Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery
For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-...
Saved in:
Published in | Smart materials and structures Vol. 25; no. 2; pp. 27001 - 27009 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-hydroxyethyl methacrylate (PHEMA) and poly (ethylene glycol) acrylate (PEGDA) with iron (II, III) oxide particles (Fe3O4). The PHEMA layer as a pH-responsive gel is used for a trapping and unfolding motion of the soft microrobot in pH-varying solution, and the PEGDA-with-Fe3O4 layer is employed for the locomotion of the soft microrobot in the magnetic field. The bilayer soft microrobot was fabricated by a conventional photolithography procedure and its characteristics were analyzed and presented. To evaluate the trapping performance and the motility of the soft microrobot, test solutions with different pH values and an electromagnetic actuation (EMA) system were used. First, the soft microrobot showed its full trapping motion at about pH 9.58 and its unfolding motion at about pH 2.6. Second, the soft microrobot showed a moving velocity of about 600 m s−1 through the generated magnetic field of the EMA system. Finally, we fabricated the real anti-cancer drug microbeads (PCL-DTX) and executed the cytotoxicity test using the mammary carcinoma cells (4T1). The viability of the 4T1 cells treated with the proposed microrobot and the PCL-DTX microbeads decreased to 70.25 1.52%. The result demonstrated that the soft microrobot can be moved to a target position by the EMA system and can release a small amount of beads by the pH variation and the robot exhibited no toxicity to the cells. In the future, we expect that the proposed soft microrobot can be applied to a new tumor-therapeutic tool that can move to a target tumor and release anti-tumor drugs. |
---|---|
AbstractList | For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-hydroxyethyl methacrylate (PHEMA) and poly (ethylene glycol) acrylate (PEGDA) with iron (II, III) oxide particles (Fe3O4). The PHEMA layer as a pH-responsive gel is used for a trapping and unfolding motion of the soft microrobot in pH-varying solution, and the PEGDA-with-Fe3O4 layer is employed for the locomotion of the soft microrobot in the magnetic field. The bilayer soft microrobot was fabricated by a conventional photolithography procedure and its characteristics were analyzed and presented. To evaluate the trapping performance and the motility of the soft microrobot, test solutions with different pH values and an electromagnetic actuation (EMA) system were used. First, the soft microrobot showed its full trapping motion at about pH 9.58 and its unfolding motion at about pH 2.6. Second, the soft microrobot showed a moving velocity of about 600 m s−1 through the generated magnetic field of the EMA system. Finally, we fabricated the real anti-cancer drug microbeads (PCL-DTX) and executed the cytotoxicity test using the mammary carcinoma cells (4T1). The viability of the 4T1 cells treated with the proposed microrobot and the PCL-DTX microbeads decreased to 70.25 1.52%. The result demonstrated that the soft microrobot can be moved to a target position by the EMA system and can release a small amount of beads by the pH variation and the robot exhibited no toxicity to the cells. In the future, we expect that the proposed soft microrobot can be applied to a new tumor-therapeutic tool that can move to a target tumor and release anti-tumor drugs. For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-hydroxyethyl methacrylate (PHEMA) and poly (ethylene glycol) acrylate (PEGDA) with iron (II, III) oxide particles (Fe sub(3)O sub(4)). The PHEMA layer as a pH-responsive gel is used for a trapping and unfolding motion of the soft microrobot in pH-varying solution, and the PEGDA-with-Fe sub(3)O sub(4) layer is employed for the locomotion of the soft microrobot in the magnetic field. The bilayer soft microrobot was fabricated by a conventional photolithography procedure and its characteristics were analyzed and presented. To evaluate the trapping performance and the motility of the soft microrobot, test solutions with different pH values and an electromagnetic actuation (EMA) system were used. First, the soft microrobot showed its full trapping motion at about pH 9.58 and its unfolding motion at about pH 2.6. Second, the soft microrobot showed a moving velocity of about 600 mu m s super(-1) through the generated magnetic field of the EMA system. Finally, we fabricated the real anti-cancer drug microbeads (PCL-DTX) and executed the cytotoxicity test using the mammary carcinoma cells (4T1). The viability of the 4T1 cells treated with the proposed microrobot and the PCL-DTX microbeads decreased to 70.25 plus or minus 1.52%. The result demonstrated that the soft microrobot can be moved to a target position by the EMA system and can release a small amount of beads by the pH variation and the robot exhibited no toxicity to the cells. In the future, we expect that the proposed soft microrobot can be applied to a new tumor-therapeutic tool that can move to a target tumor and release anti-tumor drugs. |
Author | Ko, Seong Yong Park, Jong-Oh Park, Sukho Go, Gwangjun Li, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Li fullname: Li, Hao organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea – sequence: 2 givenname: Gwangjun surname: Go fullname: Go, Gwangjun organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea – sequence: 3 givenname: Seong Yong surname: Ko fullname: Ko, Seong Yong organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea – sequence: 4 givenname: Jong-Oh surname: Park fullname: Park, Jong-Oh email: jop@jnu.ac.kr organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea – sequence: 5 givenname: Sukho surname: Park fullname: Park, Sukho email: spark@jnu.ac.kr organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea |
BookMark | eNqFkMtKxDAUQIMoOD4-QehON3Vyk6YPXIn4AsWNgrgJaXIzRjpNTVJh_t4OIyIiuAqXnHO5nD2y3fseCTkCegq0rue0KYscKlbOmZizOWUVpbBFZsBLyMtSPG-T2TezS_ZifJsAqDnMyMu9WvSYnM6UTqNKaLLhJg8YB99H94HZ68oEv8Aub1WcPqO3KVs6HXwefOtTZn3IkgoLXKsmjIvMYDeJYXVAdqzqIh5-vfvk6ery8eImv3u4vr04v8s1L2nKObVKM2OYKqwAYy03WLe80oKZhtVGY4ENYtE2igpjoGpZAy0CLcU0VMD3yclm7xD8-4gxyaWLGrtO9ejHKKEWgtcFlGxCxQad7o8xoJVDcEsVVhKoXLeU605y3UkyIZnctJy8s1-edkkl5_sUlOv-tWFjOz_INz-Gfsrxr3P8hxOX8SclB2P5J2eAmQo |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1007_s10483_019_2478_6 crossref_primary_10_1002_adfm_202401776 crossref_primary_10_1021_acsami_3c02986 crossref_primary_10_1515_ipp_2020_3904 crossref_primary_10_3390_nano14060531 crossref_primary_10_1002_adma_202207791 crossref_primary_10_3390_molecules25184090 crossref_primary_10_1021_acs_chemrev_4c00513 crossref_primary_10_1002_adhm_202302395 crossref_primary_10_1021_acs_chemmater_1c01854 crossref_primary_10_1002_admt_202201255 crossref_primary_10_1002_biot_201800148 crossref_primary_10_1039_D4NR01776E crossref_primary_10_1002_smsc_202300211 crossref_primary_10_1080_15376494_2024_2397093 crossref_primary_10_1177_02783649241235215 crossref_primary_10_48175_IJARSCT_14366 crossref_primary_10_1021_acsnano_4c10382 crossref_primary_10_1108_WJE_08_2021_0478 crossref_primary_10_3390_app10238563 crossref_primary_10_3390_mi15040492 crossref_primary_10_1016_j_snb_2020_128752 crossref_primary_10_3389_fbioe_2020_00461 crossref_primary_10_3390_polym14214574 crossref_primary_10_1109_RBME_2022_3210015 crossref_primary_10_2174_0118779468296209240427102827 crossref_primary_10_1039_D2TC00388K crossref_primary_10_3390_mi14081607 crossref_primary_10_1002_admt_201900043 crossref_primary_10_3390_mi12101249 crossref_primary_10_1002_adma_202105758 crossref_primary_10_1007_s00216_016_9955_4 crossref_primary_10_1016_j_jsv_2024_118775 crossref_primary_10_1038_s41578_021_00389_7 crossref_primary_10_1007_s11012_019_01004_4 crossref_primary_10_1016_j_jmmm_2023_171310 crossref_primary_10_1002_adma_202308829 crossref_primary_10_1002_anbr_202300136 crossref_primary_10_1007_s12213_023_00163_8 crossref_primary_10_1002_advs_202002017 crossref_primary_10_3389_frobt_2016_00055 crossref_primary_10_1016_j_matdes_2019_108324 crossref_primary_10_1007_s43154_024_00109_3 crossref_primary_10_1002_adom_201801604 crossref_primary_10_1002_admt_202000370 crossref_primary_10_3389_fmech_2017_00007 crossref_primary_10_1039_D0ME00133C crossref_primary_10_1109_LRA_2024_3355783 crossref_primary_10_1007_s42242_024_00295_1 crossref_primary_10_1039_C9RE00349E crossref_primary_10_3390_ijms23179609 crossref_primary_10_1007_s12541_021_00581_3 crossref_primary_10_3390_mi14122253 crossref_primary_10_1016_j_ijengsci_2025_104253 crossref_primary_10_1002_advs_202103863 crossref_primary_10_1109_TMECH_2020_3049069 crossref_primary_10_1007_s12213_022_00151_4 crossref_primary_10_1007_s42235_021_0063_6 crossref_primary_10_1088_1361_6439_ab087d crossref_primary_10_3390_act12030101 crossref_primary_10_1002_adtp_201800064 crossref_primary_10_1016_j_eurpolymj_2022_111321 crossref_primary_10_1088_1361_665X_ac36ae crossref_primary_10_1063_5_0217556 crossref_primary_10_1002_mame_202100978 crossref_primary_10_1021_acsami_6b09110 crossref_primary_10_1021_acs_chemrev_0c01234 crossref_primary_10_1016_j_compositesb_2016_11_006 crossref_primary_10_3390_polym14132714 crossref_primary_10_1007_s11370_023_00506_1 crossref_primary_10_3390_mi15060756 crossref_primary_10_1088_1361_665X_ad31d0 crossref_primary_10_35848_1347_4065_ac10f3 crossref_primary_10_1016_j_giant_2024_100347 crossref_primary_10_1016_j_eml_2021_101268 crossref_primary_10_1002_adhm_202001596 crossref_primary_10_1016_j_robot_2017_11_003 crossref_primary_10_1063_5_0203482 crossref_primary_10_1002_adfm_202007125 crossref_primary_10_1115_1_4050468 crossref_primary_10_1631_jzus_A2200331 crossref_primary_10_1016_j_cej_2023_142193 crossref_primary_10_1002_aisy_202300060 crossref_primary_10_1002_adfm_202004417 crossref_primary_10_1016_j_mechrescom_2019_02_002 crossref_primary_10_1088_1361_6439_ac9f51 crossref_primary_10_1515_rams_2024_0028 crossref_primary_10_1089_soro_2023_0168 crossref_primary_10_1002_adma_201901592 crossref_primary_10_1109_OJNANO_2020_2981824 crossref_primary_10_1002_admt_202202034 crossref_primary_10_1016_j_ijengsci_2020_103294 crossref_primary_10_1016_j_snb_2018_08_006 crossref_primary_10_1088_2399_7532_abcb0c crossref_primary_10_1039_D3TB00852E crossref_primary_10_1186_s43074_024_00158_z crossref_primary_10_1002_adfm_201707228 crossref_primary_10_3390_polym12020489 crossref_primary_10_1109_JSEN_2021_3130304 crossref_primary_10_1038_s41598_023_47465_2 crossref_primary_10_1109_JSEN_2023_3325455 crossref_primary_10_1002_nano_202000162 crossref_primary_10_1021_acs_nanolett_2c01178 crossref_primary_10_1007_s12274_023_6184_y crossref_primary_10_1039_D0SM01566K crossref_primary_10_1016_j_pmatsci_2023_101204 crossref_primary_10_1016_j_carpta_2023_100369 crossref_primary_10_1039_D2TB00760F crossref_primary_10_1088_1361_665X_ad9202 crossref_primary_10_1002_marc_201800082 crossref_primary_10_1002_nano_202100139 crossref_primary_10_1016_j_cej_2023_144222 crossref_primary_10_3390_mi14122169 crossref_primary_10_1360_TB_2021_1217 crossref_primary_10_1080_17425247_2019_1660318 crossref_primary_10_1002_pat_5230 crossref_primary_10_3390_polym12071462 crossref_primary_10_1007_s10544_019_0430_9 crossref_primary_10_1021_acsami_8b20937 crossref_primary_10_1109_ACCESS_2021_3065402 crossref_primary_10_1016_j_mehy_2017_02_015 crossref_primary_10_1021_acsami_9b05555 crossref_primary_10_1038_s41578_018_0016_9 crossref_primary_10_1002_admt_202202012 crossref_primary_10_1557_s43578_021_00137_1 crossref_primary_10_1002_aisy_202000232 crossref_primary_10_34133_2021_9806463 crossref_primary_10_1002_advs_202104347 crossref_primary_10_1039_D2SM01468H crossref_primary_10_1002_adma_202006600 crossref_primary_10_1002_admt_202101256 crossref_primary_10_1002_macp_202300228 crossref_primary_10_1088_2631_8695_ad80f9 crossref_primary_10_1039_D0SM00929F crossref_primary_10_1103_PhysRevE_107_014607 crossref_primary_10_1016_j_ijpharm_2020_119030 crossref_primary_10_1002_aisy_202200023 crossref_primary_10_1017_S0263574722000662 crossref_primary_10_1016_j_tsf_2019_01_040 crossref_primary_10_1002_adma_201806204 crossref_primary_10_1016_j_mechmachtheory_2019_05_015 crossref_primary_10_1063_1_5045100 crossref_primary_10_1016_j_reactfunctpolym_2024_105919 crossref_primary_10_1016_j_snb_2018_09_079 crossref_primary_10_1088_1361_665X_ad8053 crossref_primary_10_1038_s44287_024_00081_2 crossref_primary_10_1002_admt_202100158 crossref_primary_10_12677_japc_2025_141003 crossref_primary_10_1002_aisy_202000256 crossref_primary_10_1089_soro_2018_0098 crossref_primary_10_1016_j_carres_2019_107889 crossref_primary_10_1146_annurev_control_060117_104947 crossref_primary_10_1002_smll_202105116 crossref_primary_10_1038_s41467_023_40038_x crossref_primary_10_3390_gels7030140 crossref_primary_10_1021_acsnano_0c00381 crossref_primary_10_1515_ntrev_2020_0039 crossref_primary_10_3390_bioengineering8090127 crossref_primary_10_1021_acsapm_1c01538 crossref_primary_10_1002_advs_202406600 crossref_primary_10_1021_acs_molpharmaceut_8b00626 crossref_primary_10_1021_acsnano_3c01942 crossref_primary_10_1126_sciadv_ade6135 crossref_primary_10_1142_S1758825122500533 crossref_primary_10_1002_aisy_202200167 crossref_primary_10_1002_aisy_202000146 crossref_primary_10_3389_frobt_2024_1443379 crossref_primary_10_1186_s40580_019_0188_z crossref_primary_10_1021_acsami_3c11842 crossref_primary_10_1109_ACCESS_2020_3013935 crossref_primary_10_3390_polym14132543 crossref_primary_10_1021_acsabm_8b00264 crossref_primary_10_1007_s42235_025_00650_7 crossref_primary_10_3390_ijms23095044 crossref_primary_10_3389_fbioe_2021_692648 crossref_primary_10_3390_mi11040392 crossref_primary_10_1016_j_aiepr_2023_08_002 crossref_primary_10_1109_OJNANO_2021_3050496 crossref_primary_10_1002_aisy_202300311 crossref_primary_10_1021_acsami_0c21021 crossref_primary_10_1002_aisy_202000270 crossref_primary_10_1021_acsapm_3c00886 crossref_primary_10_1109_LRA_2024_3511382 crossref_primary_10_1016_j_snb_2023_133654 crossref_primary_10_1039_D4SM01165A crossref_primary_10_1631_jzus_A2300056 crossref_primary_10_3390_mi14010162 crossref_primary_10_3390_biomimetics3030015 crossref_primary_10_1108_RPJ_10_2020_0240 crossref_primary_10_1371_journal_pone_0185744 crossref_primary_10_1016_j_indcrop_2024_118262 crossref_primary_10_1007_s10544_021_00590_z crossref_primary_10_1016_j_matdes_2020_109212 crossref_primary_10_1016_j_polymdegradstab_2020_109255 crossref_primary_10_1089_3dp_2020_0012 crossref_primary_10_3389_fbioe_2023_1251425 crossref_primary_10_1007_s42235_024_00574_8 crossref_primary_10_1089_soro_2021_0034 crossref_primary_10_3389_fchem_2024_1416314 crossref_primary_10_1177_1045389X20975500 crossref_primary_10_3390_pharmaceutics15041152 crossref_primary_10_1021_acsapm_9b01078 crossref_primary_10_1007_s44174_023_00071_2 crossref_primary_10_1063_5_0100920 crossref_primary_10_3390_molecules24183410 crossref_primary_10_1007_s40883_022_00288_5 crossref_primary_10_1039_C7SM01702B crossref_primary_10_1002_adem_202001367 crossref_primary_10_1088_1361_665X_ab6759 crossref_primary_10_3390_electronics10091116 crossref_primary_10_1016_j_addr_2023_115164 crossref_primary_10_1016_j_matdes_2021_110172 crossref_primary_10_1021_acs_jpcb_1c07996 crossref_primary_10_1109_TMECH_2020_2974069 crossref_primary_10_1002_adom_201801643 crossref_primary_10_1021_acsnano_1c06651 crossref_primary_10_1063_1_5124007 crossref_primary_10_1002_adfm_201805777 crossref_primary_10_1016_j_compositesb_2021_109451 crossref_primary_10_1109_LRA_2023_3243440 crossref_primary_10_3389_fphy_2023_1279883 crossref_primary_10_1002_aisy_202000186 crossref_primary_10_1007_s11431_018_9339_8 crossref_primary_10_1002_adma_202006582 crossref_primary_10_1002_aisy_202300483 crossref_primary_10_1089_soro_2021_0055 crossref_primary_10_3788_CJL240758 crossref_primary_10_1007_s40684_021_00356_1 crossref_primary_10_1002_aisy_202400699 crossref_primary_10_1002_smtd_201900735 crossref_primary_10_1007_s10118_017_1983_9 crossref_primary_10_1039_D3BM02044D crossref_primary_10_1039_D3SM01027A crossref_primary_10_3390_polym14194235 crossref_primary_10_1002_admt_202100131 crossref_primary_10_1002_adfm_202010929 crossref_primary_10_3390_mi15020275 crossref_primary_10_1002_adfm_201907377 crossref_primary_10_1002_smll_202305805 crossref_primary_10_1002_aisy_201900128 crossref_primary_10_1002_adfm_201906603 crossref_primary_10_1016_j_snb_2019_03_030 crossref_primary_10_1088_2399_7532_abc735 crossref_primary_10_3788_CJL230608 crossref_primary_10_1007_s40964_025_01034_3 crossref_primary_10_1021_acsami_2c16658 crossref_primary_10_3390_mi13030416 |
Cites_doi | 10.1039/C3SM51921J 10.1016/j.mattod.2014.07.002 10.1016/j.biomaterials.2010.03.031 10.1371/journal.pone.0010234 10.1177/0883911510375175 10.3322/caac.21166 10.3390/s8010561 10.1038/srep03394 10.1002/cmdc.201402290 10.1016/j.addr.2012.09.033 10.1021/jp054341g 10.1007/978-1-59745-035-5_2 10.1016/j.lfs.2012.01.008 10.1002/smll.201000544 10.1016/j.polymer.2010.10.035 10.1016/j.sna.2011.08.020 10.1016/j.sna.2014.02.028 10.1039/c3sm53059k 10.1002/bit.22574 10.3322/caac.20107 10.1016/S0142-9612(97)00219-6 10.1016/j.ctrv.2011.06.005 10.1002/adma.201204180 10.1021/am900755w 10.1016/j.jconrel.2005.10.017 10.1007/s10544-010-9491-5 10.1021/acs.nanolett.5b01945 10.1098/rstb.2013.0099 10.1016/j.addr.2003.10.017 10.1021/la503407z 10.1104/pp.109.137802 10.1016/j.sna.2013.11.014 10.1021/nn401617u 10.1109/MEMSYS.2015.7051023 10.1021/nl401088b 10.1002/adma.201304098 10.1371/journal.pone.0083053 |
ContentType | Journal Article |
Copyright | 2016 IOP Publishing Ltd |
Copyright_xml | – notice: 2016 IOP Publishing Ltd |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M |
DOI | 10.1088/0964-1726/25/2/027001 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery |
EISSN | 1361-665X |
EndPage | 27009 |
ExternalDocumentID | 10_1088_0964_1726_25_2_027001 smsaa0dcf |
GrantInformation_xml | – fundername: Samsung Research Funding Center |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M |
ID | FETCH-LOGICAL-c360t-30fac2dd2a4f51dff3de8b37c52d928dce4e9ee4b9a05dd17b291be1065d17713 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Fri Jul 11 00:14:41 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 03:31:20 EDT 2025 Thu Jan 07 13:52:42 EST 2021 Wed Aug 21 03:40:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-30fac2dd2a4f51dff3de8b37c52d928dce4e9ee4b9a05dd17b291be1065d17713 |
Notes | SMS-102196.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1855384162 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1088_0964_1726_25_2_027001 iop_journals_10_1088_0964_1726_25_2_027001 proquest_miscellaneous_1855384162 crossref_primary_10_1088_0964_1726_25_2_027001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 Park J H (9) 2015 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 20 21 |
References_xml | – ident: 16 doi: 10.1039/C3SM51921J – ident: 8 doi: 10.1016/j.mattod.2014.07.002 – ident: 35 doi: 10.1016/j.biomaterials.2010.03.031 – ident: 32 doi: 10.1371/journal.pone.0010234 – ident: 19 doi: 10.1177/0883911510375175 – ident: 3 doi: 10.3322/caac.21166 – ident: 20 doi: 10.3390/s8010561 – ident: 1 doi: 10.1038/srep03394 – ident: 30 doi: 10.1002/cmdc.201402290 – ident: 6 doi: 10.1016/j.addr.2012.09.033 – ident: 27 doi: 10.1021/jp054341g – ident: 31 doi: 10.1007/978-1-59745-035-5_2 – ident: 33 doi: 10.1016/j.lfs.2012.01.008 – ident: 37 doi: 10.1002/smll.201000544 – ident: 18 doi: 10.1016/j.polymer.2010.10.035 – ident: 24 doi: 10.1016/j.sna.2011.08.020 – ident: 10 doi: 10.1016/j.sna.2014.02.028 – ident: 21 doi: 10.1039/c3sm53059k – ident: 36 doi: 10.1002/bit.22574 – ident: 2 doi: 10.3322/caac.20107 – ident: 13 doi: 10.1016/S0142-9612(97)00219-6 – ident: 5 doi: 10.1016/j.ctrv.2011.06.005 – ident: 17 doi: 10.1002/adma.201204180 – ident: 11 doi: 10.1021/am900755w – ident: 28 doi: 10.1016/j.jconrel.2005.10.017 – ident: 14 doi: 10.1007/s10544-010-9491-5 – ident: 26 doi: 10.1021/acs.nanolett.5b01945 – ident: 34 doi: 10.1098/rstb.2013.0099 – ident: 4 doi: 10.1016/j.addr.2003.10.017 – ident: 7 doi: 10.1021/la503407z – ident: 29 doi: 10.1104/pp.109.137802 – ident: 23 doi: 10.1016/j.sna.2013.11.014 – ident: 22 doi: 10.1021/nn401617u – start-page: 585 year: 2015 ident: 9 publication-title: 2015 28th IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS) doi: 10.1109/MEMSYS.2015.7051023 – ident: 12 doi: 10.1021/nl401088b – ident: 15 doi: 10.1002/adma.201304098 – ident: 25 doi: 10.1371/journal.pone.0083053 |
SSID | ssj0011831 |
Score | 2.600798 |
Snippet | For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27001 |
SubjectTerms | drug delivery Drug delivery systems Drugs magnetic actuation Magnetic fields microrobot Microrobots pH-responsive hydrogel PHEMA soft microrobot Toxicity Trapping |
Title | Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery |
URI | https://iopscience.iop.org/article/10.1088/0964-1726/25/2/027001 https://www.proquest.com/docview/1855384162 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9VKbQP1WpLr9USoU-F3O1mPy55LEU5CrZ9UJC-hCSTnNJz99jdE_Sv72Q_5KyIlL7tko_NTj7mN8xvJoR8kpFzQk9D3tY0Z6mXuKVkHjNrE2ODESJaR_vJ93x2ln47z87Xovgvy2V_9I_xsUsU3ImwJ8SJCYLulKHezSc8m_BJ1LpON8hWIlB7hhC-Hz_v_Ai4YNs784YmQwzPY93c004bOIIHR3Srd463iR5G3NFNfo9XjRnb27-SOf7PL-2QVz0opV-6-q_JM1fskpdrqQp3yfOWKmrrPfLrRM-LEPpIdQg-QcRKlzNW9Vzba0cvbqAq527BgoYEWuNBT68C749VpSkbijCZdgR0LIVqNafgFoEecvOGnB0fnX6dsf6GBmaTPGpYEnltOQDXqc9i8D4BJ0wytRkHyQVYlzrpXGqkjjKAeGq4jI1DMzTDF7SP35LNoizcO0Kt4T4O9o0ViDgSkNrnIncAFqTXxo5IOsyMsn368nCLxkK1bnQhVBCiCkJUPFNcdUIckfFds2WXv-OpBp9xllS_k-unKtN7leurer1YLcGPyOGwgBTu3OCO0YUrV9izyFDbICDm7__lmx_ICwRtPXN8n2w21codIDBqzMd27f8BVQr-rQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RSA48CgglvIwElyQskmcxzqHHhBltaW09ECliovxc5HYJqskC1p-V_8K_6fjPFYtCFUceuCWKLbjx9jzjeabMcDLLDCGiZHL2xqnXmwz3FJZGnpKRVI5I4Q1jvb9g3RyFL8_To7X4HQVC1PMu6N_iI9touB2CjtCHPMRdMce6t3Up4lP_aBxnfpzbTtq5Z5Z_kDDrdre3cFVfkXp-N2ntxOvu1vAU1Ea1F4UWKGo1lTENgm1tZE2TEYjlVCdUaaViU1mTCwzESRahyNJs1AaNKASfEHLDttdh2tJhArbhQ1-PFz5LnCTNPf09d3s44b-1vULGnEdR_2HWmh03fgO_OpnqaW4fBsuajlUP39LIPm_TeNduN2Bb_Km7eM9WDP5Jtw6l5JxE643lFhV3YfP-2KauxBPIlyQDSJzMp94Zccp_m7I16Uui6mZeQ4JaFKhQiMnjt_olYUsaoLmAGmJ9vhVl4sp0WbmaDDLB3B0JcN8CBt5kZtHQJSkNnR2nGKIrCKdCZuy1GitdGaFVAOIe2ngqkvT7m4LmfGGLsAYdwvH3cJxmnDK24UbwHBVbd7mKbmswmuUDN6dWNVlhcmFwtVJdf4zR6kZwIteaDmeUM7tJHJTLLBllqBWReBPH__LP5_DjcOdMf-we7C3BTcRp3Zk-SewUZcL8xSxYC2fNVuPwJerFtIzsnxgsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+actuated+pH-responsive+hydrogel-based+soft+micro-robot+for+targeted+drug+delivery&rft.jtitle=Smart+materials+and+structures&rft.au=Li%2C+Hao&rft.au=Go%2C+Gwangjun&rft.au=Ko%2C+Seong+Yong&rft.au=Park%2C+Jong-Oh&rft.date=2016-02-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=25&rft.issue=2&rft_id=info:doi/10.1088%2F0964-1726%2F25%2F2%2F027001&rft.externalDocID=smsaa0dcf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |