Deep Learning-based DSM Generation from Dual-Aspect SAR Data

Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic Aperture Radar (SAR) imagery. In order to...

Full description

Saved in:
Bibliographic Details
Published inISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. X-2-2024; pp. 193 - 200
Main Authors Recla, Michael, Schmitt, Michael
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 10.06.2024
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2194-9050
2194-9042
2194-9050
DOI10.5194/isprs-annals-X-2-2024-193-2024

Cover

Loading…
Abstract Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic Aperture Radar (SAR) imagery. In order to mitigate occlusion effects caused by the side-looking nature of SAR remote sensing, two SAR images from opposing aspects are leveraged and processed in an end-to-end deep neural network. The presented approach is the first of its kind to implicitly handle the transition from the SAR-specific slant range geometry to a ground-based mapping geometry within the model architecture. Comparative experiments demonstrate the superiority of the dual-aspect fusion over single-image methods in terms of reconstruction quality and geolocation accuracy. Notably, the model exhibits robust performance across diverse acquisition modes and geometries, showcasing its generalizability and suitability for height mapping applications. The study’s findings underscore the potential of deep learning-driven SAR techniques in generating high-quality urban surface models efficiently and economically.
AbstractList Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic Aperture Radar (SAR) imagery. In order to mitigate occlusion effects caused by the side-looking nature of SAR remote sensing, two SAR images from opposing aspects are leveraged and processed in an end-to-end deep neural network. The presented approach is the first of its kind to implicitly handle the transition from the SAR-specific slant range geometry to a ground-based mapping geometry within the model architecture. Comparative experiments demonstrate the superiority of the dual-aspect fusion over single-image methods in terms of reconstruction quality and geolocation accuracy. Notably, the model exhibits robust performance across diverse acquisition modes and geometries, showcasing its generalizability and suitability for height mapping applications. The study's findings underscore the potential of deep learning-driven SAR techniques in generating high-quality urban surface models efficiently and economically.
Author Recla, Michael
Schmitt, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Recla
  fullname: Recla, Michael
– sequence: 2
  givenname: Michael
  surname: Schmitt
  fullname: Schmitt, Michael
BookMark eNpNUV1LAzEQDKLgV__DgeBbdJNc7hIQobR-FCqCVehb2Msl5Uq9nMn1wX_vtRXxaYdlmNmdOSfHbWgdIdcMbiTT-W2Tupgoti1uEl1STjnwnDIt9uCInPGBRTVIOP6HT8kopTUAsFJqrfkZuZs612Vzh7Ft2hWtMLk6my5esifXuoh9E9rMx_CZTbe4oePUOdtni_FbNsUeL8mJH_zd6HdekI_Hh_fJM52_Ps0m4zm1ooCecluV3KvhOO4Feo8WGBTACmeZLWoGTFd17X3FrUYhWIFFbaXNVZmXUhaVuCCzg24dcG262Hxi_DYBG7NfhLgyGPvGbpwBzmWJquLc-lwhUwoq7UEpVw25CDZoXR20uhi-ti71Zh22cRejEVBIxUDIfGDdH1g2hpSi83-uDMyuALMvwBwKMEvDzS53M_y4B-IHdpV8sA
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-annals-X-2-2024-193-2024
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9050
EndPage 200
ExternalDocumentID oai_doaj_org_article_02257a8b22cf48a1880b9f088eb02431
10_5194_isprs_annals_X_2_2024_193_2024
GroupedDBID 5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
L6V
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RKB
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c360t-2cb72f81932f3affac0106016ec1c6d1019bddffb2c9a3316a6dc5c48747556b3
IEDL.DBID DOA
ISSN 2194-9050
2194-9042
IngestDate Wed Aug 27 01:31:37 EDT 2025
Fri Jul 25 10:14:53 EDT 2025
Tue Jul 01 01:58:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-2cb72f81932f3affac0106016ec1c6d1019bddffb2c9a3316a6dc5c48747556b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/02257a8b22cf48a1880b9f088eb02431
PQID 3065810354
PQPubID 2037681
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_02257a8b22cf48a1880b9f088eb02431
proquest_journals_3065810354
crossref_primary_10_5194_isprs_annals_X_2_2024_193_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-10
PublicationDateYYYYMMDD 2024-06-10
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-10
  day: 10
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001759992
ssib044742267
Score 2.2726305
Snippet Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 193
SubjectTerms Artificial neural networks
Deep learning
Image quality
Image reconstruction
Machine learning
Mapping
Occlusion
Radar imaging
Remote sensing
Synthetic aperture radar
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9swEBZtCqU9LNsXm2520aH0JmLLsmRDoaT1pkthe2iakpvQM-SSpHHy_zsj27sshd6EjECM5vFp5PmGkA8xr4zkXjHOA6ZusorZ3HLGo1M-Sh9cemi_-yFvl-L7qlz1Cbe2_61y8InJUfudwxz5FDucV3lWlOLz_g_DrlH4utq30HhKnuUQaVDDq_m3QZ-EUFgnqh5yLqoEPIQPC2CngtWgsM_JR_AbAGPEdNPuDy0zibeYrRjsF-IXA4CTBo_iVqL3_8d7p5A0PydnPZaks-7wX5EnYfuavPy9aU_dbPuGfGpC2NOeRHXNMGZ52izuaEc3jadCscKENrCGzVLdJV3MftLGHM1bspzf_Pp6y_qGCcwVMjsy7qzisUJMFgsTo3F44wNQF1zupAfrq633MVrualMUuTTSu9LBnUWospS2eEdG2902XBDqjJHW2cxilsPXee1LwAIKzd0La_2YqEEcet_xYmi4T6AgdRKk7gSpV5prlJ-GXaXBmHxB6d2vQn7rNLE7rHVvLhqQRalMZTl3UVQGSeNsHcEjBosUivmYTAbZ697oWv2gIu____mSvEhniy2IsgkZHQ-ncAXY4mivkwL9BXGix_s
  priority: 102
  providerName: ProQuest
Title Deep Learning-based DSM Generation from Dual-Aspect SAR Data
URI https://www.proquest.com/docview/3065810354
https://doaj.org/article/02257a8b22cf48a1880b9f088eb02431
Volume X-2-2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SBEpzKOmLbJsuOoTeRGxZlmzoZZPdTShsCHmxN6FnyWW7xJtrf3tnZKdNyaGXXowQyBbfaDTfSNYngMNUNlaJoLkQkZZuioa70gkuktchqRB93mhfnKuzG_ltWS-fXPVF_4T18sA9cEcYY2ptGyeET7KxJB_m2oS-ER2J6eXEB2Pek2QKR5KUmk6I6j-rLbpGJkRbCuihkrc4VF_CF5wxkMDIo7tufd9xmxWL-ZJjT_HVHKlNLvwVsbKw_7N5Owej-R68Hlgkm_S9fwNbcfUWdm_vuoe-tnsHX6cxrtkgn_qdU7QKbHq1YL3QNNmD0dkSNsU2fJJPXLKrySWb2o19Dzfz2fXJGR-uSuC-UsWGC--0SA2xsVTZlKynXA_pXPSlVwH9rnUhpOSEb21Vlcqq4GuP2YrUda1c9QG2Vz9WcR-Yt1Y57wpH6xuhLdtQIwvQ5OhBOhdGoB_hMOteEcNgJkFAmgyk6YE0SyMM4WewV7kwgmNC73crUrbOFWhvM9jb_MveIzh4xN4M7taZiohUWVS1_Pg_vvEJXuURQFcUFQewvbl_iJ-Re2zcGF4089Mx7BzPzi8ux3nQ4XPxc_YLzjHTIA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEE-xpYAPwM1q4jh2IoHQQli2tNsDbdHejJ9VL7vbzVaIP8VvZMZJqBASt94sR46sz-OZz2PPDCGvYl4Zyb1inAd03WQVs7nljEenfJQ-uHTRPjuS01PxZV7Ot8ivIRYGn1UOOjEpar906CPfwwrnVZ4VpXi_umBYNQpvV4cSGp1YHISfP-DI1r7bb2B9X3M--XTyccr6qgLMFTLbMO6s4rFC4hILE6NxeCwC5hNc7qQHEa2t9zFa7mpTFLk00rvSAbEXqiylLeC_N8hNURQ1PiGsJp8H-RVCYVyquvLxqBL4F15kgF4QrIYNcou8AT0FtEnsnberdctMypPM5gzwAXvJYF6p8ZedTOUE_rEWyQRO7pN7PXel407YHpCtsHhI7n47by-73vYReduEsKJ90tYzhjbS0-Z4Rrv01igFFCNaaANj2DjFedLj8VfamI15TE6vBconZHuxXISnhDpjpHU2s-hV8XVe-xK4h0L14oW1fkTUAIdedXk4NJxfEEidgNQdkHquuUb8NMwqNUbkA6L3ZxTm004dy_WZ7renBiZTKlNZzl0UlcEkdbaOoIGDxZSN-YjsDtjrfpO3-kokd_7_-SW5PT2ZHerD_aODZ-ROWmcsf5Ttku3N-jI8B16zsS-SMFHy_bql9zfcxwVG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-based+DSM+Generation+from+Dual-Aspect+SAR+Data&rft.jtitle=ISPRS+annals+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences&rft.au=Recla%2C+Michael&rft.au=Schmitt%2C+Michael&rft.date=2024-06-10&rft.issn=2194-9050&rft.eissn=2194-9050&rft.volume=X-2-2024&rft.spage=193&rft.epage=200&rft_id=info:doi/10.5194%2Fisprs-annals-X-2-2024-193-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_isprs_annals_X_2_2024_193_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9050&client=summon