Solving parametric PDE problems with artificial neural networks

The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few fea...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 32; no. 3; pp. 421 - 435
Main Authors KHOO, YUEHAW, LU, JIANFENG, YING, LEXING
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few features on the space of the coefficient fields. Based on such observation, we propose using neural network to parameterise the physical quantity of interest as a function of input coefficients. The representability of such quantity using a neural network can be justified by viewing the neural network as performing time evolution to find the solutions to the PDE. We further demonstrate the simplicity and accuracy of the approach through notable examples of PDEs in engineering and physics.
AbstractList The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few features on the space of the coefficient fields. Based on such observation, we propose using neural network to parameterise the physical quantity of interest as a function of input coefficients. The representability of such quantity using a neural network can be justified by viewing the neural network as performing time evolution to find the solutions to the PDE. We further demonstrate the simplicity and accuracy of the approach through notable examples of PDEs in engineering and physics.
Author KHOO, YUEHAW
YING, LEXING
LU, JIANFENG
Author_xml – sequence: 1
  givenname: YUEHAW
  orcidid: 0000-0002-8472-8984
  surname: KHOO
  fullname: KHOO, YUEHAW
  email: ykhoo@uchicago.edu
  organization: 1Department of Statistics, University of Chicago, IL 60615, USA, email: ykhoo@uchicago.edu
– sequence: 2
  givenname: JIANFENG
  surname: LU
  fullname: LU, JIANFENG
  email: jianfeng@math.duke.edu
  organization: 2Department of Mathematics, Department of Chemistry and Department of Physics, Duke University, Durham, NC 27708, USA, email: jianfeng@math.duke.edu
– sequence: 3
  givenname: LEXING
  surname: YING
  fullname: YING, LEXING
  email: lexing@stanford.edu
  organization: 3Department of Mathematics and ICME, Stanford University, Stanford, CA 94305, USA, email: lexing@stanford.edu
BookMark eNp9kMtKAzEUhoNUsK0-gLsB16O5TJLJSqTWCxQUqushk2Rq6sykJqnFtze1BUHRszlw_v87txEY9K43AJwieI4g4hdzKCjjAlMMU6ASH4AhKpjIiwLTARhu5XyrH4FRCMtkIZCLIbicu_bd9otsJb3sTPRWZY_X02zlXd2aLmQbG18y6aNtrLKyzXqz9l8pbpx_DcfgsJFtMCf7PAbPN9OnyV0-e7i9n1zNckUYjDlGdQGFgtpQVWioNasJ09SokqtSl5xyzASHmhaoSUWoComJrDU2qFSilmQMznZ902JvaxNitXRr36eRVboZE4gYLJOL71zKuxC8aSplo4zW9dFL21YIVttvVb--lUj0g1x520n_8S9D9ozsam_1wnwv9Tf1CWeqfJU
CitedBy_id crossref_primary_10_1016_j_cma_2021_114474
crossref_primary_10_1049_cth2_12572
crossref_primary_10_1103_PhysRevA_104_063316
crossref_primary_10_1073_pnas_2318106121
crossref_primary_10_1137_24M1648703
crossref_primary_10_1063_5_0070890
crossref_primary_10_1016_j_cma_2025_117757
crossref_primary_10_1016_j_jcp_2024_113089
crossref_primary_10_2139_ssrn_4116290
crossref_primary_10_1002_nme_7228
crossref_primary_10_1016_j_jcp_2024_112791
crossref_primary_10_1016_j_camwa_2024_04_006
crossref_primary_10_1016_j_ijmecsci_2024_109801
crossref_primary_10_2118_209223_PA
crossref_primary_10_1016_j_camwa_2025_02_022
crossref_primary_10_1109_TCAD_2024_3382614
crossref_primary_10_3390_ai2030022
crossref_primary_10_1007_s42967_023_00317_2
crossref_primary_10_1016_j_jcp_2024_112944
crossref_primary_10_1016_j_jcp_2022_111579
crossref_primary_10_2118_217441_PA
crossref_primary_10_1007_s10614_023_10459_3
crossref_primary_10_1016_j_array_2023_100287
crossref_primary_10_1007_s10483_023_2992_6
crossref_primary_10_1007_s10915_022_01844_5
crossref_primary_10_1007_s11071_024_09967_0
crossref_primary_10_1109_OJAP_2024_3412609
crossref_primary_10_1016_j_acha_2024_101717
crossref_primary_10_1016_j_cma_2023_116394
crossref_primary_10_1140_epjd_s10053_024_00841_7
crossref_primary_10_3390_w15173140
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1137_21M1468383
crossref_primary_10_1017_S0956792521000085
crossref_primary_10_1109_ACCESS_2022_3148401
crossref_primary_10_1007_s00500_023_08602_1
crossref_primary_10_1016_j_compstruct_2023_117197
crossref_primary_10_1016_j_jcp_2022_111646
crossref_primary_10_1016_j_jcp_2024_113623
crossref_primary_10_1063_5_0203546
crossref_primary_10_1016_j_cma_2024_116983
crossref_primary_10_1016_j_jcp_2024_113188
crossref_primary_10_1038_s41598_024_53185_y
crossref_primary_10_1007_s10614_024_10792_1
crossref_primary_10_1016_j_physd_2023_133987
crossref_primary_10_1137_22M1529427
crossref_primary_10_1016_j_fraope_2023_100039
crossref_primary_10_1016_j_cma_2024_117274
crossref_primary_10_3390_s23063357
crossref_primary_10_1111_mice_13312
crossref_primary_10_1007_s10596_023_10211_8
crossref_primary_10_1007_s10915_024_02535_z
crossref_primary_10_1111_mafi_12405
crossref_primary_10_26634_jmat_13_1_20383
crossref_primary_10_1016_j_jcp_2024_113217
crossref_primary_10_3390_fractalfract8020091
crossref_primary_10_1016_j_jcp_2023_112084
crossref_primary_10_2139_ssrn_4159429
crossref_primary_10_1115_1_4055918
crossref_primary_10_1016_j_eml_2023_102110
crossref_primary_10_1016_j_physletb_2023_138088
crossref_primary_10_1186_s13662_022_03702_y
crossref_primary_10_1073_pnas_2310142120
crossref_primary_10_3390_appliedmath5010027
crossref_primary_10_3934_mine_2023096
crossref_primary_10_1016_j_jcp_2022_111309
crossref_primary_10_1002_asmb_2711
crossref_primary_10_1007_s10915_024_02527_z
crossref_primary_10_1016_j_camwa_2023_03_015
crossref_primary_10_1016_j_jcp_2023_112638
crossref_primary_10_1016_j_jcp_2024_112917
crossref_primary_10_1103_PhysRevE_106_025305
crossref_primary_10_1007_s43670_022_00040_8
crossref_primary_10_1093_gji_ggae342
crossref_primary_10_3390_mca28040079
crossref_primary_10_1016_j_jcp_2023_111944
crossref_primary_10_1109_TEMC_2024_3474795
crossref_primary_10_1016_j_entcom_2023_100631
crossref_primary_10_1007_s42967_023_00293_7
crossref_primary_10_1007_s42985_021_00100_z
crossref_primary_10_1103_PhysRevE_106_025311
crossref_primary_10_1016_j_cma_2021_114562
crossref_primary_10_1137_23M1566935
crossref_primary_10_1007_s11424_024_3252_7
crossref_primary_10_1137_21M1445363
crossref_primary_10_1016_j_neucom_2023_126826
crossref_primary_10_1016_j_neunet_2022_06_040
crossref_primary_10_1137_21M1433514
crossref_primary_10_1016_j_gexplo_2024_107478
crossref_primary_10_1016_j_physd_2024_134129
crossref_primary_10_12677_AAM_2022_1112921
crossref_primary_10_1016_j_neunet_2023_07_012
crossref_primary_10_1016_j_jcp_2022_111536
crossref_primary_10_2139_ssrn_3981933
crossref_primary_10_1137_22M1488405
crossref_primary_10_1137_17M1154382
crossref_primary_10_1038_s41598_023_44541_5
crossref_primary_10_1080_01630563_2025_2451929
crossref_primary_10_1016_j_finel_2022_103904
crossref_primary_10_1007_s10915_022_02015_2
crossref_primary_10_1016_j_chaos_2024_115134
crossref_primary_10_1002_jcc_27443
crossref_primary_10_1063_5_0175065
crossref_primary_10_3390_a17100446
crossref_primary_10_1016_j_jcp_2022_111202
crossref_primary_10_1007_s00365_021_09541_6
crossref_primary_10_3389_fams_2022_1021069
crossref_primary_10_1007_s10915_023_02173_x
crossref_primary_10_3390_en17133097
crossref_primary_10_1090_memo_1410
crossref_primary_10_1109_TED_2024_3379953
crossref_primary_10_1016_j_jcp_2023_112031
crossref_primary_10_1002_nme_7207
crossref_primary_10_1111_insr_12554
crossref_primary_10_1016_j_cnsns_2024_108556
crossref_primary_10_2139_ssrn_4196487
crossref_primary_10_1016_j_jcp_2022_111713
crossref_primary_10_1007_s00033_024_02306_8
crossref_primary_10_1109_ACCESS_2022_3153056
crossref_primary_10_3390_a16020124
crossref_primary_10_1016_j_cma_2022_115523
crossref_primary_10_1016_j_jcp_2023_112549
crossref_primary_10_1016_j_jcp_2024_113379
crossref_primary_10_1016_j_jcp_2022_111313
Cites_doi 10.1016/j.cma.2004.05.027
10.1017/S0962492917000083
10.1137/S1064827501387826
10.1109/72.712178
10.1137/130913249
10.1109/CVPR.2016.90
10.2307/2371268
10.1126/science.aag2302
10.1007/s40687-018-0160-2
10.1016/j.neucom.2014.11.058
10.1016/j.cma.2008.11.007
10.1038/nature14539
10.1016/j.neunet.2014.09.003
10.1126/science.1127647
10.1103/PhysRevB.94.165134
ContentType Journal Article
Copyright The Author(s), 2020. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2020. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792520000182
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 435
ExternalDocumentID 10_1017_S0956792520000182
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WXY
WYP
XFK
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACAJB
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-21b409c0de5c4d0dd6b36d5ec87c8d875726970d541fec80c4a23abd2e18c9ba3
IEDL.DBID BENPR
ISSN 0956-7925
IngestDate Sun Jul 13 04:39:08 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Mar 13 05:54:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords uncertainty quantification
parametric PDE
65Nxx
Neural-network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-21b409c0de5c4d0dd6b36d5ec87c8d875726970d541fec80c4a23abd2e18c9ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8472-8984
OpenAccessLink http://hdl.handle.net/10161/15784
PQID 2522301608
PQPubID 37129
PageCount 15
ParticipantIDs proquest_journals_2522301608
crossref_citationtrail_10_1017_S0956792520000182
crossref_primary_10_1017_S0956792520000182
cambridge_journals_10_1017_S0956792520000182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationTitleAlternate Eur. J. Appl. Math
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0956792520000182_ref13
S0956792520000182_ref12
S0956792520000182_ref15
S0956792520000182_ref14
S0956792520000182_ref17
S0956792520000182_ref16
S0956792520000182_ref19
S0956792520000182_ref18
S0956792520000182_ref6
S0956792520000182_ref5
S0956792520000182_ref4
S0956792520000182_ref3
S0956792520000182_ref20
S0956792520000182_ref2
S0956792520000182_ref1
S0956792520000182_ref11
S0956792520000182_ref10
S0956792520000182_ref9
S0956792520000182_ref8
S0956792520000182_ref7
References_xml – ident: S0956792520000182_ref13
  doi: 10.1016/j.cma.2004.05.027
– ident: S0956792520000182_ref20
  doi: 10.1017/S0962492917000083
– ident: S0956792520000182_ref19
  doi: 10.1137/S1064827501387826
– ident: S0956792520000182_ref10
  doi: 10.1109/72.712178
– ident: S0956792520000182_ref3
  doi: 10.1137/130913249
– ident: S0956792520000182_ref7
  doi: 10.1109/CVPR.2016.90
– ident: S0956792520000182_ref18
  doi: 10.2307/2371268
– ident: S0956792520000182_ref2
  doi: 10.1126/science.aag2302
– ident: S0956792520000182_ref9
  doi: 10.1007/s40687-018-0160-2
– ident: S0956792520000182_ref14
  doi: 10.1016/j.neucom.2014.11.058
– ident: S0956792520000182_ref16
  doi: 10.1016/j.cma.2008.11.007
– ident: S0956792520000182_ref5
– ident: S0956792520000182_ref11
  doi: 10.1038/nature14539
– ident: S0956792520000182_ref12
– ident: S0956792520000182_ref15
  doi: 10.1016/j.neunet.2014.09.003
– ident: S0956792520000182_ref1
– ident: S0956792520000182_ref6
– ident: S0956792520000182_ref8
  doi: 10.1126/science.1127647
– ident: S0956792520000182_ref17
  doi: 10.1103/PhysRevB.94.165134
– ident: S0956792520000182_ref4
SSID ssj0013079
Score 2.6360807
Snippet The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 421
SubjectTerms Applied mathematics
Artificial neural networks
Coefficients
Neural networks
Partial differential equations
Title Solving parametric PDE problems with artificial neural networks
URI https://www.cambridge.org/core/product/identifier/S0956792520000182/type/journal_article
https://www.proquest.com/docview/2522301608
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5se9GD-MRqLXvwJC6mu5vN5iQ-WovQUsRCbyH7yKn2Yer_dyfZNBShp8BkF8LMZN58g9Cd4kyJiFuiMskIVzYlKc8yEmeRVZmTujSQKI7GYjjlH7Nw5gtuuR-rrGxiYajNUkON_JG6QIEBHJp8Wq0JbI2C7qpfodFALWeCpUu-Wi_98eSz7iMENdpeFNOw6msWoNGOCDRaVLgBia9GV9j1UrtGuvA8gxN07ENG_FzK-BQd2MUZOhpt8VbzcxdyL-dQGcCA5P0NS7I0nrz1sV8Xk2Mot2LQkhIwAgOMZfEohsDzCzQd9L9eh8SvRiCaiWBDaE-5xEwHxoaam8AYoZgwodUy0tIASD0VcRSYkPcyRww0TylLlaG2J3WsUnaJmovlwl4hrKzQlIVCGZU5T5XKSFHpfsbYCSp2yV4bPWzZkngFz5NyOCxK_nGxjYKKc4n2MOOw7WK-78r99sqqxNjYd7hTiaP-mlo5rve_vkGHFIZSijJKBzU3P7_21kUVG9VFDTl473oF-gPAxscJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLZKGYABcYpCAQ-wICJS20mcASFEW1p6iKGVuoX4yFTaQooQf4rfiF-ORhVSt06RnDiKnj_7nfkeQleCUeF6TFsi4tRiQodWyKLI8iNPi8isOlfgKPb6bmvIXkbOqIR-839hoKwyPxOTg1pNJcTI74gxFCjQofGH2YcFXaMgu5q30Ehh0dE_38Zli-_bdbO-14Q0G4OnlpV1FbAkde25RWrC-DTSVtqRTNlKuYK6ytGSe5Ir4Hcnru_ZymG1yAzakoWEhkIRXePSFyE1791Am4xSH3YUbz4XWQu74PbzfOLkWdSEotoMwhhJ4unA-1dwOSzrxGWVkOi55h7azQxU_Jgiah-V9OQA7fQW7K7xoTHwp2OIQ2DgDX-HllwSv9YbOGtOE2MI7mLAZEpPgYE0M7kkJefxERquRWTHqDyZTvQJwkK7klDHFUpERi-G3BOEm63vG1j4xrWsoNuFWIJsO8VBWormBf-kWEF2LrlAZqTm0FtjvGrKzWLKLGX0WPVwNV-O4msKKJ6uvn2JtlqDXjfotvudM7RNoBwmCeBUUXn--aXPjT0zFxcJiDB6Wzdq_wCaWgKI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+parametric+PDE+problems+with+artificial+neural+networks&rft.jtitle=European+journal+of+applied+mathematics&rft.au=KHOO%2C+YUEHAW&rft.au=Lu%2C+Jianfeng&rft.au=LEXING+YING&rft.date=2021-06-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=32&rft.issue=3&rft.spage=421&rft.epage=435&rft_id=info:doi/10.1017%2FS0956792520000182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon