Dispersive fractalisation in linear and nonlinear Fermi–Pasta–Ulam–Tsingou lattices

We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 32; no. 5; pp. 820 - 845
Main Authors OLVER, PETER J., STERN, ARI
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2021
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S095679252000042X

Cover

Abstract We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
AbstractList We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O( h −2 ), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
Author OLVER, PETER J.
STERN, ARI
Author_xml – sequence: 1
  givenname: PETER J.
  orcidid: 0000-0001-6209-8777
  surname: OLVER
  fullname: OLVER, PETER J.
  email: olver@umn.edu
  organization: 1School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA email: olver@umn.edu
– sequence: 2
  givenname: ARI
  surname: STERN
  fullname: STERN, ARI
  email: stern@wustl.edu
  organization: 2Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO 63130, USA email: stern@wustl.edu
BookMark eNp9kN1KwzAUx4NMcE4fwLuC19V8tWkvZToVBgpuoFflNE1GRpvOJBO88x18Q5_EzA0ERc_Nn8P5_87XIRrY3iqETgg-I5iI8wdcZrkoaUZxDE4f99CQ8LxMOafZAA035XRTP0CH3i8xJgyLcoieLo1fKefNi0q0AxmgNR6C6W1ibNIaq8AlYJskzttlE-U68_H2fg8-QNR5C12UmTd20a-TFkIwUvkjtK-h9ep4pyM0n1zNxjfp9O76dnwxTSXLcUhZVhea8EIIEHXWZILWpCFloTNotCalZAyrHDdMCR1dBa4JbaITQFItBbAROt32Xbn-ea18qJb92tk4sqJZXjJGOOfRJbYu6XrvndKVNOHrzuDAtBXB1eaP1a8_RpL8IFfOdOBe_2XYjoGudqZZqO-l_qY-AaXHids
CitedBy_id crossref_primary_10_1016_j_physd_2023_133866
crossref_primary_10_1007_s11012_024_01853_8
crossref_primary_10_1007_s11071_024_10219_4
crossref_primary_10_1016_j_ijnonlinmec_2024_104716
Cites_doi 10.1511/2009.78.214
10.1103/PhysRevA.31.3518
10.1070/RM1976v031n01ABEH001446
10.1007/978-1-4612-1956-9
10.1016/S0096-3003(98)10070-X
10.1007/s00332-018-9482-x
10.1103/PhysRevA.28.3544
10.1007/s00211-016-0859-1
10.1088/0305-4470/29/20/016
10.1098/rsta.1972.0032
10.1142/p381
10.1111/sapm.12397
10.1016/0375-9601(86)90170-2
10.1103/PhysRevA.54.R37
10.1017/S0962492902000053
10.1007/s002200100428
10.1063/1.3024514
10.1006/jdeq.1993.1040
10.1137/080732936
10.1007/BF01425567
10.1103/PhysRevA.5.1372
10.1007/BF02099784
10.1016/0370-1573(92)90116-H
10.1007/978-3-642-96585-2
10.1088/2058-7058/14/6/30
10.1007/s00029-019-0455-1
10.1016/S0377-0427(01)00492-7
10.1007/978-1-4612-0873-0
10.1007/3-540-12916-2_62
10.4169/000298910x496723
10.1103/PhysRevA.31.1039
10.1016/0167-2789(92)90074-W
10.1103/PhysRevA.43.5153
10.1063/1.2835154
10.1090/pspum/069/1858551
10.1098/rspa.2018.0160
10.1017/CBO9781139172059
10.1016/0001-8708(75)90151-6
10.1007/s00220-004-1251-z
10.1080/09500349608232876
10.1088/0143-0807/26/5/S01
10.1098/rspa.2012.0407
10.1103/PhysRevB.36.5868
10.1137/130921118
10.1103/PhysRevLett.15.240
10.1137/0705041
10.1016/0001-8708(72)90024-2
10.4310/MRL.2013.v20.n6.a7
10.1090/conm/255/03981
10.1063/1.1665604
10.1112/plms/pdu061
10.1090/conm/028/751987
10.1016/0021-9991(81)90120-0
10.1007/978-1-4612-2966-7_16
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
– notice: The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
DBID IKXGN
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S095679252000042X
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 845
ExternalDocumentID 10_1017_S095679252000042X
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXGN
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WXY
WYP
XFK
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACAJB
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-35b8f14877a7b5d572b1d198f5adff19c330e60d3e7f48780b12d7b5aac2fc7a3
IEDL.DBID IKXGN
ISSN 0956-7925
IngestDate Fri Jul 25 19:36:42 EDT 2025
Thu Apr 24 23:00:22 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
Wed Mar 13 06:01:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 65P10
28A80
37K60
35Q53
70H08
revival
continuum model
geometric integration
Fermi–Pasta–Ulam–Tsingou lattice
70F45
42A32
dispersion
fractalisation
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-35b8f14877a7b5d572b1d198f5adff19c330e60d3e7f48780b12d7b5aac2fc7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6209-8777
OpenAccessLink https://www.cambridge.org/core/product/identifier/S095679252000042X/type/journal_article
PQID 2569331444
PQPubID 37129
PageCount 26
ParticipantIDs proquest_journals_2569331444
crossref_citationtrail_10_1017_S095679252000042X
crossref_primary_10_1017_S095679252000042X
cambridge_journals_10_1017_S095679252000042X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationTitleAlternate Eur. J. Appl. Math
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Daripa (S095679252000042X_ref14) 1999; 101
Erdoğan (S095679252000042X_ref21) 2016; 86
Lennard–Jones (S095679252000042X_ref28) 1972; 5
Benjamin (S095679252000042X_ref2) 1972; 272
S095679252000042X_ref29
S095679252000042X_ref24
S095679252000042X_ref25
S095679252000042X_ref27
S095679252000042X_ref31
S095679252000042X_ref32
S095679252000042X_ref33
S095679252000042X_ref34
S095679252000042X_ref7
S095679252000042X_ref6
S095679252000042X_ref30
S095679252000042X_ref8
S095679252000042X_ref3
S095679252000042X_ref5
S095679252000042X_ref4
S095679252000042X_ref1
Hairer (S095679252000042X_ref26) 2006
S095679252000042X_ref17
S095679252000042X_ref18
S095679252000042X_ref19
S095679252000042X_ref13
S095679252000042X_ref57
S095679252000042X_ref58
S095679252000042X_ref15
S095679252000042X_ref59
S095679252000042X_ref16
S095679252000042X_ref64
S095679252000042X_ref20
S095679252000042X_ref23
S095679252000042X_ref61
S095679252000042X_ref62
Zabusky (S095679252000042X_ref63) 1967; 2
S095679252000042X_ref46
S095679252000042X_ref47
S095679252000042X_ref48
Olver (S095679252000042X_ref39) 2018
S095679252000042X_ref49
S095679252000042X_ref53
S095679252000042X_ref10
S095679252000042X_ref11
S095679252000042X_ref55
S095679252000042X_ref12
S095679252000042X_ref56
S095679252000042X_ref50
S095679252000042X_ref51
S095679252000042X_ref52
Whitham (S095679252000042X_ref60) 1974
Talbot (S095679252000042X_ref54) 1836; 9
S095679252000042X_ref35
S095679252000042X_ref36
S095679252000042X_ref37
S095679252000042X_ref42
Boussinesq (S095679252000042X_ref9) 1877; 23
S095679252000042X_ref43
S095679252000042X_ref44
S095679252000042X_ref45
Fermi (S095679252000042X_ref22) 1974
S095679252000042X_ref40
S095679252000042X_ref41
Olver (S095679252000042X_ref38) 2014
References_xml – ident: S095679252000042X_ref43
  doi: 10.1511/2009.78.214
– volume: 5
  start-page: 1372
  year: 1972
  ident: S095679252000042X_ref28
  article-title: On the determination of molecular fields
  publication-title: Phys. Rev. A
– ident: S095679252000042X_ref49
  doi: 10.1103/PhysRevA.31.3518
– volume-title: Linear and Nonlinear Waves
  year: 1974
  ident: S095679252000042X_ref60
– ident: S095679252000042X_ref18
  doi: 10.1070/RM1976v031n01ABEH001446
– ident: S095679252000042X_ref59
  doi: 10.1007/978-1-4612-1956-9
– volume: 101
  start-page: 159
  year: 1999
  ident: S095679252000042X_ref14
  article-title: A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(98)10070-X
– ident: S095679252000042X_ref10
  doi: 10.1007/s00332-018-9482-x
– ident: S095679252000042X_ref29
  doi: 10.1103/PhysRevA.28.3544
– ident: S095679252000042X_ref27
  doi: 10.1007/s00211-016-0859-1
– ident: S095679252000042X_ref3
  doi: 10.1088/0305-4470/29/20/016
– volume: 272
  start-page: 47
  year: 1972
  ident: S095679252000042X_ref2
  article-title: Model equations for long waves in nonlinear dispersive systems
  publication-title: Phil. Trans. Roy. Soc. London A
  doi: 10.1098/rsta.1972.0032
– volume-title: Undergraduate Texts in Mathematics
  year: 2014
  ident: S095679252000042X_ref38
– ident: S095679252000042X_ref42
  doi: 10.1142/p381
– ident: S095679252000042X_ref8
  doi: 10.1111/sapm.12397
– ident: S095679252000042X_ref47
  doi: 10.1016/0375-9601(86)90170-2
– ident: S095679252000042X_ref58
  doi: 10.1103/PhysRevA.54.R37
– ident: S095679252000042X_ref32
  doi: 10.1017/S0962492902000053
– ident: S095679252000042X_ref45
  doi: 10.1007/s002200100428
– ident: S095679252000042X_ref57
  doi: 10.1063/1.3024514
– ident: S095679252000042X_ref7
  doi: 10.1006/jdeq.1993.1040
– ident: S095679252000042X_ref51
  doi: 10.1137/080732936
– ident: S095679252000042X_ref31
  doi: 10.1007/BF01425567
– ident: S095679252000042X_ref53
  doi: 10.1103/PhysRevA.5.1372
– ident: S095679252000042X_ref24
  doi: 10.1007/BF02099784
– ident: S095679252000042X_ref23
  doi: 10.1016/0370-1573(92)90116-H
– volume: 23
  start-page: 1
  year: 1877
  ident: S095679252000042X_ref9
  article-title: Essai sur la théorie des eaux courantes
  publication-title: Mém. Acad. Sci. Inst. Nat. France
– ident: S095679252000042X_ref55
  doi: 10.1007/978-3-642-96585-2
– ident: S095679252000042X_ref5
  doi: 10.1088/2058-7058/14/6/30
– volume: 2
  start-page: 126
  year: 1967
  ident: S095679252000042X_ref63
  article-title: Dynamics of nonlinear lattices I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior
  publication-title: Phys.
– ident: S095679252000042X_ref19
  doi: 10.1007/s00029-019-0455-1
– ident: S095679252000042X_ref6
  doi: 10.1016/S0377-0427(01)00492-7
– ident: S095679252000042X_ref50
  doi: 10.1007/978-1-4612-0873-0
– ident: S095679252000042X_ref36
  doi: 10.1007/3-540-12916-2_62
– volume-title: Geometric Numerical Integration
  year: 2006
  ident: S095679252000042X_ref26
– ident: S095679252000042X_ref37
  doi: 10.4169/000298910x496723
– volume: 86
  volume-title: London Mathematical Society Student Texts
  year: 2016
  ident: S095679252000042X_ref21
– ident: S095679252000042X_ref30
  doi: 10.1103/PhysRevA.31.1039
– ident: S095679252000042X_ref25
  doi: 10.1016/0167-2789(92)90074-W
– volume: 9
  start-page: 401
  year: 1836
  ident: S095679252000042X_ref54
  article-title: Facts related to optical science
  publication-title: Philos. Mag.
– ident: S095679252000042X_ref61
  doi: 10.1103/PhysRevA.43.5153
– start-page: 143
  volume-title: Nonlinear Wave Motion, Lectures in Applied Mathematics
  year: 1974
  ident: S095679252000042X_ref22
– ident: S095679252000042X_ref15
  doi: 10.1063/1.2835154
– ident: S095679252000042X_ref44
  doi: 10.1090/pspum/069/1858551
– ident: S095679252000042X_ref40
  doi: 10.1098/rspa.2018.0160
– ident: S095679252000042X_ref17
  doi: 10.1017/CBO9781139172059
– ident: S095679252000042X_ref34
  doi: 10.1016/0001-8708(75)90151-6
– ident: S095679252000042X_ref1
  doi: 10.1007/s00220-004-1251-z
– ident: S095679252000042X_ref4
  doi: 10.1080/09500349608232876
– ident: S095679252000042X_ref16
  doi: 10.1088/0143-0807/26/5/S01
– ident: S095679252000042X_ref12
  doi: 10.1098/rspa.2012.0407
– ident: S095679252000042X_ref48
  doi: 10.1103/PhysRevB.36.5868
– ident: S095679252000042X_ref33
  doi: 10.1137/130921118
– ident: S095679252000042X_ref64
  doi: 10.1103/PhysRevLett.15.240
– ident: S095679252000042X_ref52
  doi: 10.1137/0705041
– ident: S095679252000042X_ref56
  doi: 10.1016/0001-8708(72)90024-2
– ident: S095679252000042X_ref20
  doi: 10.4310/MRL.2013.v20.n6.a7
– volume-title: Applied Linear Algebra
  year: 2018
  ident: S095679252000042X_ref39
– ident: S095679252000042X_ref46
  doi: 10.1090/conm/255/03981
– ident: S095679252000042X_ref11
  doi: 10.1063/1.1665604
– ident: S095679252000042X_ref13
  doi: 10.1112/plms/pdu061
– ident: S095679252000042X_ref35
  doi: 10.1090/conm/028/751987
– ident: S095679252000042X_ref62
  doi: 10.1016/0021-9991(81)90120-0
– ident: S095679252000042X_ref41
  doi: 10.1007/978-1-4612-2966-7_16
SSID ssj0013079
Score 2.2812002
Snippet We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 820
SubjectTerms Applied mathematics
Boundary conditions
Chains
Computers
Continuum modeling
Dispersion
Fractal models
Fractals
Initial conditions
Investigations
Lattices (mathematics)
Linearization
Nonlinearity
Numerical analysis
Numerical integration
Numerical methods
Partial differential equations
Perturbation
Step functions
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFA06X_RB_MTplDz4JBbbpGmaJxG1DkHxYYP5VJImgYFsc-3e_Q_-Q3-JN_1YHcKgEJomEG4uuSfJ6bkIXUbGMkZV4MWMaS_UVHiC-8qjhlARCUPhcWyL16g_DJ9HbFQfuOU1rbJZE8uFWk8zd0Z-A6EZ9t4A_8Pb2afnska529U6hcYm2gog0jg_j5On9hbBb7X2uCCsudUsJaOh0tWREiWT0V9thdUYtbpEl3En2UO7NWDEd9UM76MNMzlAOy9LtdX8EL0_jJ3etyOiY-v-enKihqXF8XiCHY6UcywnGk8qXQx4SxwH5ufr-00COoRyCI4BxcCdHEwX-EMWjhSXH6Fh8ji473t1ygQvo5FfeJSp2MIOh3PJFdOMExXoQMSWSW1tIDJKfRP5mhpuoVXsq4BoaCllRmzGJT1GHRiLOUFYUgY9tAg5IA6lIslCamNNjG8JzGTcRddLg6W14-dpRRrj6T_7dpHf2DTNavlxlwXjY12Xq2WXWaW9sa5xr5modjSt05yu_3yGtokjq5QsvR7qFPOFOQe0UaiL0qV-AfQf0Tk
  priority: 102
  providerName: ProQuest
Title Dispersive fractalisation in linear and nonlinear Fermi–Pasta–Ulam–Tsingou lattices
URI https://www.cambridge.org/core/product/identifier/S095679252000042X/type/journal_article
https://www.proquest.com/docview/2569331444
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6oe9EH8YrX0QefxLK2aZrm0du84RB1UJ9K0iQwGFO2-e5_8B_6Szyn7TYvIAiFUEjC4Zy0-ZLz5QvAQWId50yHfsq58WPDpC9FoH1mIyYTaRk-xLboJJfd-Drj2Rxkk7MwRKucahyUmfzyfrSXSv601TMVh8YOWw8koSdkRLpBNPSyFm1atuoQ5LXj56GBmCHEL6BxdZNddGYZhmCmw0e9TDKepZz0j56_6i58n7--_77LOam9Ass1mPSOKyNWYc4O1mDpdqrEOlqHp7MeaYETSd1zdCKKBA_LaHi9gUcYUw09NTDeoNLMwLc28WM-3t7vFCJHLLs4aLB4pF2F51evr8ZEmBttQLd9_nh66dfXKfgFS4Kxz7hOHa5-hFBCc8NFpEMTytRxZZwLZcFYYJPAMCsc1koDHUYGaypVRK4Qim3CAtpit8BTjGMLI2OBaETrRPGYudRENnARRjndhqOpw_I6IqO8IpSJ_Jd_tyGY-DQvamlyuiGj_1eTw2mTl0qX46_Ke5NAzaxBrCcZw_VkvPM_a3dhMSJiS8no24OF8fDV7iMyGesmzKftiyY0Ts47d_fNesh9Ahnp4dI
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UA5IGipeONDe6mImrXjODlUFa_VUmCF0K60PaV2bEtIaHnsIsSN_9D_wY_il3Qmj10Q0t6QIllx7MgaTzIz9udvAL7GzkspTDNIpLRBZEUapCo0gXBcpHHqBF6EtujE7V70uy_7M_BUn4UhWGX9Tyx-1PYqpzXyH2iaMfZG9z_6dX0TUNYo2l2tU2iUanHsHu4xZBv-PDrA-f3Geeuwu98OqqwCQS7icBQIaRKPQYBSWhlppeKmaTH09lJb75tpjhG-i0MrnPLYKglNk1tsqXXOfa60wPd-gNmITrQ2YHbvsHN2Ptm3CCfsfirlst5HLUiqsZLqeOGX8_5LNofXVvG1USgsXWsRFioXle2WOrUEM27wCeZPx_yuw8_w5-CCGMYJ-s48nbMiGsVijtnFgJHnqm-ZHlg2KJk48K5FqJvnx39nGv1RLHuoilh0aa3i6o5d6hHB8IbL0HsXcX6BBo7FrQDTQmIPm0YKfRxjYi0j4RPLXeg56k6yCjtjgWXVpzbMSpiayt7IdxXCWqZZXhGeU96Ny2ldvo-7XJdsH9Mab9QTNRnNRE3Xpj_ehrl29_QkOznqHK_DR05QmQIjuAGN0e2d20RfZ2S2KgVj8Pe9dfo_POkQJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dispersive+fractalisation+in+linear+and+nonlinear+Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou+lattices&rft.jtitle=European+journal+of+applied+mathematics&rft.au=OLVER%2C+PETER+J.&rft.au=STERN%2C+ARI&rft.date=2021-10-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=32&rft.issue=5&rft.spage=820&rft.epage=845&rft_id=info:doi/10.1017%2FS095679252000042X&rft.externalDocID=10_1017_S095679252000042X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon