite+Entanglement+in+Noisy+Quantum+Error+Correction+Circuits&rft.jtitle=PRX+quantum&rft.au=Andrea+Rodriguez-Blanco&rft.au=Alejandro+Bermudez&rft.au=Markus+M%C3%BCller&rft.au=Farid+Shahandeh&rft.date=2021-04-01&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=2&rft.issue=2&rft.spage=020304&rft_id=info:doi/10.1103%2FPRXQuantum.2.020304&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9cdc8408af794c95a52d50d487f74420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon