Solving parametric PDE problems with artificial neural networks
The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few fea...
Saved in:
Published in | European journal of applied mathematics Vol. 32; no. 3; pp. 421 - 435 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few features on the space of the coefficient fields. Based on such observation, we propose using neural network to parameterise the physical quantity of interest as a function of input coefficients. The representability of such quantity using a neural network can be justified by viewing the neural network as performing time evolution to find the solutions to the PDE. We further demonstrate the simplicity and accuracy of the approach through notable examples of PDEs in engineering and physics. |
---|---|
AbstractList | The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few features on the space of the coefficient fields. Based on such observation, we propose using neural network to parameterise the physical quantity of interest as a function of input coefficients. The representability of such quantity using a neural network can be justified by viewing the neural network as performing time evolution to find the solutions to the PDE. We further demonstrate the simplicity and accuracy of the approach through notable examples of PDEs in engineering and physics. |
Author | KHOO, YUEHAW YING, LEXING LU, JIANFENG |
Author_xml | – sequence: 1 givenname: YUEHAW orcidid: 0000-0002-8472-8984 surname: KHOO fullname: KHOO, YUEHAW email: ykhoo@uchicago.edu organization: 1Department of Statistics, University of Chicago, IL 60615, USA, email: ykhoo@uchicago.edu – sequence: 2 givenname: JIANFENG surname: LU fullname: LU, JIANFENG email: jianfeng@math.duke.edu organization: 2Department of Mathematics, Department of Chemistry and Department of Physics, Duke University, Durham, NC 27708, USA, email: jianfeng@math.duke.edu – sequence: 3 givenname: LEXING surname: YING fullname: YING, LEXING email: lexing@stanford.edu organization: 3Department of Mathematics and ICME, Stanford University, Stanford, CA 94305, USA, email: lexing@stanford.edu |
BookMark | eNp9kMtKAzEUhoNUsK0-gLsB16O5TJLJSqTWCxQUqushk2Rq6sykJqnFtze1BUHRszlw_v87txEY9K43AJwieI4g4hdzKCjjAlMMU6ASH4AhKpjIiwLTARhu5XyrH4FRCMtkIZCLIbicu_bd9otsJb3sTPRWZY_X02zlXd2aLmQbG18y6aNtrLKyzXqz9l8pbpx_DcfgsJFtMCf7PAbPN9OnyV0-e7i9n1zNckUYjDlGdQGFgtpQVWioNasJ09SokqtSl5xyzASHmhaoSUWoComJrDU2qFSilmQMznZ902JvaxNitXRr36eRVboZE4gYLJOL71zKuxC8aSplo4zW9dFL21YIVttvVb--lUj0g1x520n_8S9D9ozsam_1wnwv9Tf1CWeqfJU |
CitedBy_id | crossref_primary_10_1016_j_cma_2021_114474 crossref_primary_10_1049_cth2_12572 crossref_primary_10_1103_PhysRevA_104_063316 crossref_primary_10_1073_pnas_2318106121 crossref_primary_10_1137_24M1648703 crossref_primary_10_1063_5_0070890 crossref_primary_10_1016_j_cma_2025_117757 crossref_primary_10_1016_j_jcp_2024_113089 crossref_primary_10_2139_ssrn_4116290 crossref_primary_10_1002_nme_7228 crossref_primary_10_1016_j_jcp_2024_112791 crossref_primary_10_1016_j_camwa_2024_04_006 crossref_primary_10_1016_j_ijmecsci_2024_109801 crossref_primary_10_2118_209223_PA crossref_primary_10_1016_j_camwa_2025_02_022 crossref_primary_10_1109_TCAD_2024_3382614 crossref_primary_10_3390_ai2030022 crossref_primary_10_1007_s42967_023_00317_2 crossref_primary_10_1016_j_jcp_2024_112944 crossref_primary_10_1016_j_jcp_2022_111579 crossref_primary_10_2118_217441_PA crossref_primary_10_1007_s10614_023_10459_3 crossref_primary_10_1016_j_array_2023_100287 crossref_primary_10_1007_s10483_023_2992_6 crossref_primary_10_1007_s10915_022_01844_5 crossref_primary_10_1007_s11071_024_09967_0 crossref_primary_10_1109_OJAP_2024_3412609 crossref_primary_10_1016_j_acha_2024_101717 crossref_primary_10_1016_j_cma_2023_116394 crossref_primary_10_1140_epjd_s10053_024_00841_7 crossref_primary_10_3390_w15173140 crossref_primary_10_1080_0952813X_2023_2242356 crossref_primary_10_1137_21M1468383 crossref_primary_10_1017_S0956792521000085 crossref_primary_10_1109_ACCESS_2022_3148401 crossref_primary_10_1007_s00500_023_08602_1 crossref_primary_10_1016_j_compstruct_2023_117197 crossref_primary_10_1016_j_jcp_2022_111646 crossref_primary_10_1016_j_jcp_2024_113623 crossref_primary_10_1063_5_0203546 crossref_primary_10_1016_j_cma_2024_116983 crossref_primary_10_1016_j_jcp_2024_113188 crossref_primary_10_1038_s41598_024_53185_y crossref_primary_10_1007_s10614_024_10792_1 crossref_primary_10_1016_j_physd_2023_133987 crossref_primary_10_1137_22M1529427 crossref_primary_10_1016_j_fraope_2023_100039 crossref_primary_10_1016_j_cma_2024_117274 crossref_primary_10_3390_s23063357 crossref_primary_10_1111_mice_13312 crossref_primary_10_1007_s10596_023_10211_8 crossref_primary_10_1007_s10915_024_02535_z crossref_primary_10_1111_mafi_12405 crossref_primary_10_26634_jmat_13_1_20383 crossref_primary_10_1016_j_jcp_2024_113217 crossref_primary_10_3390_fractalfract8020091 crossref_primary_10_1016_j_jcp_2023_112084 crossref_primary_10_2139_ssrn_4159429 crossref_primary_10_1115_1_4055918 crossref_primary_10_1016_j_eml_2023_102110 crossref_primary_10_1016_j_physletb_2023_138088 crossref_primary_10_1186_s13662_022_03702_y crossref_primary_10_1073_pnas_2310142120 crossref_primary_10_3390_appliedmath5010027 crossref_primary_10_3934_mine_2023096 crossref_primary_10_1016_j_jcp_2022_111309 crossref_primary_10_1002_asmb_2711 crossref_primary_10_1007_s10915_024_02527_z crossref_primary_10_1016_j_camwa_2023_03_015 crossref_primary_10_1016_j_jcp_2023_112638 crossref_primary_10_1016_j_jcp_2024_112917 crossref_primary_10_1103_PhysRevE_106_025305 crossref_primary_10_1007_s43670_022_00040_8 crossref_primary_10_1093_gji_ggae342 crossref_primary_10_3390_mca28040079 crossref_primary_10_1016_j_jcp_2023_111944 crossref_primary_10_1109_TEMC_2024_3474795 crossref_primary_10_1016_j_entcom_2023_100631 crossref_primary_10_1007_s42967_023_00293_7 crossref_primary_10_1007_s42985_021_00100_z crossref_primary_10_1103_PhysRevE_106_025311 crossref_primary_10_1016_j_cma_2021_114562 crossref_primary_10_1137_23M1566935 crossref_primary_10_1007_s11424_024_3252_7 crossref_primary_10_1137_21M1445363 crossref_primary_10_1016_j_neucom_2023_126826 crossref_primary_10_1016_j_neunet_2022_06_040 crossref_primary_10_1137_21M1433514 crossref_primary_10_1016_j_gexplo_2024_107478 crossref_primary_10_1016_j_physd_2024_134129 crossref_primary_10_12677_AAM_2022_1112921 crossref_primary_10_1016_j_neunet_2023_07_012 crossref_primary_10_1016_j_jcp_2022_111536 crossref_primary_10_2139_ssrn_3981933 crossref_primary_10_1137_22M1488405 crossref_primary_10_1137_17M1154382 crossref_primary_10_1038_s41598_023_44541_5 crossref_primary_10_1080_01630563_2025_2451929 crossref_primary_10_1016_j_finel_2022_103904 crossref_primary_10_1007_s10915_022_02015_2 crossref_primary_10_1016_j_chaos_2024_115134 crossref_primary_10_1002_jcc_27443 crossref_primary_10_1063_5_0175065 crossref_primary_10_3390_a17100446 crossref_primary_10_1016_j_jcp_2022_111202 crossref_primary_10_1007_s00365_021_09541_6 crossref_primary_10_3389_fams_2022_1021069 crossref_primary_10_1007_s10915_023_02173_x crossref_primary_10_3390_en17133097 crossref_primary_10_1090_memo_1410 crossref_primary_10_1109_TED_2024_3379953 crossref_primary_10_1016_j_jcp_2023_112031 crossref_primary_10_1002_nme_7207 crossref_primary_10_1111_insr_12554 crossref_primary_10_1016_j_cnsns_2024_108556 crossref_primary_10_2139_ssrn_4196487 crossref_primary_10_1016_j_jcp_2022_111713 crossref_primary_10_1007_s00033_024_02306_8 crossref_primary_10_1109_ACCESS_2022_3153056 crossref_primary_10_3390_a16020124 crossref_primary_10_1016_j_cma_2022_115523 crossref_primary_10_1016_j_jcp_2023_112549 crossref_primary_10_1016_j_jcp_2024_113379 crossref_primary_10_1016_j_jcp_2022_111313 |
Cites_doi | 10.1016/j.cma.2004.05.027 10.1017/S0962492917000083 10.1137/S1064827501387826 10.1109/72.712178 10.1137/130913249 10.1109/CVPR.2016.90 10.2307/2371268 10.1126/science.aag2302 10.1007/s40687-018-0160-2 10.1016/j.neucom.2014.11.058 10.1016/j.cma.2008.11.007 10.1038/nature14539 10.1016/j.neunet.2014.09.003 10.1126/science.1127647 10.1103/PhysRevB.94.165134 |
ContentType | Journal Article |
Copyright | The Author(s), 2020. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2020. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792520000182 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4425 |
EndPage | 435 |
ExternalDocumentID | 10_1017_S0956792520000182 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABEFU ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WXY WYP XFK ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AATMM AAYXX ABHFL ABVKB ABVZP ABXHF ACAJB ACDLN ACEJA ACOZI ACRPL ADNMO AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION GROUPED_DOAJ PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c360t-21b409c0de5c4d0dd6b36d5ec87c8d875726970d541fec80c4a23abd2e18c9ba3 |
IEDL.DBID | BENPR |
ISSN | 0956-7925 |
IngestDate | Sun Jul 13 04:39:08 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Mar 13 05:54:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | uncertainty quantification parametric PDE 65Nxx Neural-network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-21b409c0de5c4d0dd6b36d5ec87c8d875726970d541fec80c4a23abd2e18c9ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8472-8984 |
OpenAccessLink | http://hdl.handle.net/10161/15784 |
PQID | 2522301608 |
PQPubID | 37129 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2522301608 crossref_citationtrail_10_1017_S0956792520000182 crossref_primary_10_1017_S0956792520000182 cambridge_journals_10_1017_S0956792520000182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationTitleAlternate | Eur. J. Appl. Math |
PublicationYear | 2021 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0956792520000182_ref13 S0956792520000182_ref12 S0956792520000182_ref15 S0956792520000182_ref14 S0956792520000182_ref17 S0956792520000182_ref16 S0956792520000182_ref19 S0956792520000182_ref18 S0956792520000182_ref6 S0956792520000182_ref5 S0956792520000182_ref4 S0956792520000182_ref3 S0956792520000182_ref20 S0956792520000182_ref2 S0956792520000182_ref1 S0956792520000182_ref11 S0956792520000182_ref10 S0956792520000182_ref9 S0956792520000182_ref8 S0956792520000182_ref7 |
References_xml | – ident: S0956792520000182_ref13 doi: 10.1016/j.cma.2004.05.027 – ident: S0956792520000182_ref20 doi: 10.1017/S0962492917000083 – ident: S0956792520000182_ref19 doi: 10.1137/S1064827501387826 – ident: S0956792520000182_ref10 doi: 10.1109/72.712178 – ident: S0956792520000182_ref3 doi: 10.1137/130913249 – ident: S0956792520000182_ref7 doi: 10.1109/CVPR.2016.90 – ident: S0956792520000182_ref18 doi: 10.2307/2371268 – ident: S0956792520000182_ref2 doi: 10.1126/science.aag2302 – ident: S0956792520000182_ref9 doi: 10.1007/s40687-018-0160-2 – ident: S0956792520000182_ref14 doi: 10.1016/j.neucom.2014.11.058 – ident: S0956792520000182_ref16 doi: 10.1016/j.cma.2008.11.007 – ident: S0956792520000182_ref5 – ident: S0956792520000182_ref11 doi: 10.1038/nature14539 – ident: S0956792520000182_ref12 – ident: S0956792520000182_ref15 doi: 10.1016/j.neunet.2014.09.003 – ident: S0956792520000182_ref1 – ident: S0956792520000182_ref6 – ident: S0956792520000182_ref8 doi: 10.1126/science.1127647 – ident: S0956792520000182_ref17 doi: 10.1103/PhysRevB.94.165134 – ident: S0956792520000182_ref4 |
SSID | ssj0013079 |
Score | 2.6360807 |
Snippet | The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 421 |
SubjectTerms | Applied mathematics Artificial neural networks Coefficients Neural networks Partial differential equations |
Title | Solving parametric PDE problems with artificial neural networks |
URI | https://www.cambridge.org/core/product/identifier/S0956792520000182/type/journal_article https://www.proquest.com/docview/2522301608 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5se9GD-MRqLXvwJC6mu5vN5iQ-WovQUsRCbyH7yKn2Yer_dyfZNBShp8BkF8LMZN58g9Cd4kyJiFuiMskIVzYlKc8yEmeRVZmTujSQKI7GYjjlH7Nw5gtuuR-rrGxiYajNUkON_JG6QIEBHJp8Wq0JbI2C7qpfodFALWeCpUu-Wi_98eSz7iMENdpeFNOw6msWoNGOCDRaVLgBia9GV9j1UrtGuvA8gxN07ENG_FzK-BQd2MUZOhpt8VbzcxdyL-dQGcCA5P0NS7I0nrz1sV8Xk2Mot2LQkhIwAgOMZfEohsDzCzQd9L9eh8SvRiCaiWBDaE-5xEwHxoaam8AYoZgwodUy0tIASD0VcRSYkPcyRww0TylLlaG2J3WsUnaJmovlwl4hrKzQlIVCGZU5T5XKSFHpfsbYCSp2yV4bPWzZkngFz5NyOCxK_nGxjYKKc4n2MOOw7WK-78r99sqqxNjYd7hTiaP-mlo5rve_vkGHFIZSijJKBzU3P7_21kUVG9VFDTl473oF-gPAxscJ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLZKGYABcYpCAQ-wICJS20mcASFEW1p6iKGVuoX4yFTaQooQf4rfiF-ORhVSt06RnDiKnj_7nfkeQleCUeF6TFsi4tRiQodWyKLI8iNPi8isOlfgKPb6bmvIXkbOqIR-839hoKwyPxOTg1pNJcTI74gxFCjQofGH2YcFXaMgu5q30Ehh0dE_38Zli-_bdbO-14Q0G4OnlpV1FbAkde25RWrC-DTSVtqRTNlKuYK6ytGSe5Ir4Hcnru_ZymG1yAzakoWEhkIRXePSFyE1791Am4xSH3YUbz4XWQu74PbzfOLkWdSEotoMwhhJ4unA-1dwOSzrxGWVkOi55h7azQxU_Jgiah-V9OQA7fQW7K7xoTHwp2OIQ2DgDX-HllwSv9YbOGtOE2MI7mLAZEpPgYE0M7kkJefxERquRWTHqDyZTvQJwkK7klDHFUpERi-G3BOEm63vG1j4xrWsoNuFWIJsO8VBWormBf-kWEF2LrlAZqTm0FtjvGrKzWLKLGX0WPVwNV-O4msKKJ6uvn2JtlqDXjfotvudM7RNoBwmCeBUUXn--aXPjT0zFxcJiDB6Wzdq_wCaWgKI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+parametric+PDE+problems+with+artificial+neural+networks&rft.jtitle=European+journal+of+applied+mathematics&rft.au=KHOO%2C+YUEHAW&rft.au=Lu%2C+Jianfeng&rft.au=LEXING+YING&rft.date=2021-06-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=32&rft.issue=3&rft.spage=421&rft.epage=435&rft_id=info:doi/10.1017%2FS0956792520000182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |