Dispersive fractalisation in linear and nonlinear Fermi–Pasta–Ulam–Tsingou lattices
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised...
Saved in:
Published in | European journal of applied mathematics Vol. 32; no. 5; pp. 820 - 845 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S095679252000042X |
Cover
Abstract | We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously. |
---|---|
AbstractList | We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously. We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O( h −2 ), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously. |
Author | OLVER, PETER J. STERN, ARI |
Author_xml | – sequence: 1 givenname: PETER J. orcidid: 0000-0001-6209-8777 surname: OLVER fullname: OLVER, PETER J. email: olver@umn.edu organization: 1School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA email: olver@umn.edu – sequence: 2 givenname: ARI surname: STERN fullname: STERN, ARI email: stern@wustl.edu organization: 2Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO 63130, USA email: stern@wustl.edu |
BookMark | eNp9kN1KwzAUx4NMcE4fwLuC19V8tWkvZToVBgpuoFflNE1GRpvOJBO88x18Q5_EzA0ERc_Nn8P5_87XIRrY3iqETgg-I5iI8wdcZrkoaUZxDE4f99CQ8LxMOafZAA035XRTP0CH3i8xJgyLcoieLo1fKefNi0q0AxmgNR6C6W1ibNIaq8AlYJskzttlE-U68_H2fg8-QNR5C12UmTd20a-TFkIwUvkjtK-h9ep4pyM0n1zNxjfp9O76dnwxTSXLcUhZVhea8EIIEHXWZILWpCFloTNotCalZAyrHDdMCR1dBa4JbaITQFItBbAROt32Xbn-ea18qJb92tk4sqJZXjJGOOfRJbYu6XrvndKVNOHrzuDAtBXB1eaP1a8_RpL8IFfOdOBe_2XYjoGudqZZqO-l_qY-AaXHids |
CitedBy_id | crossref_primary_10_1016_j_physd_2023_133866 crossref_primary_10_1007_s11012_024_01853_8 crossref_primary_10_1007_s11071_024_10219_4 crossref_primary_10_1016_j_ijnonlinmec_2024_104716 |
Cites_doi | 10.1511/2009.78.214 10.1103/PhysRevA.31.3518 10.1070/RM1976v031n01ABEH001446 10.1007/978-1-4612-1956-9 10.1016/S0096-3003(98)10070-X 10.1007/s00332-018-9482-x 10.1103/PhysRevA.28.3544 10.1007/s00211-016-0859-1 10.1088/0305-4470/29/20/016 10.1098/rsta.1972.0032 10.1142/p381 10.1111/sapm.12397 10.1016/0375-9601(86)90170-2 10.1103/PhysRevA.54.R37 10.1017/S0962492902000053 10.1007/s002200100428 10.1063/1.3024514 10.1006/jdeq.1993.1040 10.1137/080732936 10.1007/BF01425567 10.1103/PhysRevA.5.1372 10.1007/BF02099784 10.1016/0370-1573(92)90116-H 10.1007/978-3-642-96585-2 10.1088/2058-7058/14/6/30 10.1007/s00029-019-0455-1 10.1016/S0377-0427(01)00492-7 10.1007/978-1-4612-0873-0 10.1007/3-540-12916-2_62 10.4169/000298910x496723 10.1103/PhysRevA.31.1039 10.1016/0167-2789(92)90074-W 10.1103/PhysRevA.43.5153 10.1063/1.2835154 10.1090/pspum/069/1858551 10.1098/rspa.2018.0160 10.1017/CBO9781139172059 10.1016/0001-8708(75)90151-6 10.1007/s00220-004-1251-z 10.1080/09500349608232876 10.1088/0143-0807/26/5/S01 10.1098/rspa.2012.0407 10.1103/PhysRevB.36.5868 10.1137/130921118 10.1103/PhysRevLett.15.240 10.1137/0705041 10.1016/0001-8708(72)90024-2 10.4310/MRL.2013.v20.n6.a7 10.1090/conm/255/03981 10.1063/1.1665604 10.1112/plms/pdu061 10.1090/conm/028/751987 10.1016/0021-9991(81)90120-0 10.1007/978-1-4612-2966-7_16 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press – notice: The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content |
DBID | IKXGN AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S095679252000042X |
DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4425 |
EndPage | 845 |
ExternalDocumentID | 10_1017_S095679252000042X |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABEFU ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXGN IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WXY WYP XFK ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AATMM AAYXX ABHFL ABVKB ABVZP ABXHF ACAJB ACDLN ACEJA ACOZI ACRPL ADNMO AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION GROUPED_DOAJ PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c360t-35b8f14877a7b5d572b1d198f5adff19c330e60d3e7f48780b12d7b5aac2fc7a3 |
IEDL.DBID | IKXGN |
ISSN | 0956-7925 |
IngestDate | Fri Jul 25 19:36:42 EDT 2025 Thu Apr 24 23:00:22 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 Wed Mar 13 06:01:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 65P10 28A80 37K60 35Q53 70H08 revival continuum model geometric integration Fermi–Pasta–Ulam–Tsingou lattice 70F45 42A32 dispersion fractalisation |
Language | English |
License | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-35b8f14877a7b5d572b1d198f5adff19c330e60d3e7f48780b12d7b5aac2fc7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6209-8777 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S095679252000042X/type/journal_article |
PQID | 2569331444 |
PQPubID | 37129 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2569331444 crossref_citationtrail_10_1017_S095679252000042X crossref_primary_10_1017_S095679252000042X cambridge_journals_10_1017_S095679252000042X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211000 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationTitleAlternate | Eur. J. Appl. Math |
PublicationYear | 2021 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Daripa (S095679252000042X_ref14) 1999; 101 Erdoğan (S095679252000042X_ref21) 2016; 86 Lennard–Jones (S095679252000042X_ref28) 1972; 5 Benjamin (S095679252000042X_ref2) 1972; 272 S095679252000042X_ref29 S095679252000042X_ref24 S095679252000042X_ref25 S095679252000042X_ref27 S095679252000042X_ref31 S095679252000042X_ref32 S095679252000042X_ref33 S095679252000042X_ref34 S095679252000042X_ref7 S095679252000042X_ref6 S095679252000042X_ref30 S095679252000042X_ref8 S095679252000042X_ref3 S095679252000042X_ref5 S095679252000042X_ref4 S095679252000042X_ref1 Hairer (S095679252000042X_ref26) 2006 S095679252000042X_ref17 S095679252000042X_ref18 S095679252000042X_ref19 S095679252000042X_ref13 S095679252000042X_ref57 S095679252000042X_ref58 S095679252000042X_ref15 S095679252000042X_ref59 S095679252000042X_ref16 S095679252000042X_ref64 S095679252000042X_ref20 S095679252000042X_ref23 S095679252000042X_ref61 S095679252000042X_ref62 Zabusky (S095679252000042X_ref63) 1967; 2 S095679252000042X_ref46 S095679252000042X_ref47 S095679252000042X_ref48 Olver (S095679252000042X_ref39) 2018 S095679252000042X_ref49 S095679252000042X_ref53 S095679252000042X_ref10 S095679252000042X_ref11 S095679252000042X_ref55 S095679252000042X_ref12 S095679252000042X_ref56 S095679252000042X_ref50 S095679252000042X_ref51 S095679252000042X_ref52 Whitham (S095679252000042X_ref60) 1974 Talbot (S095679252000042X_ref54) 1836; 9 S095679252000042X_ref35 S095679252000042X_ref36 S095679252000042X_ref37 S095679252000042X_ref42 Boussinesq (S095679252000042X_ref9) 1877; 23 S095679252000042X_ref43 S095679252000042X_ref44 S095679252000042X_ref45 Fermi (S095679252000042X_ref22) 1974 S095679252000042X_ref40 S095679252000042X_ref41 Olver (S095679252000042X_ref38) 2014 |
References_xml | – ident: S095679252000042X_ref43 doi: 10.1511/2009.78.214 – volume: 5 start-page: 1372 year: 1972 ident: S095679252000042X_ref28 article-title: On the determination of molecular fields publication-title: Phys. Rev. A – ident: S095679252000042X_ref49 doi: 10.1103/PhysRevA.31.3518 – volume-title: Linear and Nonlinear Waves year: 1974 ident: S095679252000042X_ref60 – ident: S095679252000042X_ref18 doi: 10.1070/RM1976v031n01ABEH001446 – ident: S095679252000042X_ref59 doi: 10.1007/978-1-4612-1956-9 – volume: 101 start-page: 159 year: 1999 ident: S095679252000042X_ref14 article-title: A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(98)10070-X – ident: S095679252000042X_ref10 doi: 10.1007/s00332-018-9482-x – ident: S095679252000042X_ref29 doi: 10.1103/PhysRevA.28.3544 – ident: S095679252000042X_ref27 doi: 10.1007/s00211-016-0859-1 – ident: S095679252000042X_ref3 doi: 10.1088/0305-4470/29/20/016 – volume: 272 start-page: 47 year: 1972 ident: S095679252000042X_ref2 article-title: Model equations for long waves in nonlinear dispersive systems publication-title: Phil. Trans. Roy. Soc. London A doi: 10.1098/rsta.1972.0032 – volume-title: Undergraduate Texts in Mathematics year: 2014 ident: S095679252000042X_ref38 – ident: S095679252000042X_ref42 doi: 10.1142/p381 – ident: S095679252000042X_ref8 doi: 10.1111/sapm.12397 – ident: S095679252000042X_ref47 doi: 10.1016/0375-9601(86)90170-2 – ident: S095679252000042X_ref58 doi: 10.1103/PhysRevA.54.R37 – ident: S095679252000042X_ref32 doi: 10.1017/S0962492902000053 – ident: S095679252000042X_ref45 doi: 10.1007/s002200100428 – ident: S095679252000042X_ref57 doi: 10.1063/1.3024514 – ident: S095679252000042X_ref7 doi: 10.1006/jdeq.1993.1040 – ident: S095679252000042X_ref51 doi: 10.1137/080732936 – ident: S095679252000042X_ref31 doi: 10.1007/BF01425567 – ident: S095679252000042X_ref53 doi: 10.1103/PhysRevA.5.1372 – ident: S095679252000042X_ref24 doi: 10.1007/BF02099784 – ident: S095679252000042X_ref23 doi: 10.1016/0370-1573(92)90116-H – volume: 23 start-page: 1 year: 1877 ident: S095679252000042X_ref9 article-title: Essai sur la théorie des eaux courantes publication-title: Mém. Acad. Sci. Inst. Nat. France – ident: S095679252000042X_ref55 doi: 10.1007/978-3-642-96585-2 – ident: S095679252000042X_ref5 doi: 10.1088/2058-7058/14/6/30 – volume: 2 start-page: 126 year: 1967 ident: S095679252000042X_ref63 article-title: Dynamics of nonlinear lattices I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior publication-title: Phys. – ident: S095679252000042X_ref19 doi: 10.1007/s00029-019-0455-1 – ident: S095679252000042X_ref6 doi: 10.1016/S0377-0427(01)00492-7 – ident: S095679252000042X_ref50 doi: 10.1007/978-1-4612-0873-0 – ident: S095679252000042X_ref36 doi: 10.1007/3-540-12916-2_62 – volume-title: Geometric Numerical Integration year: 2006 ident: S095679252000042X_ref26 – ident: S095679252000042X_ref37 doi: 10.4169/000298910x496723 – volume: 86 volume-title: London Mathematical Society Student Texts year: 2016 ident: S095679252000042X_ref21 – ident: S095679252000042X_ref30 doi: 10.1103/PhysRevA.31.1039 – ident: S095679252000042X_ref25 doi: 10.1016/0167-2789(92)90074-W – volume: 9 start-page: 401 year: 1836 ident: S095679252000042X_ref54 article-title: Facts related to optical science publication-title: Philos. Mag. – ident: S095679252000042X_ref61 doi: 10.1103/PhysRevA.43.5153 – start-page: 143 volume-title: Nonlinear Wave Motion, Lectures in Applied Mathematics year: 1974 ident: S095679252000042X_ref22 – ident: S095679252000042X_ref15 doi: 10.1063/1.2835154 – ident: S095679252000042X_ref44 doi: 10.1090/pspum/069/1858551 – ident: S095679252000042X_ref40 doi: 10.1098/rspa.2018.0160 – ident: S095679252000042X_ref17 doi: 10.1017/CBO9781139172059 – ident: S095679252000042X_ref34 doi: 10.1016/0001-8708(75)90151-6 – ident: S095679252000042X_ref1 doi: 10.1007/s00220-004-1251-z – ident: S095679252000042X_ref4 doi: 10.1080/09500349608232876 – ident: S095679252000042X_ref16 doi: 10.1088/0143-0807/26/5/S01 – ident: S095679252000042X_ref12 doi: 10.1098/rspa.2012.0407 – ident: S095679252000042X_ref48 doi: 10.1103/PhysRevB.36.5868 – ident: S095679252000042X_ref33 doi: 10.1137/130921118 – ident: S095679252000042X_ref64 doi: 10.1103/PhysRevLett.15.240 – ident: S095679252000042X_ref52 doi: 10.1137/0705041 – ident: S095679252000042X_ref56 doi: 10.1016/0001-8708(72)90024-2 – ident: S095679252000042X_ref20 doi: 10.4310/MRL.2013.v20.n6.a7 – volume-title: Applied Linear Algebra year: 2018 ident: S095679252000042X_ref39 – ident: S095679252000042X_ref46 doi: 10.1090/conm/255/03981 – ident: S095679252000042X_ref11 doi: 10.1063/1.1665604 – ident: S095679252000042X_ref13 doi: 10.1112/plms/pdu061 – ident: S095679252000042X_ref35 doi: 10.1090/conm/028/751987 – ident: S095679252000042X_ref62 doi: 10.1016/0021-9991(81)90120-0 – ident: S095679252000042X_ref41 doi: 10.1007/978-1-4612-2966-7_16 |
SSID | ssj0013079 |
Score | 2.2812002 |
Snippet | We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 820 |
SubjectTerms | Applied mathematics Boundary conditions Chains Computers Continuum modeling Dispersion Fractal models Fractals Initial conditions Investigations Lattices (mathematics) Linearization Nonlinearity Numerical analysis Numerical integration Numerical methods Partial differential equations Perturbation Step functions |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFA06X_RB_MTplDz4JBbbpGmaJxG1DkHxYYP5VJImgYFsc-3e_Q_-Q3-JN_1YHcKgEJomEG4uuSfJ6bkIXUbGMkZV4MWMaS_UVHiC-8qjhlARCUPhcWyL16g_DJ9HbFQfuOU1rbJZE8uFWk8zd0Z-A6EZ9t4A_8Pb2afnska529U6hcYm2gog0jg_j5On9hbBb7X2uCCsudUsJaOh0tWREiWT0V9thdUYtbpEl3En2UO7NWDEd9UM76MNMzlAOy9LtdX8EL0_jJ3etyOiY-v-enKihqXF8XiCHY6UcywnGk8qXQx4SxwH5ufr-00COoRyCI4BxcCdHEwX-EMWjhSXH6Fh8ji473t1ygQvo5FfeJSp2MIOh3PJFdOMExXoQMSWSW1tIDJKfRP5mhpuoVXsq4BoaCllRmzGJT1GHRiLOUFYUgY9tAg5IA6lIslCamNNjG8JzGTcRddLg6W14-dpRRrj6T_7dpHf2DTNavlxlwXjY12Xq2WXWaW9sa5xr5modjSt05yu_3yGtokjq5QsvR7qFPOFOQe0UaiL0qV-AfQf0Tk priority: 102 providerName: ProQuest |
Title | Dispersive fractalisation in linear and nonlinear Fermi–Pasta–Ulam–Tsingou lattices |
URI | https://www.cambridge.org/core/product/identifier/S095679252000042X/type/journal_article https://www.proquest.com/docview/2569331444 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6oe9EH8YrX0QefxLK2aZrm0du84RB1UJ9K0iQwGFO2-e5_8B_6Szyn7TYvIAiFUEjC4Zy0-ZLz5QvAQWId50yHfsq58WPDpC9FoH1mIyYTaRk-xLboJJfd-Drj2Rxkk7MwRKucahyUmfzyfrSXSv601TMVh8YOWw8koSdkRLpBNPSyFm1atuoQ5LXj56GBmCHEL6BxdZNddGYZhmCmw0e9TDKepZz0j56_6i58n7--_77LOam9Ass1mPSOKyNWYc4O1mDpdqrEOlqHp7MeaYETSd1zdCKKBA_LaHi9gUcYUw09NTDeoNLMwLc28WM-3t7vFCJHLLs4aLB4pF2F51evr8ZEmBttQLd9_nh66dfXKfgFS4Kxz7hOHa5-hFBCc8NFpEMTytRxZZwLZcFYYJPAMCsc1koDHUYGaypVRK4Qim3CAtpit8BTjGMLI2OBaETrRPGYudRENnARRjndhqOpw_I6IqO8IpSJ_Jd_tyGY-DQvamlyuiGj_1eTw2mTl0qX46_Ke5NAzaxBrCcZw_VkvPM_a3dhMSJiS8no24OF8fDV7iMyGesmzKftiyY0Ts47d_fNesh9Ahnp4dI |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UA5IGipeONDe6mImrXjODlUFa_VUmCF0K60PaV2bEtIaHnsIsSN_9D_wY_il3Qmj10Q0t6QIllx7MgaTzIz9udvAL7GzkspTDNIpLRBZEUapCo0gXBcpHHqBF6EtujE7V70uy_7M_BUn4UhWGX9Tyx-1PYqpzXyH2iaMfZG9z_6dX0TUNYo2l2tU2iUanHsHu4xZBv-PDrA-f3Geeuwu98OqqwCQS7icBQIaRKPQYBSWhlppeKmaTH09lJb75tpjhG-i0MrnPLYKglNk1tsqXXOfa60wPd-gNmITrQ2YHbvsHN2Ptm3CCfsfirlst5HLUiqsZLqeOGX8_5LNofXVvG1USgsXWsRFioXle2WOrUEM27wCeZPx_yuw8_w5-CCGMYJ-s48nbMiGsVijtnFgJHnqm-ZHlg2KJk48K5FqJvnx39nGv1RLHuoilh0aa3i6o5d6hHB8IbL0HsXcX6BBo7FrQDTQmIPm0YKfRxjYi0j4RPLXeg56k6yCjtjgWXVpzbMSpiayt7IdxXCWqZZXhGeU96Ny2ldvo-7XJdsH9Mab9QTNRnNRE3Xpj_ehrl29_QkOznqHK_DR05QmQIjuAGN0e2d20RfZ2S2KgVj8Pe9dfo_POkQJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dispersive+fractalisation+in+linear+and+nonlinear+Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou+lattices&rft.jtitle=European+journal+of+applied+mathematics&rft.au=OLVER%2C+PETER+J.&rft.au=STERN%2C+ARI&rft.date=2021-10-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=32&rft.issue=5&rft.spage=820&rft.epage=845&rft_id=info:doi/10.1017%2FS095679252000042X&rft.externalDocID=10_1017_S095679252000042X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |