Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery

For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 25; no. 2; pp. 27001 - 27009
Main Authors Li, Hao, Go, Gwangjun, Ko, Seong Yong, Park, Jong-Oh, Park, Sukho
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-hydroxyethyl methacrylate (PHEMA) and poly (ethylene glycol) acrylate (PEGDA) with iron (II, III) oxide particles (Fe3O4). The PHEMA layer as a pH-responsive gel is used for a trapping and unfolding motion of the soft microrobot in pH-varying solution, and the PEGDA-with-Fe3O4 layer is employed for the locomotion of the soft microrobot in the magnetic field. The bilayer soft microrobot was fabricated by a conventional photolithography procedure and its characteristics were analyzed and presented. To evaluate the trapping performance and the motility of the soft microrobot, test solutions with different pH values and an electromagnetic actuation (EMA) system were used. First, the soft microrobot showed its full trapping motion at about pH 9.58 and its unfolding motion at about pH 2.6. Second, the soft microrobot showed a moving velocity of about 600 m s−1 through the generated magnetic field of the EMA system. Finally, we fabricated the real anti-cancer drug microbeads (PCL-DTX) and executed the cytotoxicity test using the mammary carcinoma cells (4T1). The viability of the 4T1 cells treated with the proposed microrobot and the PCL-DTX microbeads decreased to 70.25 1.52%. The result demonstrated that the soft microrobot can be moved to a target position by the EMA system and can release a small amount of beads by the pH variation and the robot exhibited no toxicity to the cells. In the future, we expect that the proposed soft microrobot can be applied to a new tumor-therapeutic tool that can move to a target tumor and release anti-tumor drugs.
AbstractList For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-hydroxyethyl methacrylate (PHEMA) and poly (ethylene glycol) acrylate (PEGDA) with iron (II, III) oxide particles (Fe3O4). The PHEMA layer as a pH-responsive gel is used for a trapping and unfolding motion of the soft microrobot in pH-varying solution, and the PEGDA-with-Fe3O4 layer is employed for the locomotion of the soft microrobot in the magnetic field. The bilayer soft microrobot was fabricated by a conventional photolithography procedure and its characteristics were analyzed and presented. To evaluate the trapping performance and the motility of the soft microrobot, test solutions with different pH values and an electromagnetic actuation (EMA) system were used. First, the soft microrobot showed its full trapping motion at about pH 9.58 and its unfolding motion at about pH 2.6. Second, the soft microrobot showed a moving velocity of about 600 m s−1 through the generated magnetic field of the EMA system. Finally, we fabricated the real anti-cancer drug microbeads (PCL-DTX) and executed the cytotoxicity test using the mammary carcinoma cells (4T1). The viability of the 4T1 cells treated with the proposed microrobot and the PCL-DTX microbeads decreased to 70.25 1.52%. The result demonstrated that the soft microrobot can be moved to a target position by the EMA system and can release a small amount of beads by the pH variation and the robot exhibited no toxicity to the cells. In the future, we expect that the proposed soft microrobot can be applied to a new tumor-therapeutic tool that can move to a target tumor and release anti-tumor drugs.
For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new concept for a hybrid actuated soft microrobot targeted drug delivery. The proposed soft microrobot consists of a hydrogel bilayer structure of 2-hydroxyethyl methacrylate (PHEMA) and poly (ethylene glycol) acrylate (PEGDA) with iron (II, III) oxide particles (Fe sub(3)O sub(4)). The PHEMA layer as a pH-responsive gel is used for a trapping and unfolding motion of the soft microrobot in pH-varying solution, and the PEGDA-with-Fe sub(3)O sub(4) layer is employed for the locomotion of the soft microrobot in the magnetic field. The bilayer soft microrobot was fabricated by a conventional photolithography procedure and its characteristics were analyzed and presented. To evaluate the trapping performance and the motility of the soft microrobot, test solutions with different pH values and an electromagnetic actuation (EMA) system were used. First, the soft microrobot showed its full trapping motion at about pH 9.58 and its unfolding motion at about pH 2.6. Second, the soft microrobot showed a moving velocity of about 600 mu m s super(-1) through the generated magnetic field of the EMA system. Finally, we fabricated the real anti-cancer drug microbeads (PCL-DTX) and executed the cytotoxicity test using the mammary carcinoma cells (4T1). The viability of the 4T1 cells treated with the proposed microrobot and the PCL-DTX microbeads decreased to 70.25 plus or minus 1.52%. The result demonstrated that the soft microrobot can be moved to a target position by the EMA system and can release a small amount of beads by the pH variation and the robot exhibited no toxicity to the cells. In the future, we expect that the proposed soft microrobot can be applied to a new tumor-therapeutic tool that can move to a target tumor and release anti-tumor drugs.
Author Ko, Seong Yong
Park, Jong-Oh
Park, Sukho
Go, Gwangjun
Li, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
– sequence: 2
  givenname: Gwangjun
  surname: Go
  fullname: Go, Gwangjun
  organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
– sequence: 3
  givenname: Seong Yong
  surname: Ko
  fullname: Ko, Seong Yong
  organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
– sequence: 4
  givenname: Jong-Oh
  surname: Park
  fullname: Park, Jong-Oh
  email: jop@jnu.ac.kr
  organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
– sequence: 5
  givenname: Sukho
  surname: Park
  fullname: Park, Sukho
  email: spark@jnu.ac.kr
  organization: Chonnam National University School of Mechanical Engineering, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea
BookMark eNqFkMtKxDAUQIMoOD4-QehON3Vyk6YPXIn4AsWNgrgJaXIzRjpNTVJh_t4OIyIiuAqXnHO5nD2y3fseCTkCegq0rue0KYscKlbOmZizOWUVpbBFZsBLyMtSPG-T2TezS_ZifJsAqDnMyMu9WvSYnM6UTqNKaLLhJg8YB99H94HZ68oEv8Aub1WcPqO3KVs6HXwefOtTZn3IkgoLXKsmjIvMYDeJYXVAdqzqIh5-vfvk6ery8eImv3u4vr04v8s1L2nKObVKM2OYKqwAYy03WLe80oKZhtVGY4ENYtE2igpjoGpZAy0CLcU0VMD3yclm7xD8-4gxyaWLGrtO9ejHKKEWgtcFlGxCxQad7o8xoJVDcEsVVhKoXLeU605y3UkyIZnctJy8s1-edkkl5_sUlOv-tWFjOz_INz-Gfsrxr3P8hxOX8SclB2P5J2eAmQo
CODEN SMSTER
CitedBy_id crossref_primary_10_1007_s10483_019_2478_6
crossref_primary_10_1002_adfm_202401776
crossref_primary_10_1021_acsami_3c02986
crossref_primary_10_1515_ipp_2020_3904
crossref_primary_10_3390_nano14060531
crossref_primary_10_1002_adma_202207791
crossref_primary_10_3390_molecules25184090
crossref_primary_10_1021_acs_chemrev_4c00513
crossref_primary_10_1002_adhm_202302395
crossref_primary_10_1021_acs_chemmater_1c01854
crossref_primary_10_1002_admt_202201255
crossref_primary_10_1002_biot_201800148
crossref_primary_10_1039_D4NR01776E
crossref_primary_10_1002_smsc_202300211
crossref_primary_10_1080_15376494_2024_2397093
crossref_primary_10_1177_02783649241235215
crossref_primary_10_48175_IJARSCT_14366
crossref_primary_10_1021_acsnano_4c10382
crossref_primary_10_1108_WJE_08_2021_0478
crossref_primary_10_3390_app10238563
crossref_primary_10_3390_mi15040492
crossref_primary_10_1016_j_snb_2020_128752
crossref_primary_10_3389_fbioe_2020_00461
crossref_primary_10_3390_polym14214574
crossref_primary_10_1109_RBME_2022_3210015
crossref_primary_10_2174_0118779468296209240427102827
crossref_primary_10_1039_D2TC00388K
crossref_primary_10_3390_mi14081607
crossref_primary_10_1002_admt_201900043
crossref_primary_10_3390_mi12101249
crossref_primary_10_1002_adma_202105758
crossref_primary_10_1007_s00216_016_9955_4
crossref_primary_10_1016_j_jsv_2024_118775
crossref_primary_10_1038_s41578_021_00389_7
crossref_primary_10_1007_s11012_019_01004_4
crossref_primary_10_1016_j_jmmm_2023_171310
crossref_primary_10_1002_adma_202308829
crossref_primary_10_1002_anbr_202300136
crossref_primary_10_1007_s12213_023_00163_8
crossref_primary_10_1002_advs_202002017
crossref_primary_10_3389_frobt_2016_00055
crossref_primary_10_1016_j_matdes_2019_108324
crossref_primary_10_1007_s43154_024_00109_3
crossref_primary_10_1002_adom_201801604
crossref_primary_10_1002_admt_202000370
crossref_primary_10_3389_fmech_2017_00007
crossref_primary_10_1039_D0ME00133C
crossref_primary_10_1109_LRA_2024_3355783
crossref_primary_10_1007_s42242_024_00295_1
crossref_primary_10_1039_C9RE00349E
crossref_primary_10_3390_ijms23179609
crossref_primary_10_1007_s12541_021_00581_3
crossref_primary_10_3390_mi14122253
crossref_primary_10_1016_j_ijengsci_2025_104253
crossref_primary_10_1002_advs_202103863
crossref_primary_10_1109_TMECH_2020_3049069
crossref_primary_10_1007_s12213_022_00151_4
crossref_primary_10_1007_s42235_021_0063_6
crossref_primary_10_1088_1361_6439_ab087d
crossref_primary_10_3390_act12030101
crossref_primary_10_1002_adtp_201800064
crossref_primary_10_1016_j_eurpolymj_2022_111321
crossref_primary_10_1088_1361_665X_ac36ae
crossref_primary_10_1063_5_0217556
crossref_primary_10_1002_mame_202100978
crossref_primary_10_1021_acsami_6b09110
crossref_primary_10_1021_acs_chemrev_0c01234
crossref_primary_10_1016_j_compositesb_2016_11_006
crossref_primary_10_3390_polym14132714
crossref_primary_10_1007_s11370_023_00506_1
crossref_primary_10_3390_mi15060756
crossref_primary_10_1088_1361_665X_ad31d0
crossref_primary_10_35848_1347_4065_ac10f3
crossref_primary_10_1016_j_giant_2024_100347
crossref_primary_10_1016_j_eml_2021_101268
crossref_primary_10_1002_adhm_202001596
crossref_primary_10_1016_j_robot_2017_11_003
crossref_primary_10_1063_5_0203482
crossref_primary_10_1002_adfm_202007125
crossref_primary_10_1115_1_4050468
crossref_primary_10_1631_jzus_A2200331
crossref_primary_10_1016_j_cej_2023_142193
crossref_primary_10_1002_aisy_202300060
crossref_primary_10_1002_adfm_202004417
crossref_primary_10_1016_j_mechrescom_2019_02_002
crossref_primary_10_1088_1361_6439_ac9f51
crossref_primary_10_1515_rams_2024_0028
crossref_primary_10_1089_soro_2023_0168
crossref_primary_10_1002_adma_201901592
crossref_primary_10_1109_OJNANO_2020_2981824
crossref_primary_10_1002_admt_202202034
crossref_primary_10_1016_j_ijengsci_2020_103294
crossref_primary_10_1016_j_snb_2018_08_006
crossref_primary_10_1088_2399_7532_abcb0c
crossref_primary_10_1039_D3TB00852E
crossref_primary_10_1186_s43074_024_00158_z
crossref_primary_10_1002_adfm_201707228
crossref_primary_10_3390_polym12020489
crossref_primary_10_1109_JSEN_2021_3130304
crossref_primary_10_1038_s41598_023_47465_2
crossref_primary_10_1109_JSEN_2023_3325455
crossref_primary_10_1002_nano_202000162
crossref_primary_10_1021_acs_nanolett_2c01178
crossref_primary_10_1007_s12274_023_6184_y
crossref_primary_10_1039_D0SM01566K
crossref_primary_10_1016_j_pmatsci_2023_101204
crossref_primary_10_1016_j_carpta_2023_100369
crossref_primary_10_1039_D2TB00760F
crossref_primary_10_1088_1361_665X_ad9202
crossref_primary_10_1002_marc_201800082
crossref_primary_10_1002_nano_202100139
crossref_primary_10_1016_j_cej_2023_144222
crossref_primary_10_3390_mi14122169
crossref_primary_10_1360_TB_2021_1217
crossref_primary_10_1080_17425247_2019_1660318
crossref_primary_10_1002_pat_5230
crossref_primary_10_3390_polym12071462
crossref_primary_10_1007_s10544_019_0430_9
crossref_primary_10_1021_acsami_8b20937
crossref_primary_10_1109_ACCESS_2021_3065402
crossref_primary_10_1016_j_mehy_2017_02_015
crossref_primary_10_1021_acsami_9b05555
crossref_primary_10_1038_s41578_018_0016_9
crossref_primary_10_1002_admt_202202012
crossref_primary_10_1557_s43578_021_00137_1
crossref_primary_10_1002_aisy_202000232
crossref_primary_10_34133_2021_9806463
crossref_primary_10_1002_advs_202104347
crossref_primary_10_1039_D2SM01468H
crossref_primary_10_1002_adma_202006600
crossref_primary_10_1002_admt_202101256
crossref_primary_10_1002_macp_202300228
crossref_primary_10_1088_2631_8695_ad80f9
crossref_primary_10_1039_D0SM00929F
crossref_primary_10_1103_PhysRevE_107_014607
crossref_primary_10_1016_j_ijpharm_2020_119030
crossref_primary_10_1002_aisy_202200023
crossref_primary_10_1017_S0263574722000662
crossref_primary_10_1016_j_tsf_2019_01_040
crossref_primary_10_1002_adma_201806204
crossref_primary_10_1016_j_mechmachtheory_2019_05_015
crossref_primary_10_1063_1_5045100
crossref_primary_10_1016_j_reactfunctpolym_2024_105919
crossref_primary_10_1016_j_snb_2018_09_079
crossref_primary_10_1088_1361_665X_ad8053
crossref_primary_10_1038_s44287_024_00081_2
crossref_primary_10_1002_admt_202100158
crossref_primary_10_12677_japc_2025_141003
crossref_primary_10_1002_aisy_202000256
crossref_primary_10_1089_soro_2018_0098
crossref_primary_10_1016_j_carres_2019_107889
crossref_primary_10_1146_annurev_control_060117_104947
crossref_primary_10_1002_smll_202105116
crossref_primary_10_1038_s41467_023_40038_x
crossref_primary_10_3390_gels7030140
crossref_primary_10_1021_acsnano_0c00381
crossref_primary_10_1515_ntrev_2020_0039
crossref_primary_10_3390_bioengineering8090127
crossref_primary_10_1021_acsapm_1c01538
crossref_primary_10_1002_advs_202406600
crossref_primary_10_1021_acs_molpharmaceut_8b00626
crossref_primary_10_1021_acsnano_3c01942
crossref_primary_10_1126_sciadv_ade6135
crossref_primary_10_1142_S1758825122500533
crossref_primary_10_1002_aisy_202200167
crossref_primary_10_1002_aisy_202000146
crossref_primary_10_3389_frobt_2024_1443379
crossref_primary_10_1186_s40580_019_0188_z
crossref_primary_10_1021_acsami_3c11842
crossref_primary_10_1109_ACCESS_2020_3013935
crossref_primary_10_3390_polym14132543
crossref_primary_10_1021_acsabm_8b00264
crossref_primary_10_1007_s42235_025_00650_7
crossref_primary_10_3390_ijms23095044
crossref_primary_10_3389_fbioe_2021_692648
crossref_primary_10_3390_mi11040392
crossref_primary_10_1016_j_aiepr_2023_08_002
crossref_primary_10_1109_OJNANO_2021_3050496
crossref_primary_10_1002_aisy_202300311
crossref_primary_10_1021_acsami_0c21021
crossref_primary_10_1002_aisy_202000270
crossref_primary_10_1021_acsapm_3c00886
crossref_primary_10_1109_LRA_2024_3511382
crossref_primary_10_1016_j_snb_2023_133654
crossref_primary_10_1039_D4SM01165A
crossref_primary_10_1631_jzus_A2300056
crossref_primary_10_3390_mi14010162
crossref_primary_10_3390_biomimetics3030015
crossref_primary_10_1108_RPJ_10_2020_0240
crossref_primary_10_1371_journal_pone_0185744
crossref_primary_10_1016_j_indcrop_2024_118262
crossref_primary_10_1007_s10544_021_00590_z
crossref_primary_10_1016_j_matdes_2020_109212
crossref_primary_10_1016_j_polymdegradstab_2020_109255
crossref_primary_10_1089_3dp_2020_0012
crossref_primary_10_3389_fbioe_2023_1251425
crossref_primary_10_1007_s42235_024_00574_8
crossref_primary_10_1089_soro_2021_0034
crossref_primary_10_3389_fchem_2024_1416314
crossref_primary_10_1177_1045389X20975500
crossref_primary_10_3390_pharmaceutics15041152
crossref_primary_10_1021_acsapm_9b01078
crossref_primary_10_1007_s44174_023_00071_2
crossref_primary_10_1063_5_0100920
crossref_primary_10_3390_molecules24183410
crossref_primary_10_1007_s40883_022_00288_5
crossref_primary_10_1039_C7SM01702B
crossref_primary_10_1002_adem_202001367
crossref_primary_10_1088_1361_665X_ab6759
crossref_primary_10_3390_electronics10091116
crossref_primary_10_1016_j_addr_2023_115164
crossref_primary_10_1016_j_matdes_2021_110172
crossref_primary_10_1021_acs_jpcb_1c07996
crossref_primary_10_1109_TMECH_2020_2974069
crossref_primary_10_1002_adom_201801643
crossref_primary_10_1021_acsnano_1c06651
crossref_primary_10_1063_1_5124007
crossref_primary_10_1002_adfm_201805777
crossref_primary_10_1016_j_compositesb_2021_109451
crossref_primary_10_1109_LRA_2023_3243440
crossref_primary_10_3389_fphy_2023_1279883
crossref_primary_10_1002_aisy_202000186
crossref_primary_10_1007_s11431_018_9339_8
crossref_primary_10_1002_adma_202006582
crossref_primary_10_1002_aisy_202300483
crossref_primary_10_1089_soro_2021_0055
crossref_primary_10_3788_CJL240758
crossref_primary_10_1007_s40684_021_00356_1
crossref_primary_10_1002_aisy_202400699
crossref_primary_10_1002_smtd_201900735
crossref_primary_10_1007_s10118_017_1983_9
crossref_primary_10_1039_D3BM02044D
crossref_primary_10_1039_D3SM01027A
crossref_primary_10_3390_polym14194235
crossref_primary_10_1002_admt_202100131
crossref_primary_10_1002_adfm_202010929
crossref_primary_10_3390_mi15020275
crossref_primary_10_1002_adfm_201907377
crossref_primary_10_1002_smll_202305805
crossref_primary_10_1002_aisy_201900128
crossref_primary_10_1002_adfm_201906603
crossref_primary_10_1016_j_snb_2019_03_030
crossref_primary_10_1088_2399_7532_abc735
crossref_primary_10_3788_CJL230608
crossref_primary_10_1007_s40964_025_01034_3
crossref_primary_10_1021_acsami_2c16658
crossref_primary_10_3390_mi13030416
Cites_doi 10.1039/C3SM51921J
10.1016/j.mattod.2014.07.002
10.1016/j.biomaterials.2010.03.031
10.1371/journal.pone.0010234
10.1177/0883911510375175
10.3322/caac.21166
10.3390/s8010561
10.1038/srep03394
10.1002/cmdc.201402290
10.1016/j.addr.2012.09.033
10.1021/jp054341g
10.1007/978-1-59745-035-5_2
10.1016/j.lfs.2012.01.008
10.1002/smll.201000544
10.1016/j.polymer.2010.10.035
10.1016/j.sna.2011.08.020
10.1016/j.sna.2014.02.028
10.1039/c3sm53059k
10.1002/bit.22574
10.3322/caac.20107
10.1016/S0142-9612(97)00219-6
10.1016/j.ctrv.2011.06.005
10.1002/adma.201204180
10.1021/am900755w
10.1016/j.jconrel.2005.10.017
10.1007/s10544-010-9491-5
10.1021/acs.nanolett.5b01945
10.1098/rstb.2013.0099
10.1016/j.addr.2003.10.017
10.1021/la503407z
10.1104/pp.109.137802
10.1016/j.sna.2013.11.014
10.1021/nn401617u
10.1109/MEMSYS.2015.7051023
10.1021/nl401088b
10.1002/adma.201304098
10.1371/journal.pone.0083053
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Copyright_xml – notice: 2016 IOP Publishing Ltd
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
DOI 10.1088/0964-1726/25/2/027001
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery
EISSN 1361-665X
EndPage 27009
ExternalDocumentID 10_1088_0964_1726_25_2_027001
smsaa0dcf
GrantInformation_xml – fundername: Samsung Research Funding Center
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
ID FETCH-LOGICAL-c360t-30fac2dd2a4f51dff3de8b37c52d928dce4e9ee4b9a05dd17b291be1065d17713
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Fri Jul 11 00:14:41 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 03:31:20 EDT 2025
Thu Jan 07 13:52:42 EST 2021
Wed Aug 21 03:40:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-30fac2dd2a4f51dff3de8b37c52d928dce4e9ee4b9a05dd17b291be1065d17713
Notes SMS-102196.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1855384162
PQPubID 23500
PageCount 9
ParticipantIDs crossref_citationtrail_10_1088_0964_1726_25_2_027001
iop_journals_10_1088_0964_1726_25_2_027001
proquest_miscellaneous_1855384162
crossref_primary_10_1088_0964_1726_25_2_027001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
Park J H (9) 2015
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
17
18
19
1
2
3
4
5
6
7
8
20
21
References_xml – ident: 16
  doi: 10.1039/C3SM51921J
– ident: 8
  doi: 10.1016/j.mattod.2014.07.002
– ident: 35
  doi: 10.1016/j.biomaterials.2010.03.031
– ident: 32
  doi: 10.1371/journal.pone.0010234
– ident: 19
  doi: 10.1177/0883911510375175
– ident: 3
  doi: 10.3322/caac.21166
– ident: 20
  doi: 10.3390/s8010561
– ident: 1
  doi: 10.1038/srep03394
– ident: 30
  doi: 10.1002/cmdc.201402290
– ident: 6
  doi: 10.1016/j.addr.2012.09.033
– ident: 27
  doi: 10.1021/jp054341g
– ident: 31
  doi: 10.1007/978-1-59745-035-5_2
– ident: 33
  doi: 10.1016/j.lfs.2012.01.008
– ident: 37
  doi: 10.1002/smll.201000544
– ident: 18
  doi: 10.1016/j.polymer.2010.10.035
– ident: 24
  doi: 10.1016/j.sna.2011.08.020
– ident: 10
  doi: 10.1016/j.sna.2014.02.028
– ident: 21
  doi: 10.1039/c3sm53059k
– ident: 36
  doi: 10.1002/bit.22574
– ident: 2
  doi: 10.3322/caac.20107
– ident: 13
  doi: 10.1016/S0142-9612(97)00219-6
– ident: 5
  doi: 10.1016/j.ctrv.2011.06.005
– ident: 17
  doi: 10.1002/adma.201204180
– ident: 11
  doi: 10.1021/am900755w
– ident: 28
  doi: 10.1016/j.jconrel.2005.10.017
– ident: 14
  doi: 10.1007/s10544-010-9491-5
– ident: 26
  doi: 10.1021/acs.nanolett.5b01945
– ident: 34
  doi: 10.1098/rstb.2013.0099
– ident: 4
  doi: 10.1016/j.addr.2003.10.017
– ident: 7
  doi: 10.1021/la503407z
– ident: 29
  doi: 10.1104/pp.109.137802
– ident: 23
  doi: 10.1016/j.sna.2013.11.014
– ident: 22
  doi: 10.1021/nn401617u
– start-page: 585
  year: 2015
  ident: 9
  publication-title: 2015 28th IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS)
  doi: 10.1109/MEMSYS.2015.7051023
– ident: 12
  doi: 10.1021/nl401088b
– ident: 15
  doi: 10.1002/adma.201304098
– ident: 25
  doi: 10.1371/journal.pone.0083053
SSID ssj0011831
Score 2.600798
Snippet For drug delivery in cancer therapy, various stimuli-responsive hydrogel-based micro-devices have been studied with great interest. Here, we present a new...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27001
SubjectTerms drug delivery
Drug delivery systems
Drugs
magnetic actuation
Magnetic fields
microrobot
Microrobots
pH-responsive hydrogel
PHEMA
soft microrobot
Toxicity
Trapping
Title Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery
URI https://iopscience.iop.org/article/10.1088/0964-1726/25/2/027001
https://www.proquest.com/docview/1855384162
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9VKbQP1WpLr9USoU-F3O1mPy55LEU5CrZ9UJC-hCSTnNJz99jdE_Sv72Q_5KyIlL7tko_NTj7mN8xvJoR8kpFzQk9D3tY0Z6mXuKVkHjNrE2ODESJaR_vJ93x2ln47z87Xovgvy2V_9I_xsUsU3ImwJ8SJCYLulKHezSc8m_BJ1LpON8hWIlB7hhC-Hz_v_Ai4YNs784YmQwzPY93c004bOIIHR3Srd463iR5G3NFNfo9XjRnb27-SOf7PL-2QVz0opV-6-q_JM1fskpdrqQp3yfOWKmrrPfLrRM-LEPpIdQg-QcRKlzNW9Vzba0cvbqAq527BgoYEWuNBT68C749VpSkbijCZdgR0LIVqNafgFoEecvOGnB0fnX6dsf6GBmaTPGpYEnltOQDXqc9i8D4BJ0wytRkHyQVYlzrpXGqkjjKAeGq4jI1DMzTDF7SP35LNoizcO0Kt4T4O9o0ViDgSkNrnIncAFqTXxo5IOsyMsn368nCLxkK1bnQhVBCiCkJUPFNcdUIckfFds2WXv-OpBp9xllS_k-unKtN7leurer1YLcGPyOGwgBTu3OCO0YUrV9izyFDbICDm7__lmx_ICwRtPXN8n2w21codIDBqzMd27f8BVQr-rQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RSA48CgglvIwElyQskmcxzqHHhBltaW09ECliovxc5HYJqskC1p-V_8K_6fjPFYtCFUceuCWKLbjx9jzjeabMcDLLDCGiZHL2xqnXmwz3FJZGnpKRVI5I4Q1jvb9g3RyFL8_To7X4HQVC1PMu6N_iI9touB2CjtCHPMRdMce6t3Up4lP_aBxnfpzbTtq5Z5Z_kDDrdre3cFVfkXp-N2ntxOvu1vAU1Ea1F4UWKGo1lTENgm1tZE2TEYjlVCdUaaViU1mTCwzESRahyNJs1AaNKASfEHLDttdh2tJhArbhQ1-PFz5LnCTNPf09d3s44b-1vULGnEdR_2HWmh03fgO_OpnqaW4fBsuajlUP39LIPm_TeNduN2Bb_Km7eM9WDP5Jtw6l5JxE643lFhV3YfP-2KauxBPIlyQDSJzMp94Zccp_m7I16Uui6mZeQ4JaFKhQiMnjt_olYUsaoLmAGmJ9vhVl4sp0WbmaDDLB3B0JcN8CBt5kZtHQJSkNnR2nGKIrCKdCZuy1GitdGaFVAOIe2ngqkvT7m4LmfGGLsAYdwvH3cJxmnDK24UbwHBVbd7mKbmswmuUDN6dWNVlhcmFwtVJdf4zR6kZwIteaDmeUM7tJHJTLLBllqBWReBPH__LP5_DjcOdMf-we7C3BTcRp3Zk-SewUZcL8xSxYC2fNVuPwJerFtIzsnxgsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+actuated+pH-responsive+hydrogel-based+soft+micro-robot+for+targeted+drug+delivery&rft.jtitle=Smart+materials+and+structures&rft.au=Li%2C+Hao&rft.au=Go%2C+Gwangjun&rft.au=Ko%2C+Seong+Yong&rft.au=Park%2C+Jong-Oh&rft.date=2016-02-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=25&rft.issue=2&rft_id=info:doi/10.1088%2F0964-1726%2F25%2F2%2F027001&rft.externalDocID=smsaa0dcf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon