Automatic infrared image recognition method for substation equipment based on a deep self-attention network and multi-factor similarity calculation

Infrared image recognition plays an important role in the inspection of power equipment. Existing technologies dedicated to this purpose often require manually selected features, which are not transferable and interpretable, and have limited training data. To address these limitations, this paper pr...

Full description

Saved in:
Bibliographic Details
Published inGlobal Energy Interconnection Vol. 5; no. 4; pp. 397 - 408
Main Authors Li, Yaocheng, Xu, Yongpeng, Xu, Mingkai, Wang, Siyuan, Xie, Zhicheng, Li, Zhe, Jiang, Xiuchen
Format Journal Article
LanguageEnglish
Published KeAi Communications Co., Ltd 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrared image recognition plays an important role in the inspection of power equipment. Existing technologies dedicated to this purpose often require manually selected features, which are not transferable and interpretable, and have limited training data. To address these limitations, this paper proposes an automatic infrared image recognition framework, which includes an object recognition module based on a deep self-attention network and a temperature distribution identification module based on a multi-factor similarity calculation. First, the features of an input image are extracted and embedded using a multi-head attention encoding–decoding mechanism. Thereafter, the embedded features are used to predict the equipment component category and location. In the located area, preliminary segmentation is performed. Finally, similar areas are gradually merged, and the temperature distribution of the equipment is obtained to identify a fault. Our experiments indicate that the proposed method demonstrates significantly improved accuracy compared with other related methods and, hence, provides a good reference for the automation of power equipment inspection.
AbstractList Infrared image recognition plays an important role in the inspection of power equipment. Existing technologies dedicated to this purpose often require manually selected features, which are not transferable and interpretable, and have limited training data. To address these limitations, this paper proposes an automatic infrared image recognition framework, which includes an object recognition module based on a deep self-attention network and a temperature distribution identification module based on a multi-factor similarity calculation. First, the features of an input image are extracted and embedded using a multi-head attention encoding–decoding mechanism. Thereafter, the embedded features are used to predict the equipment component category and location. In the located area, preliminary segmentation is performed. Finally, similar areas are gradually merged, and the temperature distribution of the equipment is obtained to identify a fault. Our experiments indicate that the proposed method demonstrates significantly improved accuracy compared with other related methods and, hence, provides a good reference for the automation of power equipment inspection.
Author Li, Zhe
Xie, Zhicheng
Jiang, Xiuchen
Li, Yaocheng
Xu, Yongpeng
Wang, Siyuan
Xu, Mingkai
Author_xml – sequence: 1
  givenname: Yaocheng
  surname: Li
  fullname: Li, Yaocheng
– sequence: 2
  givenname: Yongpeng
  surname: Xu
  fullname: Xu, Yongpeng
– sequence: 3
  givenname: Mingkai
  surname: Xu
  fullname: Xu, Mingkai
– sequence: 4
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
– sequence: 5
  givenname: Zhicheng
  surname: Xie
  fullname: Xie, Zhicheng
– sequence: 6
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
– sequence: 7
  givenname: Xiuchen
  surname: Jiang
  fullname: Jiang, Xiuchen
BookMark eNp9kc1u3CAUhVmkUtI0T5ANL2CXH4PxMor6EylSN-0a3cGXKVNspoBV5Tn6wmVmmk0XXSEd7vkunPOWXK1pRULuOes54_r9od_HhKEXTIiemZ4xfUVuBJt0pzgfr8ldKQfGmDBKGyVvyO-HraYFanA0rD5DxpmGBfZIM7q0X0MNaaUL1u9ppj5lWrZdqXBW8ecWjguule6gNF-TgM6IR1ow-g5qbXenwRXrr5R_UFhnumyxhs6DqydYWEKEHOoLdRDdFs_gd-SNh1jw7u95S759_PD18XP3_OXT0-PDc-ekZrUT0nnFuAE_SDXt1OCYGbnX3HAPg_KeqRbDJMTsDZ-M1MLrERzOhstZylHekqcLd05wsMfc_p1fbIJgz0LKewu5JRPRNu40jX5ybcewA2MUKj0wGDmC5Ggaa7qwXE6lZPTWhUtMNUOIljN7Ksge7LkgeyrIMmNbQc0r__G-vuV_rj9j-53J
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3264707
crossref_primary_10_3390_app13116817
crossref_primary_10_1080_10589759_2024_2436114
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.gloei.2022.08.006
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 408
ExternalDocumentID oai_doaj_org_article_71f997f9cc084ba885e5640a71ea31e8
10_1016_j_gloei_2022_08_006
GroupedDBID -03
-0C
-SC
-S~
0R~
5VR
92M
9D9
9DC
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ABDBF
ABMAC
ACUHS
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AFUIB
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CAJEC
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
M41
OK1
Q--
ROL
RT3
SSZ
T8S
TCJ
TGT
U1F
U1G
U5C
U5M
ID FETCH-LOGICAL-c360t-23cf5018af4359b54c0871f6181fa45ff05202922df8198362f67aced813d3373
IEDL.DBID DOA
ISSN 2096-5117
IngestDate Wed Aug 27 01:20:03 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Tue Jul 01 00:19:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-23cf5018af4359b54c0871f6181fa45ff05202922df8198362f67aced813d3373
OpenAccessLink https://doaj.org/article/71f997f9cc084ba885e5640a71ea31e8
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_71f997f9cc084ba885e5640a71ea31e8
crossref_citationtrail_10_1016_j_gloei_2022_08_006
crossref_primary_10_1016_j_gloei_2022_08_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-00
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-00
PublicationDecade 2020
PublicationTitle Global Energy Interconnection
PublicationYear 2022
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
SSID ssj0002856853
Score 2.2328308
Snippet Infrared image recognition plays an important role in the inspection of power equipment. Existing technologies dedicated to this purpose often require manually...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 397
SubjectTerms Deep self-attention network
Infrared image intelligent recognition
Multi-factor similarity calculation
Substation equipment
Title Automatic infrared image recognition method for substation equipment based on a deep self-attention network and multi-factor similarity calculation
URI https://doaj.org/article/71f997f9cc084ba885e5640a71ea31e8
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWCZMlSNEiKpk2CGzKGqESKHxrttoYRIJliIJtA8aOQYctpbP-S_OEcSdnw1C5ZKUogeAe-O-npPUJug6pl6WSg3jNDq9IIalStaIutRMuFbUMym3h4lNNZdf8sng-sviInLMsD5437ocpQ1yrU1ha6ao3WwgtZFUaV3vDSp998EfMOmql5emUkpE4SlHhRUqwq1E5yKJG7_ixWvsPukLEk4Bn9jg5g6UC9P8HM5DP5NNSHMMrrOiNHvj8nb6PtZpW0VQET4jVyxqFb4kkAe_7PqodsBg1YhcIaj4P8jR38322XOEEQAcsBDhlw3r_A2i8CjfKaifAIfSaEg-kdJJohzV48sO6WHfa_WK4DBtQOfl8XZDb5_fRzSgc3BWq5LDaUcRuiep8JWCHVrahwQ3FzJUJ8MJUIITJiWM2YC1glaAS2IJWx3umSO84V_0KO-1XvvxJwtdUFC5VhXFWWa8MR5zzDzkpoV5bukrDdZjZ2kBqPjheLZscpmzcpAk2MQBN9MAt5Se72N71kpY1_Tx_HKO2nRpnsNIDJ0wzJ0_wveb59xEO-k9O4rswKvCLHm9etv8ZKZdPekJPR-Nd4cpOS8x0oguiG
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+infrared+image+recognition+method+for+substation+equipment+based+on+a+deep+self-attention+network+and+multi-factor+similarity+calculation&rft.jtitle=Global+Energy+Interconnection&rft.au=Li%2C+Yaocheng&rft.au=Xu%2C+Yongpeng&rft.au=Xu%2C+Mingkai&rft.au=Wang%2C+Siyuan&rft.date=2022-08-01&rft.issn=2096-5117&rft.volume=5&rft.issue=4&rft.spage=397&rft.epage=408&rft_id=info:doi/10.1016%2Fj.gloei.2022.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gloei_2022_08_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-5117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-5117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-5117&client=summon