The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 235; no. 17; pp. 5272 - 5283 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
01.07.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
► A discrete complex-valued bidirectional associative memory network is considered. ► Sufficient condition is given for stored patterns to be fixed points of the network. ► Each fixed point is shown to belong to a fixed point group of four fixed points. |
---|---|
AbstractList | Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
► A discrete complex-valued bidirectional associative memory network is considered. ► Sufficient condition is given for stored patterns to be fixed points of the network. ► Each fixed point is shown to belong to a fixed point group of four fixed points. Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique. |
Author | Yousefi, S.A. Dehghan, Mehdi Behroozifar, M. |
Author_xml | – sequence: 1 givenname: S.A. surname: Yousefi fullname: Yousefi, S.A. email: s-yousefi@sbu.ac.ir organization: Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran – sequence: 2 givenname: M. surname: Behroozifar fullname: Behroozifar, M. email: m_behroozifar@nit.ac.ir organization: Faculty of Basic Sciences, Babol University of Technology, Babol, Mazandaran, Iran – sequence: 3 givenname: Mehdi surname: Dehghan fullname: Dehghan, Mehdi email: mdehghan@aut.ac.ir, mdehghan.aut@gmail.com organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424 Hafez Avenue, Tehran, Iran |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24355178$$DView record in Pascal Francis |
BookMark | eNp9kU1v1DAQhi1UJLaFH8DNFyQuCf5I4kScoCofUiUue7cmzhi8cuzU9lbaf4-3Wy4cevJh3ufReN5rchViQELec9ZyxodPh9bA2grGecv6lsnxFdnxUU0NV2q8IjsmlWpYJ9Qbcp3zgTE2TLzbkdP-D9K4YYLiYgBPVyjJGcw0WvoVU8gFXaBb9KcQVwc-UxsTzdE_uvCblkpvkGCO3hmKD8cnDc3H-YCm0BJp3tA468xlUKVnZIWc35LXturw3fN7Q_bf7va3P5r7X99_3n65b4wcWGkkA1isXWY7iF7MdfF5BrkoMSBOTNaBUhw6Nk1d38_KKNENlte0YUunOnlDPl60W4oPR8xFry4b9B4CxmPWfFBcjLJnokY_PEchG_A2QTAu6y25FdJJi072PVdjzalLzqSYc0KrjStP_ysJnNec6XMn-qBrJ_rciWa9rp1Ukv9H_pO_xHy-MFiP9Ogw6WwcBoOLS_XGeonuBfovTTqo0Q |
CODEN | JCAMDI |
CitedBy_id | crossref_primary_10_1002_mma_2794 crossref_primary_10_4236_ajcm_2020_102012 crossref_primary_10_1002_mma_7601 crossref_primary_10_1016_j_aej_2020_05_009 crossref_primary_10_1080_17415977_2012_701627 crossref_primary_10_1016_j_aej_2016_06_022 crossref_primary_10_1016_j_apm_2015_12_002 crossref_primary_10_1016_j_camwa_2014_05_007 crossref_primary_10_1016_j_apm_2013_08_007 crossref_primary_10_4236_am_2022_132009 crossref_primary_10_1016_j_amc_2016_06_023 crossref_primary_10_1007_s11075_016_0229_1 crossref_primary_10_1134_S0965542522110033 crossref_primary_10_1140_epjp_i2017_11598_1 crossref_primary_10_3846_mma_2021_12865 crossref_primary_10_1016_j_jppr_2015_07_004 crossref_primary_10_1016_j_jksus_2018_05_002 crossref_primary_10_3389_fphy_2020_00120 crossref_primary_10_1140_epjp_i2017_11361_8 crossref_primary_10_1080_00036811_2017_1359558 crossref_primary_10_1155_2017_5691452 crossref_primary_10_1016_j_amc_2014_03_066 crossref_primary_10_1016_j_aej_2016_06_032 crossref_primary_10_26637_MJM0802_0006 crossref_primary_10_1016_j_kjs_2023_07_010 crossref_primary_10_1155_2014_369029 crossref_primary_10_1007_s40314_015_0251_2 crossref_primary_10_1016_j_jksus_2016_11_001 crossref_primary_10_1002_mma_8607 crossref_primary_10_1016_j_amc_2018_06_001 crossref_primary_10_1016_j_physa_2019_121077 crossref_primary_10_1142_S0219876215500243 crossref_primary_10_1080_10407790_2021_1945243 crossref_primary_10_1080_10407790_2022_2063606 crossref_primary_10_1007_s40819_018_0560_4 crossref_primary_10_1007_s10543_015_0544_2 crossref_primary_10_1108_HFF_04_2012_0083 crossref_primary_10_1002_mma_9573 crossref_primary_10_1007_s12591_019_00509_4 crossref_primary_10_1115_1_4028633 crossref_primary_10_1007_s00033_022_01698_9 crossref_primary_10_1007_s40096_016_0201_1 crossref_primary_10_1007_s00009_015_0542_2 crossref_primary_10_1016_j_mex_2023_102006 crossref_primary_10_1002_mma_3616 crossref_primary_10_1007_s40314_022_01908_0 crossref_primary_10_3390_math8091473 crossref_primary_10_1109_ACCESS_2023_3332665 crossref_primary_10_1016_j_asej_2016_07_002 crossref_primary_10_1016_j_amc_2013_07_094 crossref_primary_10_1016_j_amc_2017_09_043 crossref_primary_10_1016_j_heliyon_2024_e28888 crossref_primary_10_3390_math7030224 crossref_primary_10_1016_j_apm_2015_07_002 crossref_primary_10_1007_s12043_020_02004_w crossref_primary_10_1109_ACCESS_2022_3173285 crossref_primary_10_1007_s40819_017_0323_7 crossref_primary_10_1002_mma_9715 crossref_primary_10_1002_num_22136 crossref_primary_10_1016_j_ejbas_2016_09_004 |
Cites_doi | 10.1002/num.20019 10.1007/BF01931285 10.1090/qam/693879 10.1016/j.chaos.2005.11.010 10.1002/cnm.522 10.1016/0362-546X(92)90148-8 10.1016/S0898-1221(00)00325-4 10.1016/S0096-3003(02)00479-4 10.1016/S0377-0427(99)00200-9 10.1016/j.cam.2009.01.012 10.1016/j.na.2007.02.006 10.1016/j.apm.2009.07.006 10.1002/num.20071 10.1016/0022-0396(89)90103-4 10.1016/0020-7225(90)90056-O 10.1002/num.1040 10.1016/S0377-0427(00)00452-0 10.1016/j.apm.2008.03.006 10.1016/j.cam.2006.05.002 10.1080/00207720903154783 10.1016/j.amc.2007.01.033 10.1016/S0377-0427(96)00097-0 10.1016/j.na.2007.07.008 10.1002/num.20299 10.1016/j.camwa.2008.03.055 10.1090/qam/1178432 10.1017/S0334270000010560 10.1016/S0362-546X(01)00479-5 10.1016/j.apnum.2004.02.002 10.1002/num.20150 10.1016/j.matcom.2005.10.001 10.1016/j.amc.2008.03.008 10.1016/S0378-4754(01)00419-0 10.1016/S0362-546X(00)00172-3 10.1029/94WR01798 10.1016/j.amc.2005.08.011 10.1080/00207160412331284060 10.1016/j.apnum.2009.05.007 10.1016/j.matcom.2008.04.018 10.32917/hmj/1206126957 10.1016/j.chaos.2009.03.122 10.1016/S0898-1221(02)00113-X 10.1006/jmaa.1995.1384 10.1016/S0096-3003(02)00954-2 10.1029/91WR00162 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cam.2011.05.038 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 5283 |
ExternalDocumentID | 24355178 10_1016_j_cam_2011_05_038 S0377042711002950 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c360t-30aadffdbf6252b000bba3d726ee903fdb771a4099455b7c7246f1bf6c0d4743 |
IEDL.DBID | IXB |
ISSN | 0377-0427 |
IngestDate | Fri Jul 11 03:24:01 EDT 2025 Mon Jul 21 09:09:56 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 04:26:49 EDT 2025 Fri Feb 23 02:27:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Integral condition Nonlocal boundary conditions Bernstein basis One-dimensional parabolic equation Operational matrices Specification of mass Integration Initial value problem Polynomial equation Numerical method Boundary condition Stochastic method Partial differential equation Implementation Bernstein polynomial Parabolic equation Numerical analysis Boundary value problem One-dimensional calculations Applied mathematics Algebraic equation |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-30aadffdbf6252b000bba3d726ee903fdb771a4099455b7c7246f1bf6c0d4743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042711002950 |
PQID | 1671283502 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1671283502 pascalfrancis_primary_24355178 crossref_citationtrail_10_1016_j_cam_2011_05_038 crossref_primary_10_1016_j_cam_2011_05_038 elsevier_sciencedirect_doi_10_1016_j_cam_2011_05_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bouziani, Merazga, Benamira (br000115) 2008; 69 Dehghan (br000080) 2006; 71 Zhou, Cui, Lin (br000170) 2009; 30 Dehghan, Shamsi (br000240) 2006; 22 Kreyszig (br000225) 1978 Sun (br000165) 1996; 76 Dagan (br000185) 1994; 30 Dehghan (br000015) 2006; 22 Dehghan (br000245) 2002; 48 Tatari, Dehghan (br000105) 2009; 33 Golbabai, Javidi (br000130) 2007; 190 Ang (br000120) 2002; 26 Bouziani (br000030) 1997; 27 Dehghan (br000100) 2003; 19 Pao (br000205) 2001; 41 Dehghan, Ramezani (br000125) 2008; 24 Cannon, Yin (br000035) 1989; 79 Pao (br000200) 1995; 195 Dehghan (br000020) 2007; 32 Choi, Chan (br000050) 1992; 18 Mu, Du (br000150) 2008; 202 Rivlin (br000230) 1981 Dehghan (br000250) 2002; 43 Dehghan (br000095) 2002; 138 Bouziani (br000025) 1999; 10 Qin (br000155) 2010; 34 Copetti (br000175) 2002; 59 Yousefi, Behroozifar (br000235) 2010; 41 Dehghan (br000090) 2004; 149 Gumel (br000135) 1999; 40 Mesloub (br000075) 2008; 68 Dehghan (br000085) 2003; 145 Day (br000065) 1985 Saadatmandi, Razzaghi (br000160) 2004; 81 Dehghan (br000210) 2005; 21 Cushman (br000180) 1991; 27 Ang (br000260) 2006; 175 Cannon (br000045) 1984; vol. 23 Martin-Vaquero (br000145) 2009; 42 Dehghan (br000255) 2002; 18 Day (br000055) 1992; 50 Liu (br000140) 1999; 110 Shakeri, Dehghan (br000215) 2008; 56 Bhatti, Bracken (br000220) 2007; 205 Day (br000060) 1983; 41 Wang, Lin (br000010) 1990; 28 Marti’n-Vaquero, Vigo-Aguiar (br000195) 2009; 59 Ekolin (br000190) 1991; 31 Friedman (br000070) 1986; XLIX Dehghan, Shokri (br000110) 2008; 79 Dehghan (br000005) 2005; 25 Ashyralyev, Yurtsever (br000040) 2001; 47 Pao (10.1016/j.cam.2011.05.038_br000205) 2001; 41 Mesloub (10.1016/j.cam.2011.05.038_br000075) 2008; 68 Dehghan (10.1016/j.cam.2011.05.038_br000100) 2003; 19 Dehghan (10.1016/j.cam.2011.05.038_br000080) 2006; 71 Bouziani (10.1016/j.cam.2011.05.038_br000115) 2008; 69 Choi (10.1016/j.cam.2011.05.038_br000050) 1992; 18 Dehghan (10.1016/j.cam.2011.05.038_br000090) 2004; 149 Dehghan (10.1016/j.cam.2011.05.038_br000125) 2008; 24 Day (10.1016/j.cam.2011.05.038_br000065) 1985 Bouziani (10.1016/j.cam.2011.05.038_br000025) 1999; 10 Dehghan (10.1016/j.cam.2011.05.038_br000085) 2003; 145 Pao (10.1016/j.cam.2011.05.038_br000200) 1995; 195 Cannon (10.1016/j.cam.2011.05.038_br000035) 1989; 79 Ashyralyev (10.1016/j.cam.2011.05.038_br000040) 2001; 47 Cannon (10.1016/j.cam.2011.05.038_br000045) 1984; vol. 23 Dehghan (10.1016/j.cam.2011.05.038_br000020) 2007; 32 Day (10.1016/j.cam.2011.05.038_br000060) 1983; 41 Ang (10.1016/j.cam.2011.05.038_br000120) 2002; 26 Saadatmandi (10.1016/j.cam.2011.05.038_br000160) 2004; 81 Dehghan (10.1016/j.cam.2011.05.038_br000240) 2006; 22 Sun (10.1016/j.cam.2011.05.038_br000165) 1996; 76 Marti’n-Vaquero (10.1016/j.cam.2011.05.038_br000195) 2009; 59 Kreyszig (10.1016/j.cam.2011.05.038_br000225) 1978 Zhou (10.1016/j.cam.2011.05.038_br000170) 2009; 30 Day (10.1016/j.cam.2011.05.038_br000055) 1992; 50 Dehghan (10.1016/j.cam.2011.05.038_br000015) 2006; 22 Cushman (10.1016/j.cam.2011.05.038_br000180) 1991; 27 Dehghan (10.1016/j.cam.2011.05.038_br000110) 2008; 79 Ekolin (10.1016/j.cam.2011.05.038_br000190) 1991; 31 Mu (10.1016/j.cam.2011.05.038_br000150) 2008; 202 Dehghan (10.1016/j.cam.2011.05.038_br000250) 2002; 43 Wang (10.1016/j.cam.2011.05.038_br000010) 1990; 28 Dehghan (10.1016/j.cam.2011.05.038_br000255) 2002; 18 Dehghan (10.1016/j.cam.2011.05.038_br000005) 2005; 25 Liu (10.1016/j.cam.2011.05.038_br000140) 1999; 110 Rivlin (10.1016/j.cam.2011.05.038_br000230) 1981 Golbabai (10.1016/j.cam.2011.05.038_br000130) 2007; 190 Ang (10.1016/j.cam.2011.05.038_br000260) 2006; 175 Tatari (10.1016/j.cam.2011.05.038_br000105) 2009; 33 Gumel (10.1016/j.cam.2011.05.038_br000135) 1999; 40 Dehghan (10.1016/j.cam.2011.05.038_br000095) 2002; 138 Dehghan (10.1016/j.cam.2011.05.038_br000210) 2005; 21 Bouziani (10.1016/j.cam.2011.05.038_br000030) 1997; 27 Bhatti (10.1016/j.cam.2011.05.038_br000220) 2007; 205 Martin-Vaquero (10.1016/j.cam.2011.05.038_br000145) 2009; 42 Shakeri (10.1016/j.cam.2011.05.038_br000215) 2008; 56 Copetti (10.1016/j.cam.2011.05.038_br000175) 2002; 59 Dagan (10.1016/j.cam.2011.05.038_br000185) 1994; 30 Dehghan (10.1016/j.cam.2011.05.038_br000245) 2002; 48 Yousefi (10.1016/j.cam.2011.05.038_br000235) 2010; 41 Qin (10.1016/j.cam.2011.05.038_br000155) 2010; 34 Friedman (10.1016/j.cam.2011.05.038_br000070) 1986; XLIX |
References_xml | – volume: 18 start-page: 193 year: 2002 end-page: 202 ident: br000255 article-title: Numerical solution of the three-dimensional parabolic equation with an integral condition publication-title: Numerical Methods for Partial Differential Equations – volume: 175 start-page: 969 year: 2006 end-page: 979 ident: br000260 article-title: Numerical solution of a non-classical parabolic problem: an integro-differential approach publication-title: Appl. Math. Comput. – volume: 28 start-page: 543 year: 1990 end-page: 546 ident: br000010 article-title: A numerical method for the diffusion equation with nonlocal boundary specifications publication-title: Int. J. Eng. Sci. – volume: 10 start-page: 61 year: 1999 end-page: 77 ident: br000025 article-title: On a class of parabolic equations with a nonlocal boundary condition publication-title: Acad. Roy. Belg. Bull. Cl. Sci. – volume: 22 start-page: 1255 year: 2006 end-page: 1266 ident: br000240 article-title: Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method publication-title: Numer. Methods Partial. Diff. Eqs. – volume: 41 start-page: 857 year: 2001 end-page: 877 ident: br000205 article-title: Numerical methods for nonlinear integro-parabolic equations of Fredholm type publication-title: Comput. Math. Appl. – volume: 41 start-page: 709 year: 2010 end-page: 716 ident: br000235 article-title: Operational matrices of Bernstein polynomials and their applications publication-title: Int. J. Syst. Sci – volume: 21 start-page: 24 year: 2005 end-page: 40 ident: br000210 article-title: On the solution of an initial–boundary value problem that combines Neumann and integral condition for the wave equation publication-title: Numerical Methods for Partial Differential Equations – volume: 22 start-page: 220 year: 2006 end-page: 257 ident: br000015 article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications publication-title: Numer. Methods Partial. Diff. Eqs. – volume: 32 start-page: 661 year: 2007 end-page: 675 ident: br000020 article-title: The one-dimensional heat equation subject to a boundary integral specification publication-title: Chaos Solitons Fractals – volume: 24 start-page: 950 year: 2008 end-page: 959 ident: br000125 article-title: Composite spectral method for solution of the diffusion equation with specification of energy publication-title: Numer. Methods Partial Diff. Eqs. – volume: 41 start-page: 468 year: 1983 end-page: 475 ident: br000060 article-title: A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories publication-title: Quart. Appl. Math. – volume: 76 start-page: 137 year: 1996 end-page: 146 ident: br000165 article-title: A second-order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions publication-title: J. Comput. Appl. Math. – volume: 50 start-page: 523 year: 1992 end-page: 533 ident: br000055 article-title: Parabolic equations and thermodynamics publication-title: Quart. Appl. Math. – volume: 30 start-page: 770 year: 2009 end-page: 780 ident: br000170 article-title: Numerical algorithm for parabolic problems with non-classical conditions publication-title: J. Comput. Appl. Math. – volume: 138 start-page: 173 year: 2002 end-page: 184 ident: br000095 article-title: Second-order schemes for a boundary value problem with Neumann’s boundary conditions publication-title: J. Comput. Appl. Math. – volume: 26 start-page: 197 year: 2002 end-page: 203 ident: br000120 article-title: A method of solution for the one-dimensional heat equation subject to nonlocal conditions publication-title: SEA Bull. Math. – volume: 69 start-page: 1515 year: 2008 end-page: 1524 ident: br000115 article-title: Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions publication-title: Nonlinear Analysis: TMA – volume: 81 start-page: 1427 year: 2004 end-page: 1432 ident: br000160 article-title: A Tau method approximation for the diffusion equation with nonlocal boundary conditions publication-title: Int. J. Comput. Math. – volume: 31 start-page: 245 year: 1991 end-page: 255 ident: br000190 article-title: Finite difference methods for a nonlocal value problem for the heat equation publication-title: BIT – volume: 59 start-page: 361 year: 2002 end-page: 376 ident: br000175 article-title: A one-dimensional thermoelastic problem with unilateral constraint publication-title: Math. Comput. Simul. – volume: 34 start-page: 890 year: 2010 end-page: 897 ident: br000155 article-title: The new alternating direction implicit difference methods for solving three-dimensional parabolic equations publication-title: Appl. Math. Modelling – volume: 30 start-page: 3327 year: 1994 end-page: 3336 ident: br000185 article-title: The significance of heterogeneity of evolving scales to transport in porous formations publication-title: Water Resour. Res. – volume: 48 start-page: 637 year: 2002 end-page: 650 ident: br000245 article-title: Fully explicit finite difference methods for two-dimensional diffusion with an integral condition publication-title: Nonlinear Analysis, Theory, Methods and Applications – volume: 19 start-page: 1 year: 2003 end-page: 12 ident: br000100 article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions publication-title: Communications in Numerical Methods in Engineering – volume: 33 start-page: 1729 year: 2009 end-page: 1738 ident: br000105 article-title: On the solution of the non-local parabolic partial differential equations via radial basis functions publication-title: Appl. Math. Modelling – volume: 205 start-page: 272 year: 2007 end-page: 280 ident: br000220 article-title: Solutions of differential equations in a Bernstein polynomial basis publication-title: J. Comput. Appl. Math. – volume: 27 start-page: 373 year: 1997 end-page: 390 ident: br000030 article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations publication-title: Hiroshima Math. J. – year: 1981 ident: br000230 article-title: An Introduction to the Approximation of Functions – volume: 40 start-page: 475 year: 1999 end-page: 483 ident: br000135 article-title: On the numerical solution of the diffusion equation subject to the specification of mass publication-title: J. Aust. Math. Soc. Ser. B – volume: XLIX start-page: 468 year: 1986 end-page: 475 ident: br000070 article-title: Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions publication-title: Quart. Appl. Math. – volume: 27 start-page: 643 year: 1991 end-page: 644 ident: br000180 article-title: On diffusion in fractal porous media publication-title: Water Resour. Res. – volume: 79 start-page: 266 year: 1989 end-page: 288 ident: br000035 article-title: On a class of non-classical parabolic problems publication-title: J. Differential Equations – volume: 202 start-page: 708 year: 2008 end-page: 714 ident: br000150 article-title: The solution of a parabolic differential equation with non-local boundary conditions in the reproducing kernel space publication-title: Appl. Math. Comput. – volume: 79 start-page: 700 year: 2008 end-page: 715 ident: br000110 article-title: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions publication-title: Math. Comput. Simulat. – volume: 110 start-page: 115 year: 1999 end-page: 127 ident: br000140 article-title: Numerical solution of the heat equation with nonlocal boundary conditions publication-title: J. Comput. Appl. Math. – volume: 195 start-page: 702 year: 1995 end-page: 718 ident: br000200 article-title: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions publication-title: J. Math. Anal. Appl. – volume: 149 start-page: 31 year: 2004 end-page: 45 ident: br000090 article-title: Numerical solution of a parabolic equation subject to specification of energy publication-title: Appl. Math. Comput. – volume: 59 start-page: 2507 year: 2009 end-page: 2514 ident: br000195 article-title: On the numerical solution of the heat conduction equations subject to nonlocal conditions publication-title: Appl. Numer. Math. – volume: 42 start-page: 2364 year: 2009 end-page: 2372 ident: br000145 article-title: Two-level fourth-order explicit schemes for diffusion equations subject to boundary integral specifications publication-title: Chaos Solitons Fractals – volume: vol. 23 year: 1984 ident: br000045 publication-title: The One-Dimensional Heat Equation – volume: 56 start-page: 2175 year: 2008 end-page: 2188 ident: br000215 article-title: The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition publication-title: Comput. Math. Appl. – volume: 25 start-page: 39 year: 2005 end-page: 62 ident: br000005 article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications publication-title: Appl. Num. Math. – volume: 47 start-page: 3585 year: 2001 end-page: 3592 ident: br000040 article-title: On a nonlocal boundary value problem for semilinear hyperbolic–parabolic equations publication-title: Nonlinear Anal. TMA – year: 1978 ident: br000225 article-title: Introductory Functional Analysis with Applications – volume: 71 start-page: 16 year: 2006 end-page: 30 ident: br000080 article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices publication-title: Math. Comput. Simulat. – volume: 145 start-page: 185 year: 2003 end-page: 194 ident: br000085 article-title: Numerical solution of a parabolic equation with non-local boundary specifications publication-title: Appl. Math. Comput. – volume: 68 start-page: 2594 year: 2008 end-page: 2607 ident: br000075 article-title: On a singular two dimensional nonlinear evolution equation with nonlocal conditions publication-title: Nonlinear Anal. TMA – volume: 43 start-page: 1477 year: 2002 end-page: 1488 ident: br000250 article-title: A new AD1 technique for two-dimensional parabolic equation with an integral condition publication-title: Comput. Math. Appl. – volume: 18 start-page: 317 year: 1992 end-page: 331 ident: br000050 article-title: A parabolic equation with nonlocal boundary condition arising from electrochemistry publication-title: Nonlinear Anal. TMA – year: 1985 ident: br000065 article-title: Heat Conduction within Linear Thermoelasticity – volume: 190 start-page: 179 year: 2007 end-page: 185 ident: br000130 article-title: A numerical solution for non-classical parabolic problem based on Chebyshev spectral collocation method publication-title: Appl. Math. Comput. – volume: 21 start-page: 24 year: 2005 ident: 10.1016/j.cam.2011.05.038_br000210 article-title: On the solution of an initial–boundary value problem that combines Neumann and integral condition for the wave equation publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/num.20019 – volume: 31 start-page: 245 year: 1991 ident: 10.1016/j.cam.2011.05.038_br000190 article-title: Finite difference methods for a nonlocal value problem for the heat equation publication-title: BIT doi: 10.1007/BF01931285 – volume: 41 start-page: 468 year: 1983 ident: 10.1016/j.cam.2011.05.038_br000060 article-title: A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories publication-title: Quart. Appl. Math. doi: 10.1090/qam/693879 – volume: 32 start-page: 661 year: 2007 ident: 10.1016/j.cam.2011.05.038_br000020 article-title: The one-dimensional heat equation subject to a boundary integral specification publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.11.010 – volume: 19 start-page: 1 year: 2003 ident: 10.1016/j.cam.2011.05.038_br000100 article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions publication-title: Communications in Numerical Methods in Engineering doi: 10.1002/cnm.522 – volume: 18 start-page: 317 year: 1992 ident: 10.1016/j.cam.2011.05.038_br000050 article-title: A parabolic equation with nonlocal boundary condition arising from electrochemistry publication-title: Nonlinear Anal. TMA doi: 10.1016/0362-546X(92)90148-8 – volume: 41 start-page: 857 year: 2001 ident: 10.1016/j.cam.2011.05.038_br000205 article-title: Numerical methods for nonlinear integro-parabolic equations of Fredholm type publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(00)00325-4 – volume: 145 start-page: 185 year: 2003 ident: 10.1016/j.cam.2011.05.038_br000085 article-title: Numerical solution of a parabolic equation with non-local boundary specifications publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00479-4 – volume: 110 start-page: 115 year: 1999 ident: 10.1016/j.cam.2011.05.038_br000140 article-title: Numerical solution of the heat equation with nonlocal boundary conditions publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00200-9 – volume: 30 start-page: 770 year: 2009 ident: 10.1016/j.cam.2011.05.038_br000170 article-title: Numerical algorithm for parabolic problems with non-classical conditions publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.01.012 – volume: 68 start-page: 2594 year: 2008 ident: 10.1016/j.cam.2011.05.038_br000075 article-title: On a singular two dimensional nonlinear evolution equation with nonlocal conditions publication-title: Nonlinear Anal. TMA doi: 10.1016/j.na.2007.02.006 – volume: 34 start-page: 890 year: 2010 ident: 10.1016/j.cam.2011.05.038_br000155 article-title: The new alternating direction implicit difference methods for solving three-dimensional parabolic equations publication-title: Appl. Math. Modelling doi: 10.1016/j.apm.2009.07.006 – volume: 22 start-page: 220 year: 2006 ident: 10.1016/j.cam.2011.05.038_br000015 article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications publication-title: Numer. Methods Partial. Diff. Eqs. doi: 10.1002/num.20071 – volume: 79 start-page: 266 year: 1989 ident: 10.1016/j.cam.2011.05.038_br000035 article-title: On a class of non-classical parabolic problems publication-title: J. Differential Equations doi: 10.1016/0022-0396(89)90103-4 – volume: 28 start-page: 543 year: 1990 ident: 10.1016/j.cam.2011.05.038_br000010 article-title: A numerical method for the diffusion equation with nonlocal boundary specifications publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(90)90056-O – volume: 18 start-page: 193 year: 2002 ident: 10.1016/j.cam.2011.05.038_br000255 article-title: Numerical solution of the three-dimensional parabolic equation with an integral condition publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/num.1040 – volume: 138 start-page: 173 year: 2002 ident: 10.1016/j.cam.2011.05.038_br000095 article-title: Second-order schemes for a boundary value problem with Neumann’s boundary conditions publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00452-0 – volume: 26 start-page: 197 year: 2002 ident: 10.1016/j.cam.2011.05.038_br000120 article-title: A method of solution for the one-dimensional heat equation subject to nonlocal conditions publication-title: SEA Bull. Math. – volume: vol. 23 year: 1984 ident: 10.1016/j.cam.2011.05.038_br000045 – volume: 33 start-page: 1729 year: 2009 ident: 10.1016/j.cam.2011.05.038_br000105 article-title: On the solution of the non-local parabolic partial differential equations via radial basis functions publication-title: Appl. Math. Modelling doi: 10.1016/j.apm.2008.03.006 – year: 1985 ident: 10.1016/j.cam.2011.05.038_br000065 – volume: 205 start-page: 272 year: 2007 ident: 10.1016/j.cam.2011.05.038_br000220 article-title: Solutions of differential equations in a Bernstein polynomial basis publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.05.002 – volume: XLIX start-page: 468 year: 1986 ident: 10.1016/j.cam.2011.05.038_br000070 article-title: Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions publication-title: Quart. Appl. Math. – volume: 10 start-page: 61 year: 1999 ident: 10.1016/j.cam.2011.05.038_br000025 article-title: On a class of parabolic equations with a nonlocal boundary condition publication-title: Acad. Roy. Belg. Bull. Cl. Sci. – year: 1978 ident: 10.1016/j.cam.2011.05.038_br000225 – volume: 41 start-page: 709 year: 2010 ident: 10.1016/j.cam.2011.05.038_br000235 article-title: Operational matrices of Bernstein polynomials and their applications publication-title: Int. J. Syst. Sci doi: 10.1080/00207720903154783 – volume: 190 start-page: 179 year: 2007 ident: 10.1016/j.cam.2011.05.038_br000130 article-title: A numerical solution for non-classical parabolic problem based on Chebyshev spectral collocation method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.01.033 – volume: 76 start-page: 137 year: 1996 ident: 10.1016/j.cam.2011.05.038_br000165 article-title: A second-order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(96)00097-0 – volume: 69 start-page: 1515 year: 2008 ident: 10.1016/j.cam.2011.05.038_br000115 article-title: Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions publication-title: Nonlinear Analysis: TMA doi: 10.1016/j.na.2007.07.008 – volume: 24 start-page: 950 year: 2008 ident: 10.1016/j.cam.2011.05.038_br000125 article-title: Composite spectral method for solution of the diffusion equation with specification of energy publication-title: Numer. Methods Partial Diff. Eqs. doi: 10.1002/num.20299 – volume: 56 start-page: 2175 year: 2008 ident: 10.1016/j.cam.2011.05.038_br000215 article-title: The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.03.055 – volume: 50 start-page: 523 year: 1992 ident: 10.1016/j.cam.2011.05.038_br000055 article-title: Parabolic equations and thermodynamics publication-title: Quart. Appl. Math. doi: 10.1090/qam/1178432 – volume: 40 start-page: 475 year: 1999 ident: 10.1016/j.cam.2011.05.038_br000135 article-title: On the numerical solution of the diffusion equation subject to the specification of mass publication-title: J. Aust. Math. Soc. Ser. B doi: 10.1017/S0334270000010560 – volume: 47 start-page: 3585 year: 2001 ident: 10.1016/j.cam.2011.05.038_br000040 article-title: On a nonlocal boundary value problem for semilinear hyperbolic–parabolic equations publication-title: Nonlinear Anal. TMA doi: 10.1016/S0362-546X(01)00479-5 – volume: 25 start-page: 39 year: 2005 ident: 10.1016/j.cam.2011.05.038_br000005 article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications publication-title: Appl. Num. Math. doi: 10.1016/j.apnum.2004.02.002 – volume: 22 start-page: 1255 year: 2006 ident: 10.1016/j.cam.2011.05.038_br000240 article-title: Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method publication-title: Numer. Methods Partial. Diff. Eqs. doi: 10.1002/num.20150 – volume: 71 start-page: 16 year: 2006 ident: 10.1016/j.cam.2011.05.038_br000080 article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2005.10.001 – year: 1981 ident: 10.1016/j.cam.2011.05.038_br000230 – volume: 202 start-page: 708 year: 2008 ident: 10.1016/j.cam.2011.05.038_br000150 article-title: The solution of a parabolic differential equation with non-local boundary conditions in the reproducing kernel space publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.03.008 – volume: 59 start-page: 361 year: 2002 ident: 10.1016/j.cam.2011.05.038_br000175 article-title: A one-dimensional thermoelastic problem with unilateral constraint publication-title: Math. Comput. Simul. doi: 10.1016/S0378-4754(01)00419-0 – volume: 48 start-page: 637 year: 2002 ident: 10.1016/j.cam.2011.05.038_br000245 article-title: Fully explicit finite difference methods for two-dimensional diffusion with an integral condition publication-title: Nonlinear Analysis, Theory, Methods and Applications doi: 10.1016/S0362-546X(00)00172-3 – volume: 30 start-page: 3327 year: 1994 ident: 10.1016/j.cam.2011.05.038_br000185 article-title: The significance of heterogeneity of evolving scales to transport in porous formations publication-title: Water Resour. Res. doi: 10.1029/94WR01798 – volume: 175 start-page: 969 year: 2006 ident: 10.1016/j.cam.2011.05.038_br000260 article-title: Numerical solution of a non-classical parabolic problem: an integro-differential approach publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.08.011 – volume: 81 start-page: 1427 year: 2004 ident: 10.1016/j.cam.2011.05.038_br000160 article-title: A Tau method approximation for the diffusion equation with nonlocal boundary conditions publication-title: Int. J. Comput. Math. doi: 10.1080/00207160412331284060 – volume: 59 start-page: 2507 year: 2009 ident: 10.1016/j.cam.2011.05.038_br000195 article-title: On the numerical solution of the heat conduction equations subject to nonlocal conditions publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2009.05.007 – volume: 79 start-page: 700 year: 2008 ident: 10.1016/j.cam.2011.05.038_br000110 article-title: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2008.04.018 – volume: 27 start-page: 373 year: 1997 ident: 10.1016/j.cam.2011.05.038_br000030 article-title: Strong solution for a mixed problem with nonlocal condition for a certain pluriparabolic equations publication-title: Hiroshima Math. J. doi: 10.32917/hmj/1206126957 – volume: 42 start-page: 2364 year: 2009 ident: 10.1016/j.cam.2011.05.038_br000145 article-title: Two-level fourth-order explicit schemes for diffusion equations subject to boundary integral specifications publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2009.03.122 – volume: 43 start-page: 1477 year: 2002 ident: 10.1016/j.cam.2011.05.038_br000250 article-title: A new AD1 technique for two-dimensional parabolic equation with an integral condition publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(02)00113-X – volume: 195 start-page: 702 year: 1995 ident: 10.1016/j.cam.2011.05.038_br000200 article-title: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1995.1384 – volume: 149 start-page: 31 year: 2004 ident: 10.1016/j.cam.2011.05.038_br000090 article-title: Numerical solution of a parabolic equation subject to specification of energy publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00954-2 – volume: 27 start-page: 643 year: 1991 ident: 10.1016/j.cam.2011.05.038_br000180 article-title: On diffusion in fractal porous media publication-title: Water Resour. Res. doi: 10.1029/91WR00162 |
SSID | ssj0006914 |
Score | 2.2563982 |
Snippet | Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5272 |
SubjectTerms | Approximation Bernstein basis Boundaries Exact sciences and technology Integral condition Mathematical analysis Mathematical models Mathematics Matrices Matrix methods Nonlocal boundary conditions Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics One-dimensional parabolic equation Operational matrices Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Specification of mass Specifications |
Title | The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass |
URI | https://dx.doi.org/10.1016/j.cam.2011.05.038 https://www.proquest.com/docview/1671283502 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-evngc4p3K-bXk4J6EukmbNttHXZT1POU4FfYtJE0CK25bt7sPvvi3O9OPBVF88KnQTtKSSSe_TGZ-Q8hvQMmpNFYHUkcWNijcB4PIumDgQq4TnlmdoUP_6joZ3Yk_43i8QoZdLgyGVba2v7HptbVu7_Tb0eyXk0n_hkVSYqUIJD0L03rfHolBncQ3Pl1a4yRt-L1BOEDp7mSzjvHK9LRl8YyPGaaovL82fSt1BSPmm1IXb6x2vRSdb5KNFkPSk-Yzv5MVl_8gX6-WBKzVFsF6dLQo3az19dFpTcXvKlp4eupmAArdJKdl8fCEeckwBymgVwoTER0MFHqiSApukDWYuseGD5xWC4NuGzovKGZoYpRR8wA6xSZTQOLb5Pb87HY4CtoqC0EWJWweRExr6701HrZCIYICY0BvMkycS1kED6TkGraBqYhjIzMZisRzkM6YFYA_dshqXuTuJ6HGCq1B93g2KZwdpNonwkfa2IxpKcQuYd3wqqxlIMdCGA-qCzW7V6ARhRpRLFagkV1ytGxSNvQbHwmLTmfq1RxSsDx81Kz3Sr_LF4UAJWMuQeBXp3AFPx-eqOjcFYtK8URyJKxj4d7n3r1P1hsnNcb_HpDV-WzhDgHlzE2PfDl-5j2ydjL8__cfXi8uR9e9enK_APvoAVU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iBxURn_g2giehbtqmzfaooqyP9eIKewtJk8CK29bt7sF_70wfC6J48NpM0pJJJ18mM98Qcg4oORHaKE-o0MABxXdeNzTW69rAV7GfGpWiQ7__HPde-cMwGi6QmzYXBsMqG9tf2_TKWjdPOs1sdorRqPPCQiGwUgSSngUJntuXAA0IrN9wP7yem-M4qQm-QdpD8fZqswryStW4ofGMLhnmqPy-Oa0VqoQpc3Wtix9mu9qL7jbIegMi6VX9nZtkwWZbZLU_Z2AttwkWpKN5YSeNs4-OKy5-W9Lc0Ws7AVRoRxkt8vdPTEyGRUgBvlJYiehhoDASRVZwjbTB1H7UhOC0nGn029BpTjFFE8OM6gYYFLuMAYrvkMHd7eCm5zVlFrw0jNnUC5lSxjmjHZyFAkQFWoPiRBBbm7AQGoTwFZwDEx5FWqQi4LHzQTplhgMA2SWLWZ7ZPUK14UqB8vFyklvTTZSLuQuVNilTgvN9wtrplWlDQY6VMN5lG2v2JkEjEjUiWSRBI_vkYt6lqPk3_hLmrc7kt0UkYX_4q9vJN_3OXxQAlox8AQJnrcIl_H14paIym89K6cfCR8Y6Fhz8792nZLk36D_Jp_vnx0OyUnusMRj4iCxOJzN7DJBnqk-qJf0FyDUAUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+operational+matrices+of+Bernstein+polynomials+for+solving+the+parabolic+equation+subject+to+specification+of+the+mass&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Yousefi%2C+S.A.&rft.au=Behroozifar%2C+M.&rft.au=Dehghan%2C+Mehdi&rft.date=2011-07-01&rft.issn=0377-0427&rft.volume=235&rft.issue=17&rft.spage=5272&rft.epage=5283&rft_id=info:doi/10.1016%2Fj.cam.2011.05.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2011_05_038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |