Electroosmosis‐modulated Darcy–Forchheimer flow of Casson nanofluid over stretching sheets in the presence of Newtonian heating

A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 53; p. 103806
Main Authors Hafez, N.M., Thabet, Esraa N., Khan, Zeeshan, Abd-Alla, A.M., Elhag, S.H.
Format Journal Article
LanguageEnglish
Published Elsevier 01.01.2024
Subjects
Online AccessGet full text
ISSN2214-157X
2214-157X
DOI10.1016/j.csite.2023.103806

Cover

Loading…
Abstract A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. This study’s main objective is to examine the Casson nanofluid’s Darcy-Forchheimer flow across a stretching sheet. Investigations are being conducted on the viscous and Joule dissipations that the electroosmosis forces (EOF) have on the casson nanofluid boundary layer. The method transforms partial differential equations originating in nanofluidic systems into nonlinear differential equation systems with the proper degree of similarity. With a precision of order 4 to 5, the nonlinear nanofluid problem is solved using the (FDM) finite difference approach (Lobatto IIIA), which is accomplished using a number of collocation locations. The ability of Lobatto IIIA to handle coupled differential equations that are very nonlinear is one of its strengths. The boundary value dilemma (bvp4c) solver, which is a component of the MATLAB software programme, is used to reduce the higher order differential equations into a first order technique and computationally analyze the simplified mathematical model. When compared to previously published studies, the data acquired showed a high degree of accuracy and symmetry. The study’s primary results included that when the Casson fluid expands, the velocity field decreases, but the electric parameter, Forchheimer number, local Reynolds number, and permeability parameter show the opposite trend. Furthermore, High temperature is connected with the non-Newtonian heating parameter and the electric parameter. This work provides insights into practical applications such nanofluidic, energy conservation, friction reduction, and power generation. However, the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter, thermophoresis parameter, and Brownian motion parameter.
AbstractList A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. This study’s main objective is to examine the Casson nanofluid’s Darcy-Forchheimer flow across a stretching sheet. Investigations are being conducted on the viscous and Joule dissipations that the electroosmosis forces (EOF) have on the casson nanofluid boundary layer. The method transforms partial differential equations originating in nanofluidic systems into nonlinear differential equation systems with the proper degree of similarity. With a precision of order 4 to 5, the nonlinear nanofluid problem is solved using the (FDM) finite difference approach (Lobatto IIIA), which is accomplished using a number of collocation locations. The ability of Lobatto IIIA to handle coupled differential equations that are very nonlinear is one of its strengths. The boundary value dilemma (bvp4c) solver, which is a component of the MATLAB software programme, is used to reduce the higher order differential equations into a first order technique and computationally analyze the simplified mathematical model. When compared to previously published studies, the data acquired showed a high degree of accuracy and symmetry. The study’s primary results included that when the Casson fluid expands, the velocity field decreases, but the electric parameter, Forchheimer number, local Reynolds number, and permeability parameter show the opposite trend. Furthermore, High temperature is connected with the non-Newtonian heating parameter and the electric parameter. This work provides insights into practical applications such nanofluidic, energy conservation, friction reduction, and power generation. However, the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter, thermophoresis parameter, and Brownian motion parameter.
ArticleNumber 103806
Author Hafez, N.M.
Khan, Zeeshan
Elhag, S.H.
Abd-Alla, A.M.
Thabet, Esraa N.
Author_xml – sequence: 1
  givenname: N.M.
  orcidid: 0000-0003-4674-9298
  surname: Hafez
  fullname: Hafez, N.M.
– sequence: 2
  givenname: Esraa N.
  orcidid: 0000-0002-4768-0328
  surname: Thabet
  fullname: Thabet, Esraa N.
– sequence: 3
  givenname: Zeeshan
  surname: Khan
  fullname: Khan, Zeeshan
– sequence: 4
  givenname: A.M.
  surname: Abd-Alla
  fullname: Abd-Alla, A.M.
– sequence: 5
  givenname: S.H.
  orcidid: 0000-0001-5358-9769
  surname: Elhag
  fullname: Elhag, S.H.
BookMark eNp9kctqXDEMhk1JoGmSJ8jGLzBTX89lWaZJGwjppoXsjMZHzvFwxgq205BdoC9Q6BvmSXIm00LpoisJSf8vie8dO0iUkLEzKZZSyOb9ZulLrLhUQum5ojvRvGFHSkmzkLa9Ofgrf8tOS9kIIWSrO2nMEftxPqGvmahsqcTy_PRzS8P9BBUH_hGyf3x--nVB2Y8jxi1mHiZ64BT4CkqhxBMkCtN9HDh9n7ulZqx-jOmWlxGxFh4TryPyu4wFk8ed9BofKqUIiY8IdZ49YYcBpoKnv-Mx-3Zx_nX1eXH15dPl6sPVwutG1IXEIJsA7boPBkF1nRVGDkasOw_Wm6HtjUJYS-3XprU4KGubDgRIAUp4ZfUxu9z7DgQbd5fjFvKjI4jutUD51kGu0U_oRPBe9SpYo_t5WQOo0HSALSgrWt3MXv3ey2cqJWNwPtb5G0o1Q5ycFG4Hx23cKxy3g-P2cGat_kf755b_qV4AGTWcRA
CitedBy_id crossref_primary_10_1088_1402_4896_ad5a53
crossref_primary_10_1080_10407790_2024_2377179
crossref_primary_10_1177_16878132241275435
crossref_primary_10_1515_zna_2024_0194
crossref_primary_10_1080_01430750_2024_2345834
crossref_primary_10_1108_HFF_04_2024_0324
crossref_primary_10_1016_j_jrras_2024_101189
crossref_primary_10_1002_zamm_202300501
crossref_primary_10_1016_j_aej_2024_10_109
crossref_primary_10_1007_s41939_024_00712_z
crossref_primary_10_1155_2024_5730530
crossref_primary_10_3390_math12111742
crossref_primary_10_1142_S179396232450048X
crossref_primary_10_1016_j_net_2025_103510
crossref_primary_10_1007_s10973_024_13710_7
crossref_primary_10_1016_j_padiff_2025_101109
crossref_primary_10_1063_5_0216227
crossref_primary_10_1016_j_ijheatfluidflow_2024_109507
crossref_primary_10_1016_j_jocs_2024_102256
crossref_primary_10_1016_j_chaos_2025_116021
crossref_primary_10_1007_s41939_024_00475_7
crossref_primary_10_1080_10407782_2024_2345865
crossref_primary_10_1080_10407782_2024_2345864
crossref_primary_10_1515_rams_2024_0020
crossref_primary_10_1007_s10751_025_02274_z
crossref_primary_10_1016_j_asej_2024_102839
crossref_primary_10_1063_5_0198395
crossref_primary_10_1016_j_asej_2023_102618
crossref_primary_10_1007_s41939_024_00709_8
crossref_primary_10_1016_j_csite_2024_105218
crossref_primary_10_1016_j_padiff_2025_101081
crossref_primary_10_1063_5_0203555
Cites_doi 10.1080/17455030.2021.2019352
10.1016/j.rinp.2018.01.017
10.1615/NanoSciTechnolIntJ.2021037367
10.1002/htj.22717
10.1177/1687814018808850
10.1140/epjp/i2018-11899-9
10.1016/j.asej.2013.05.003
10.1142/S0219519422500300
10.1016/j.colsurfa.2022.129070
10.1038/s41598-022-07193-5
10.1177/0954406220908624
10.1108/HFF-10-2020-0666
10.1088/1674-1056/23/4/044702
10.1002/htj.21759
10.3390/math8071094
10.1063/5.0086541
10.3390/math9192525
10.1615/NanoSciTechnolIntJ.2022041674
10.1038/s41598-020-72266-2
10.1016/j.physleta.2018.06.026
10.1016/j.icheatmasstransfer.2021.105832
10.37934/cfdl.14.3.3952
10.1016/j.rinp.2017.07.052
10.1080/15502287.2022.2030426
10.1615/SpecialTopicsRevPorousMedia.v14.i4.10
10.1007/s10973-023-11962-3
10.1016/j.apt.2018.02.010
10.1016/j.cjph.2020.07.011
10.1080/15502287.2021.1900451
10.1007/s12668-023-01132-y
10.3390/coatings12030296
10.1615/NanoSciTechnolIntJ.2021038892
10.37934/arfmts.82.1.111
10.1002/htj.22753
10.1615/JPorMedia.2020026624
10.1038/s41598-020-69411-2
10.1016/j.rinp.2019.102818
10.1615/JPorMedia.2020036165
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2023.103806
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_0fcc292f54394ea6ae2e48ae7a250736
10_1016_j_csite_2023_103806
GroupedDBID 0R~
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
ID FETCH-LOGICAL-c360t-1ef16fa7b9f4ea2885041d40b8ca5c4d7942eab13cb475ed25568a0a10a20c253
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:07:46 EDT 2025
Tue Jul 01 02:28:43 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-1ef16fa7b9f4ea2885041d40b8ca5c4d7942eab13cb475ed25568a0a10a20c253
ORCID 0000-0001-5358-9769
0000-0002-4768-0328
0000-0003-4674-9298
OpenAccessLink https://doaj.org/article/0fcc292f54394ea6ae2e48ae7a250736
ParticipantIDs doaj_primary_oai_doaj_org_article_0fcc292f54394ea6ae2e48ae7a250736
crossref_citationtrail_10_1016_j_csite_2023_103806
crossref_primary_10_1016_j_csite_2023_103806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2024
Publisher Elsevier
Publisher_xml – name: Elsevier
References Rehman (10.1016/j.csite.2023.103806_bib1) 2018; 8
Rafique (10.1016/j.csite.2023.103806_bib5) 2019; 7
Muhammad (10.1016/j.csite.2023.103806_bib26) 2017; 7
Khan (10.1016/j.csite.2023.103806_bib3) 2018; 133
Mohamed (10.1016/j.csite.2023.103806_bib36) 2021; 82
Lu (10.1016/j.csite.2023.103806_bib38) 2022; 22
Lund (10.1016/j.csite.2023.103806_bib8) 2020; 10
Alwawi (10.1016/j.csite.2023.103806_bib34) 2020; 234
Zaher (10.1016/j.csite.2023.103806_bib42) 2021; 31
Abd-Alla (10.1016/j.csite.2023.103806_bib23) 2022
Paul (10.1016/j.csite.2023.103806_bib27) 2023; 52
Alwawi (10.1016/j.csite.2023.103806_bib14) 2020; 8
Pusparaj (10.1016/j.csite.2023.103806_bib37) 2022; 13
Abdelsalam (10.1016/j.csite.2023.103806_bib41) 2020; 67
Abd-Alla (10.1016/j.csite.2023.103806_bib25) 2022; 12
Sohail (10.1016/j.csite.2023.103806_bib9) 2020; 10
Abd-Alla (10.1016/j.csite.2023.103806_bib24) 2022
De (10.1016/j.csite.2023.103806_bib33) 2022; 13
Alwawi (10.1016/j.csite.2023.103806_bib35) 2020; 16
Sangeetha (10.1016/j.csite.2023.103806_bib17) 2023; 14
Mondal (10.1016/j.csite.2023.103806_bib20) 2020; 23
Sangeetha (10.1016/j.csite.2023.103806_bib18) 2021; 12
Pramanik (10.1016/j.csite.2023.103806_bib11) 2014; 5
Hassan (10.1016/j.csite.2023.103806_bib21) 2018; 382
Joshi (10.1016/j.csite.2023.103806_bib28) 2022; 23
Mahapatra (10.1016/j.csite.2023.103806_bib40) 2022; 34
Saha (10.1016/j.csite.2023.103806_bib39) 2022; 647
Sangeetha (10.1016/j.csite.2023.103806_bib15) 2023; 52
Sangeetha (10.1016/j.csite.2023.103806_bib19) 2021; 24
Khan (10.1016/j.csite.2023.103806_bib29) 2018; 10
Bayones (10.1016/j.csite.2023.103806_bib30) 2022
Malik (10.1016/j.csite.2023.103806_bib4) 2016; 19
Sangeetha (10.1016/j.csite.2023.103806_bib16) 2023; 13
De (10.1016/j.csite.2023.103806_bib32) 2020; 49
Patil (10.1016/j.csite.2023.103806_bib2) 2023
Varun Kumar (10.1016/j.csite.2023.103806_bib6) 2022; 23
Alwawi (10.1016/j.csite.2023.103806_bib13) 2022; 12
Khan (10.1016/j.csite.2023.103806_bib31) 2022; 130
Bhatti (10.1016/j.csite.2023.103806_bib22) 2018; 29
Zhang (10.1016/j.csite.2023.103806_bib10) 2021; 9
Mukhopadhyay (10.1016/j.csite.2023.103806_bib7) 2014; 23
Hamzeh (10.1016/j.csite.2023.103806_bib12) 2022; 14
References_xml – year: 2022
  ident: 10.1016/j.csite.2023.103806_bib30
  article-title: Magnetized dissipative Soret effect on nonlinear radiative Maxwell nanofluid flow with porosity, chemical reaction and Joule heating
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2021.2019352
– volume: 8
  start-page: 744
  year: 2018
  ident: 10.1016/j.csite.2023.103806_bib1
  article-title: Numerical analysis of MHD Casson Navier’s slip nanofluid flow yield by rigid rotating disk
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.01.017
– volume: 12
  start-page: 19
  year: 2021
  ident: 10.1016/j.csite.2023.103806_bib18
  article-title: Darcy-FORCHHEIMER porosity effects on nanofluid with motile gyrotactic microorganisms over convectively heated surface
  publication-title: Nanosci. Technol. Int. J.
  doi: 10.1615/NanoSciTechnolIntJ.2021037367
– volume: 52
  start-page: 807
  year: 2023
  ident: 10.1016/j.csite.2023.103806_bib27
  article-title: Darcy–Forchheimer MHD radiative flow through a porous space incorporating viscous dissipation, heat source, and chemical reaction effect across an exponentially stretched surface
  publication-title: Heat Transf.
  doi: 10.1002/htj.22717
– volume: 10
  year: 2018
  ident: 10.1016/j.csite.2023.103806_bib29
  article-title: Darcy–Forchheimer flow of micropolar nanofluid between two plates in the rotating frame with non-uniform heat generation/absorption
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018808850
– volume: 133
  start-page: 262
  year: 2018
  ident: 10.1016/j.csite.2023.103806_bib3
  article-title: Application of the modern trend of fractional differentiation to the MHD flow of a generalized Casson fluid in a microchannel: modelling and solution
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/i2018-11899-9
– volume: 5
  start-page: 205
  year: 2014
  ident: 10.1016/j.csite.2023.103806_bib11
  article-title: Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.05.003
– volume: 22
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib38
  article-title: Heat transfer applications in curved micro-channel driven by electroosmosis and peristaltic pumping
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519422500300
– volume: 647
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib39
  article-title: Electroosmotic pressure-driven oscillatory flow and mass transport of Oldroyd-B fluid under high zeta potential and slippage conditions in microchannels
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2022.129070
– volume: 12
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib25
  article-title: Numerical solution for MHD peristaltic transport in an inclined nanofluid symmetric channel with porous medium
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07193-5
– volume: 234
  start-page: 2569
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib34
  article-title: Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406220908624
– volume: 31
  start-page: 2534
  year: 2021
  ident: 10.1016/j.csite.2023.103806_bib42
  article-title: Electroosmosis forces EOF driven boundary layer flow for a non-Newtonian fluid with planktonic microorganism: Darcy Forchheimer model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-10-2020-0666
– volume: 23
  year: 2014
  ident: 10.1016/j.csite.2023.103806_bib7
  article-title: Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/23/4/044702
– volume: 49
  start-page: 3030
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib32
  article-title: Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms
  publication-title: Heat Transf.
  doi: 10.1002/htj.21759
– volume: 8
  start-page: 1094
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib14
  article-title: A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force
  publication-title: Mathematics
  doi: 10.3390/math8071094
– volume: 34
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib40
  article-title: Efficacy of microconfined fluid mixing in a combined electroosmotic and pressure driven transport of complex fluid over discrete electrodes
  publication-title: Phys. Fluids
  doi: 10.1063/5.0086541
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.csite.2023.103806_bib5
  article-title: Numerical solution of casson nanofluid flow over a non-linear inclined surface with Soret and Dufour effects by Keller-box method
  publication-title: Front. Physiol.
– volume: 9
  year: 2021
  ident: 10.1016/j.csite.2023.103806_bib10
  article-title: Heat transport phenomena for the Darcy–Forchheimer flow of casson fluid over stretching sheets with electro-osmosis forces and Newtonian heating
  publication-title: Mathematics
  doi: 10.3390/math9192525
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib37
  article-title: Dual solutions of radiative magneto NON-Newtonian carreau nanofluid with arrhenius activation energy and binary chemical reaction over a stretching/shrinking sheet
  publication-title: Nanosci. Technol. Int. J.
  doi: 10.1615/NanoSciTechnolIntJ.2022041674
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib8
  article-title: Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72266-2
– volume: 382
  start-page: 2749
  year: 2018
  ident: 10.1016/j.csite.2023.103806_bib21
  article-title: Convective heat transfer flow of nanofluid in a porous medium over wavy surface
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2018.06.026
– year: 2022
  ident: 10.1016/j.csite.2023.103806_bib24
  article-title: Heat transfer in a non-uniform channel on MHD peristaltic flow of a fractional Jeffrey model via porous medium
  publication-title: Indian J. Phys.
– volume: 19
  start-page: 1985
  year: 2016
  ident: 10.1016/j.csite.2023.103806_bib4
  article-title: Variable viscosity and MHD flow in Casson fluid with Cattaneo–Christov heat flux model: using Keller box method
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 130
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib31
  article-title: The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105832
– volume: 14
  start-page: 39
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib12
  article-title: Alkasasbeh, numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect
  publication-title: CFD Lett.
  doi: 10.37934/cfdl.14.3.3952
– volume: 7
  start-page: 2791
  year: 2017
  ident: 10.1016/j.csite.2023.103806_bib26
  article-title: A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.052
– volume: 23
  start-page: 527
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib28
  article-title: MHD Darcy-Forchheimer Cu-Ag/H 2 O-C 2 H 6 O 2 hybrid nanofluid flow via a porous stretching sheet with suction/blowing and viscous dissipation
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
  doi: 10.1080/15502287.2022.2030426
– volume: 14
  start-page: 1
  year: 2023
  ident: 10.1016/j.csite.2023.103806_bib17
  article-title: HALL and ION effects on bioconvective maxwell nanofluid IN NON-Darcy porous medium
  publication-title: Spec. Top Rev. Porous Media Int. J.
  doi: 10.1615/SpecialTopicsRevPorousMedia.v14.i4.10
– year: 2023
  ident: 10.1016/j.csite.2023.103806_bib2
  article-title: Soret and Dufour effects in the flow of Casson nanofluid in a vertical channel with thermal radiation: entropy analysis
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-11962-3
– volume: 29
  start-page: 1189
  year: 2018
  ident: 10.1016/j.csite.2023.103806_bib22
  article-title: Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2018.02.010
– volume: 67
  start-page: 314
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib41
  article-title: Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed segment
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.07.011
– volume: 23
  start-page: 12
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib6
  article-title: Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
  doi: 10.1080/15502287.2021.1900451
– volume: 13
  start-page: 1022
  year: 2023
  ident: 10.1016/j.csite.2023.103806_bib16
  article-title: Stagnation point flow of bioconvective MHD nanofluids over Darcy forchheimer porous medium with thermal radiation and buoyancy effect
  publication-title: Bionanoscience
  doi: 10.1007/s12668-023-01132-y
– volume: 12
  start-page: 296
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib13
  article-title: Mixed convection flow of magnetized casson nanofluid over a cylindrical surface
  publication-title: Coatings
  doi: 10.3390/coatings12030296
– volume: 13
  start-page: 11
  year: 2022
  ident: 10.1016/j.csite.2023.103806_bib33
  article-title: Soret effects of upper convected maxwell magnetized nanofluids with chemical reaction
  publication-title: Nanosci. Technol. Int. J.
  doi: 10.1615/NanoSciTechnolIntJ.2021038892
– volume: 82
  start-page: 1
  year: 2021
  ident: 10.1016/j.csite.2023.103806_bib36
  article-title: MHD stagnation point flow and heat transfer over a stretching sheet in a blood-based casson Ferrofluid with Newtonian heating
  publication-title: J. Adv. Res. Fluid Mech. Therm. Sci.
  doi: 10.37934/arfmts.82.1.111
– volume: 52
  start-page: 1529
  year: 2023
  ident: 10.1016/j.csite.2023.103806_bib15
  article-title: Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation
  publication-title: Heat Transf.
  doi: 10.1002/htj.22753
– volume: 23
  start-page: 517
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib20
  article-title: A numerical study of nanofluid flow over a porous vertical plate with internal heat generation and nonlinear thermal radiation
  publication-title: J. Porous Media
  doi: 10.1615/JPorMedia.2020026624
– year: 2022
  ident: 10.1016/j.csite.2023.103806_bib23
  article-title: Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with chemical reaction and wall properties
  publication-title: Alex. Eng. J.
– volume: 10
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib9
  article-title: Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69411-2
– volume: 16
  year: 2020
  ident: 10.1016/j.csite.2023.103806_bib35
  article-title: MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102818
– volume: 24
  start-page: 15
  year: 2021
  ident: 10.1016/j.csite.2023.103806_bib19
  article-title: Bioconvection in nanofluid flow embedded IN NON-Darcy porous medium with VISCOUS dissipation and ohmic heating
  publication-title: J. Porous Media
  doi: 10.1615/JPorMedia.2020036165
SSID ssj0001738144
Score 2.446832
Snippet A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 103806
SubjectTerms Darcy–Forchheimer porous medium
Electro-osmosis forces (EOFs)
Lobatto IIIA method
MHD
Ohmic heating
Stretching sheet
Title Electroosmosis‐modulated Darcy–Forchheimer flow of Casson nanofluid over stretching sheets in the presence of Newtonian heating
URI https://doaj.org/article/0fcc292f54394ea6ae2e48ae7a250736
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkInGcJh1paVUYmKjULXL8UIvauGpSIbZK_AEk_mF_CXdOW2WChSVDZEfW3Wff2Tl_HyG3rSwODY8jz_g887hk3EtgSsFWxc9Q2xYJXbDa4qXZH_DnYTSsSX1hTVhFD1wZ7t43UrIWMxFe4dSiKTTTPBE6FhC849CRbUPMq22m3OlKDJGI8w3NkCvoku53LMqFO1Zw1DiqhaIaY78LLb1DcrDOCelDNZYjsqPzY7JfYwo8IZ_dSq7GFlNbjIvV8mtqFSpvaUUfAasfq-V3zwJmR3o81XNqJvadWkM7kBvbnOYit2ayGCuKFZsUL4iUroiSFiOty4KOcwqZIJ25y0hSY1dY_iAvBPRQXK-h7SkZ9Lqvnb631k_wZNj0Sy_QJmgaEWctA5ZjSRL5PFAcnCBFJLmCqci0yIJQZuAtrRwbmfBF4AvmSxaFZ2Q3t7k-JzRUikuhpIpFzBULBJLawAIVKPCsSmSDsI0pU7kmF0eNi0m6qSJ7S539U7R_Wtm_Qe62nWYVt8bvzdvoo21TJMZ2LwAu6Rou6V9wufiPj1ySPRgXr05irshuOV_oa8hNyuzGwRCeT8P2D0oM5sw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroosmosis%E2%80%90modulated+Darcy%E2%80%93Forchheimer+flow+of+Casson+nanofluid+over+stretching+sheets+in+the+presence+of+Newtonian+heating&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=N.M.+Hafez&rft.au=Esraa+N.+Thabet&rft.au=Zeeshan+Khan&rft.au=A.M.+Abd-Alla&rft.date=2024-01-01&rft.pub=Elsevier&rft.eissn=2214-157X&rft.volume=53&rft.spage=103806&rft_id=info:doi/10.1016%2Fj.csite.2023.103806&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0fcc292f54394ea6ae2e48ae7a250736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon