Deep Learning-based DSM Generation from Dual-Aspect SAR Data
Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic Aperture Radar (SAR) imagery. In order to...
Saved in:
Published in | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-2-2024; pp. 193 - 200 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
10.06.2024
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 2194-9050 2194-9042 2194-9050 |
DOI | 10.5194/isprs-annals-X-2-2024-193-2024 |
Cover
Loading…
Abstract | Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic Aperture Radar (SAR) imagery. In order to mitigate occlusion effects caused by the side-looking nature of SAR remote sensing, two SAR images from opposing aspects are leveraged and processed in an end-to-end deep neural network. The presented approach is the first of its kind to implicitly handle the transition from the SAR-specific slant range geometry to a ground-based mapping geometry within the model architecture. Comparative experiments demonstrate the superiority of the dual-aspect fusion over single-image methods in terms of reconstruction quality and geolocation accuracy. Notably, the model exhibits robust performance across diverse acquisition modes and geometries, showcasing its generalizability and suitability for height mapping applications. The study’s findings underscore the potential of deep learning-driven SAR techniques in generating high-quality urban surface models efficiently and economically. |
---|---|
AbstractList | Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic Aperture Radar (SAR) imagery. In order to mitigate occlusion effects caused by the side-looking nature of SAR remote sensing, two SAR images from opposing aspects are leveraged and processed in an end-to-end deep neural network. The presented approach is the first of its kind to implicitly handle the transition from the SAR-specific slant range geometry to a ground-based mapping geometry within the model architecture. Comparative experiments demonstrate the superiority of the dual-aspect fusion over single-image methods in terms of reconstruction quality and geolocation accuracy. Notably, the model exhibits robust performance across diverse acquisition modes and geometries, showcasing its generalizability and suitability for height mapping applications. The study's findings underscore the potential of deep learning-driven SAR techniques in generating high-quality urban surface models efficiently and economically. |
Author | Recla, Michael Schmitt, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Recla fullname: Recla, Michael – sequence: 2 givenname: Michael surname: Schmitt fullname: Schmitt, Michael |
BookMark | eNpNUV1LAzEQDKLgV__DgeBbdJNc7hIQobR-FCqCVehb2Msl5Uq9nMn1wX_vtRXxaYdlmNmdOSfHbWgdIdcMbiTT-W2Tupgoti1uEl1STjnwnDIt9uCInPGBRTVIOP6HT8kopTUAsFJqrfkZuZs612Vzh7Ft2hWtMLk6my5esifXuoh9E9rMx_CZTbe4oePUOdtni_FbNsUeL8mJH_zd6HdekI_Hh_fJM52_Ps0m4zm1ooCecluV3KvhOO4Feo8WGBTACmeZLWoGTFd17X3FrUYhWIFFbaXNVZmXUhaVuCCzg24dcG262Hxi_DYBG7NfhLgyGPvGbpwBzmWJquLc-lwhUwoq7UEpVw25CDZoXR20uhi-ti71Zh22cRejEVBIxUDIfGDdH1g2hpSi83-uDMyuALMvwBwKMEvDzS53M_y4B-IHdpV8sA |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/isprs-annals-X-2-2024-193-2024 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 2194-9050 |
EndPage | 200 |
ExternalDocumentID | oai_doaj_org_article_02257a8b22cf48a1880b9f088eb02431 10_5194_isprs_annals_X_2_2024_193_2024 |
GroupedDBID | 5VS 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 L6V LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RKB TUS ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c360t-2cb72f81932f3affac0106016ec1c6d1019bddffb2c9a3316a6dc5c48747556b3 |
IEDL.DBID | DOA |
ISSN | 2194-9050 2194-9042 |
IngestDate | Wed Aug 27 01:31:37 EDT 2025 Fri Jul 25 10:14:53 EDT 2025 Tue Jul 01 01:58:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-2cb72f81932f3affac0106016ec1c6d1019bddffb2c9a3316a6dc5c48747556b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/02257a8b22cf48a1880b9f088eb02431 |
PQID | 3065810354 |
PQPubID | 2037681 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02257a8b22cf48a1880b9f088eb02431 proquest_journals_3065810354 crossref_primary_10_5194_isprs_annals_X_2_2024_193_2024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-10 |
PublicationDateYYYYMMDD | 2024-06-10 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
SSID | ssj0001759992 ssib044742267 |
Score | 2.2726305 |
Snippet | Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 193 |
SubjectTerms | Artificial neural networks Deep learning Image quality Image reconstruction Machine learning Mapping Occlusion Radar imaging Remote sensing Synthetic aperture radar |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9swEBZtCqU9LNsXm2520aH0JmLLsmRDoaT1pkthe2iakpvQM-SSpHHy_zsj27sshd6EjECM5vFp5PmGkA8xr4zkXjHOA6ZusorZ3HLGo1M-Sh9cemi_-yFvl-L7qlz1Cbe2_61y8InJUfudwxz5FDucV3lWlOLz_g_DrlH4utq30HhKnuUQaVDDq_m3QZ-EUFgnqh5yLqoEPIQPC2CngtWgsM_JR_AbAGPEdNPuDy0zibeYrRjsF-IXA4CTBo_iVqL3_8d7p5A0PydnPZaks-7wX5EnYfuavPy9aU_dbPuGfGpC2NOeRHXNMGZ52izuaEc3jadCscKENrCGzVLdJV3MftLGHM1bspzf_Pp6y_qGCcwVMjsy7qzisUJMFgsTo3F44wNQF1zupAfrq633MVrualMUuTTSu9LBnUWospS2eEdG2902XBDqjJHW2cxilsPXee1LwAIKzd0La_2YqEEcet_xYmi4T6AgdRKk7gSpV5prlJ-GXaXBmHxB6d2vQn7rNLE7rHVvLhqQRalMZTl3UVQGSeNsHcEjBosUivmYTAbZ697oWv2gIu____mSvEhniy2IsgkZHQ-ncAXY4mivkwL9BXGix_s priority: 102 providerName: ProQuest |
Title | Deep Learning-based DSM Generation from Dual-Aspect SAR Data |
URI | https://www.proquest.com/docview/3065810354 https://doaj.org/article/02257a8b22cf48a1880b9f088eb02431 |
Volume | X-2-2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SBEpzKOmLbJsuOoTeRGxZlmzoZZPdTShsCHmxN6FnyWW7xJtrf3tnZKdNyaGXXowQyBbfaDTfSNYngMNUNlaJoLkQkZZuioa70gkuktchqRB93mhfnKuzG_ltWS-fXPVF_4T18sA9cEcYY2ptGyeET7KxJB_m2oS-ER2J6eXEB2Pek2QKR5KUmk6I6j-rLbpGJkRbCuihkrc4VF_CF5wxkMDIo7tufd9xmxWL-ZJjT_HVHKlNLvwVsbKw_7N5Owej-R68Hlgkm_S9fwNbcfUWdm_vuoe-tnsHX6cxrtkgn_qdU7QKbHq1YL3QNNmD0dkSNsU2fJJPXLKrySWb2o19Dzfz2fXJGR-uSuC-UsWGC--0SA2xsVTZlKynXA_pXPSlVwH9rnUhpOSEb21Vlcqq4GuP2YrUda1c9QG2Vz9WcR-Yt1Y57wpH6xuhLdtQIwvQ5OhBOhdGoB_hMOteEcNgJkFAmgyk6YE0SyMM4WewV7kwgmNC73crUrbOFWhvM9jb_MveIzh4xN4M7taZiohUWVS1_Pg_vvEJXuURQFcUFQewvbl_iJ-Re2zcGF4089Mx7BzPzi8ux3nQ4XPxc_YLzjHTIA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEE-xpYAPwM1q4jh2IoHQQli2tNsDbdHejJ9VL7vbzVaIP8VvZMZJqBASt94sR46sz-OZz2PPDCGvYl4Zyb1inAd03WQVs7nljEenfJQ-uHTRPjuS01PxZV7Ot8ivIRYGn1UOOjEpar906CPfwwrnVZ4VpXi_umBYNQpvV4cSGp1YHISfP-DI1r7bb2B9X3M--XTyccr6qgLMFTLbMO6s4rFC4hILE6NxeCwC5hNc7qQHEa2t9zFa7mpTFLk00rvSAbEXqiylLeC_N8hNURQ1PiGsJp8H-RVCYVyquvLxqBL4F15kgF4QrIYNcou8AT0FtEnsnberdctMypPM5gzwAXvJYF6p8ZedTOUE_rEWyQRO7pN7PXel407YHpCtsHhI7n47by-73vYReduEsKJ90tYzhjbS0-Z4Rrv01igFFCNaaANj2DjFedLj8VfamI15TE6vBconZHuxXISnhDpjpHU2s-hV8XVe-xK4h0L14oW1fkTUAIdedXk4NJxfEEidgNQdkHquuUb8NMwqNUbkA6L3ZxTm004dy_WZ7renBiZTKlNZzl0UlcEkdbaOoIGDxZSN-YjsDtjrfpO3-kokd_7_-SW5PT2ZHerD_aODZ-ROWmcsf5Ttku3N-jI8B16zsS-SMFHy_bql9zfcxwVG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+DSM+Generation+from+Dual-Aspect+SAR+Data&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Recla%2C+Michael&rft.au=Schmitt%2C+Michael&rft.date=2024-06-10&rft.issn=2194-9050&rft.eissn=2194-9050&rft.volume=X-2-2024&rft.spage=193&rft.epage=200&rft_id=info:doi/10.5194%2Fisprs-annals-X-2-2024-193-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_isprs_annals_X_2_2024_193_2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9050&client=summon |