Electroosmosis‐modulated Darcy–Forchheimer flow of Casson nanofluid over stretching sheets in the presence of Newtonian heating
A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models...
Saved in:
Published in | Case studies in thermal engineering Vol. 53; p. 103806 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2023.103806 |
Cover
Loading…
Abstract | A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. This study’s main objective is to examine the Casson nanofluid’s Darcy-Forchheimer flow across a stretching sheet. Investigations are being conducted on the viscous and Joule dissipations that the electroosmosis forces (EOF) have on the casson nanofluid boundary layer. The method transforms partial differential equations originating in nanofluidic systems into nonlinear differential equation systems with the proper degree of similarity. With a precision of order 4 to 5, the nonlinear nanofluid problem is solved using the (FDM) finite difference approach (Lobatto IIIA), which is accomplished using a number of collocation locations. The ability of Lobatto IIIA to handle coupled differential equations that are very nonlinear is one of its strengths. The boundary value dilemma (bvp4c) solver, which is a component of the MATLAB software programme, is used to reduce the higher order differential equations into a first order technique and computationally analyze the simplified mathematical model. When compared to previously published studies, the data acquired showed a high degree of accuracy and symmetry. The study’s primary results included that when the Casson fluid expands, the velocity field decreases, but the electric parameter, Forchheimer number, local Reynolds number, and permeability parameter show the opposite trend. Furthermore, High temperature is connected with the non-Newtonian heating parameter and the electric parameter. This work provides insights into practical applications such nanofluidic, energy conservation, friction reduction, and power generation. However, the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter, thermophoresis parameter, and Brownian motion parameter. |
---|---|
AbstractList | A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. This study’s main objective is to examine the Casson nanofluid’s Darcy-Forchheimer flow across a stretching sheet. Investigations are being conducted on the viscous and Joule dissipations that the electroosmosis forces (EOF) have on the casson nanofluid boundary layer. The method transforms partial differential equations originating in nanofluidic systems into nonlinear differential equation systems with the proper degree of similarity. With a precision of order 4 to 5, the nonlinear nanofluid problem is solved using the (FDM) finite difference approach (Lobatto IIIA), which is accomplished using a number of collocation locations. The ability of Lobatto IIIA to handle coupled differential equations that are very nonlinear is one of its strengths. The boundary value dilemma (bvp4c) solver, which is a component of the MATLAB software programme, is used to reduce the higher order differential equations into a first order technique and computationally analyze the simplified mathematical model. When compared to previously published studies, the data acquired showed a high degree of accuracy and symmetry. The study’s primary results included that when the Casson fluid expands, the velocity field decreases, but the electric parameter, Forchheimer number, local Reynolds number, and permeability parameter show the opposite trend. Furthermore, High temperature is connected with the non-Newtonian heating parameter and the electric parameter. This work provides insights into practical applications such nanofluidic, energy conservation, friction reduction, and power generation. However, the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter, thermophoresis parameter, and Brownian motion parameter. |
ArticleNumber | 103806 |
Author | Hafez, N.M. Khan, Zeeshan Elhag, S.H. Abd-Alla, A.M. Thabet, Esraa N. |
Author_xml | – sequence: 1 givenname: N.M. orcidid: 0000-0003-4674-9298 surname: Hafez fullname: Hafez, N.M. – sequence: 2 givenname: Esraa N. orcidid: 0000-0002-4768-0328 surname: Thabet fullname: Thabet, Esraa N. – sequence: 3 givenname: Zeeshan surname: Khan fullname: Khan, Zeeshan – sequence: 4 givenname: A.M. surname: Abd-Alla fullname: Abd-Alla, A.M. – sequence: 5 givenname: S.H. orcidid: 0000-0001-5358-9769 surname: Elhag fullname: Elhag, S.H. |
BookMark | eNp9kctqXDEMhk1JoGmSJ8jGLzBTX89lWaZJGwjppoXsjMZHzvFwxgq205BdoC9Q6BvmSXIm00LpoisJSf8vie8dO0iUkLEzKZZSyOb9ZulLrLhUQum5ojvRvGFHSkmzkLa9Ofgrf8tOS9kIIWSrO2nMEftxPqGvmahsqcTy_PRzS8P9BBUH_hGyf3x--nVB2Y8jxi1mHiZ64BT4CkqhxBMkCtN9HDh9n7ulZqx-jOmWlxGxFh4TryPyu4wFk8ed9BofKqUIiY8IdZ49YYcBpoKnv-Mx-3Zx_nX1eXH15dPl6sPVwutG1IXEIJsA7boPBkF1nRVGDkasOw_Wm6HtjUJYS-3XprU4KGubDgRIAUp4ZfUxu9z7DgQbd5fjFvKjI4jutUD51kGu0U_oRPBe9SpYo_t5WQOo0HSALSgrWt3MXv3ey2cqJWNwPtb5G0o1Q5ycFG4Hx23cKxy3g-P2cGat_kf755b_qV4AGTWcRA |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad5a53 crossref_primary_10_1080_10407790_2024_2377179 crossref_primary_10_1177_16878132241275435 crossref_primary_10_1515_zna_2024_0194 crossref_primary_10_1080_01430750_2024_2345834 crossref_primary_10_1108_HFF_04_2024_0324 crossref_primary_10_1016_j_jrras_2024_101189 crossref_primary_10_1002_zamm_202300501 crossref_primary_10_1016_j_aej_2024_10_109 crossref_primary_10_1007_s41939_024_00712_z crossref_primary_10_1155_2024_5730530 crossref_primary_10_3390_math12111742 crossref_primary_10_1142_S179396232450048X crossref_primary_10_1016_j_net_2025_103510 crossref_primary_10_1007_s10973_024_13710_7 crossref_primary_10_1016_j_padiff_2025_101109 crossref_primary_10_1063_5_0216227 crossref_primary_10_1016_j_ijheatfluidflow_2024_109507 crossref_primary_10_1016_j_jocs_2024_102256 crossref_primary_10_1016_j_chaos_2025_116021 crossref_primary_10_1007_s41939_024_00475_7 crossref_primary_10_1080_10407782_2024_2345865 crossref_primary_10_1080_10407782_2024_2345864 crossref_primary_10_1515_rams_2024_0020 crossref_primary_10_1007_s10751_025_02274_z crossref_primary_10_1016_j_asej_2024_102839 crossref_primary_10_1063_5_0198395 crossref_primary_10_1016_j_asej_2023_102618 crossref_primary_10_1007_s41939_024_00709_8 crossref_primary_10_1016_j_csite_2024_105218 crossref_primary_10_1016_j_padiff_2025_101081 crossref_primary_10_1063_5_0203555 |
Cites_doi | 10.1080/17455030.2021.2019352 10.1016/j.rinp.2018.01.017 10.1615/NanoSciTechnolIntJ.2021037367 10.1002/htj.22717 10.1177/1687814018808850 10.1140/epjp/i2018-11899-9 10.1016/j.asej.2013.05.003 10.1142/S0219519422500300 10.1016/j.colsurfa.2022.129070 10.1038/s41598-022-07193-5 10.1177/0954406220908624 10.1108/HFF-10-2020-0666 10.1088/1674-1056/23/4/044702 10.1002/htj.21759 10.3390/math8071094 10.1063/5.0086541 10.3390/math9192525 10.1615/NanoSciTechnolIntJ.2022041674 10.1038/s41598-020-72266-2 10.1016/j.physleta.2018.06.026 10.1016/j.icheatmasstransfer.2021.105832 10.37934/cfdl.14.3.3952 10.1016/j.rinp.2017.07.052 10.1080/15502287.2022.2030426 10.1615/SpecialTopicsRevPorousMedia.v14.i4.10 10.1007/s10973-023-11962-3 10.1016/j.apt.2018.02.010 10.1016/j.cjph.2020.07.011 10.1080/15502287.2021.1900451 10.1007/s12668-023-01132-y 10.3390/coatings12030296 10.1615/NanoSciTechnolIntJ.2021038892 10.37934/arfmts.82.1.111 10.1002/htj.22753 10.1615/JPorMedia.2020026624 10.1038/s41598-020-69411-2 10.1016/j.rinp.2019.102818 10.1615/JPorMedia.2020036165 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2023.103806 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_0fcc292f54394ea6ae2e48ae7a250736 10_1016_j_csite_2023_103806 |
GroupedDBID | 0R~ 457 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ |
ID | FETCH-LOGICAL-c360t-1ef16fa7b9f4ea2885041d40b8ca5c4d7942eab13cb475ed25568a0a10a20c253 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:07:46 EDT 2025 Tue Jul 01 02:28:43 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-1ef16fa7b9f4ea2885041d40b8ca5c4d7942eab13cb475ed25568a0a10a20c253 |
ORCID | 0000-0001-5358-9769 0000-0002-4768-0328 0000-0003-4674-9298 |
OpenAccessLink | https://doaj.org/article/0fcc292f54394ea6ae2e48ae7a250736 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fcc292f54394ea6ae2e48ae7a250736 crossref_citationtrail_10_1016_j_csite_2023_103806 crossref_primary_10_1016_j_csite_2023_103806 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Rehman (10.1016/j.csite.2023.103806_bib1) 2018; 8 Rafique (10.1016/j.csite.2023.103806_bib5) 2019; 7 Muhammad (10.1016/j.csite.2023.103806_bib26) 2017; 7 Khan (10.1016/j.csite.2023.103806_bib3) 2018; 133 Mohamed (10.1016/j.csite.2023.103806_bib36) 2021; 82 Lu (10.1016/j.csite.2023.103806_bib38) 2022; 22 Lund (10.1016/j.csite.2023.103806_bib8) 2020; 10 Alwawi (10.1016/j.csite.2023.103806_bib34) 2020; 234 Zaher (10.1016/j.csite.2023.103806_bib42) 2021; 31 Abd-Alla (10.1016/j.csite.2023.103806_bib23) 2022 Paul (10.1016/j.csite.2023.103806_bib27) 2023; 52 Alwawi (10.1016/j.csite.2023.103806_bib14) 2020; 8 Pusparaj (10.1016/j.csite.2023.103806_bib37) 2022; 13 Abdelsalam (10.1016/j.csite.2023.103806_bib41) 2020; 67 Abd-Alla (10.1016/j.csite.2023.103806_bib25) 2022; 12 Sohail (10.1016/j.csite.2023.103806_bib9) 2020; 10 Abd-Alla (10.1016/j.csite.2023.103806_bib24) 2022 De (10.1016/j.csite.2023.103806_bib33) 2022; 13 Alwawi (10.1016/j.csite.2023.103806_bib35) 2020; 16 Sangeetha (10.1016/j.csite.2023.103806_bib17) 2023; 14 Mondal (10.1016/j.csite.2023.103806_bib20) 2020; 23 Sangeetha (10.1016/j.csite.2023.103806_bib18) 2021; 12 Pramanik (10.1016/j.csite.2023.103806_bib11) 2014; 5 Hassan (10.1016/j.csite.2023.103806_bib21) 2018; 382 Joshi (10.1016/j.csite.2023.103806_bib28) 2022; 23 Mahapatra (10.1016/j.csite.2023.103806_bib40) 2022; 34 Saha (10.1016/j.csite.2023.103806_bib39) 2022; 647 Sangeetha (10.1016/j.csite.2023.103806_bib15) 2023; 52 Sangeetha (10.1016/j.csite.2023.103806_bib19) 2021; 24 Khan (10.1016/j.csite.2023.103806_bib29) 2018; 10 Bayones (10.1016/j.csite.2023.103806_bib30) 2022 Malik (10.1016/j.csite.2023.103806_bib4) 2016; 19 Sangeetha (10.1016/j.csite.2023.103806_bib16) 2023; 13 De (10.1016/j.csite.2023.103806_bib32) 2020; 49 Patil (10.1016/j.csite.2023.103806_bib2) 2023 Varun Kumar (10.1016/j.csite.2023.103806_bib6) 2022; 23 Alwawi (10.1016/j.csite.2023.103806_bib13) 2022; 12 Khan (10.1016/j.csite.2023.103806_bib31) 2022; 130 Bhatti (10.1016/j.csite.2023.103806_bib22) 2018; 29 Zhang (10.1016/j.csite.2023.103806_bib10) 2021; 9 Mukhopadhyay (10.1016/j.csite.2023.103806_bib7) 2014; 23 Hamzeh (10.1016/j.csite.2023.103806_bib12) 2022; 14 |
References_xml | – year: 2022 ident: 10.1016/j.csite.2023.103806_bib30 article-title: Magnetized dissipative Soret effect on nonlinear radiative Maxwell nanofluid flow with porosity, chemical reaction and Joule heating publication-title: Waves Random Complex Media doi: 10.1080/17455030.2021.2019352 – volume: 8 start-page: 744 year: 2018 ident: 10.1016/j.csite.2023.103806_bib1 article-title: Numerical analysis of MHD Casson Navier’s slip nanofluid flow yield by rigid rotating disk publication-title: Results Phys. doi: 10.1016/j.rinp.2018.01.017 – volume: 12 start-page: 19 year: 2021 ident: 10.1016/j.csite.2023.103806_bib18 article-title: Darcy-FORCHHEIMER porosity effects on nanofluid with motile gyrotactic microorganisms over convectively heated surface publication-title: Nanosci. Technol. Int. J. doi: 10.1615/NanoSciTechnolIntJ.2021037367 – volume: 52 start-page: 807 year: 2023 ident: 10.1016/j.csite.2023.103806_bib27 article-title: Darcy–Forchheimer MHD radiative flow through a porous space incorporating viscous dissipation, heat source, and chemical reaction effect across an exponentially stretched surface publication-title: Heat Transf. doi: 10.1002/htj.22717 – volume: 10 year: 2018 ident: 10.1016/j.csite.2023.103806_bib29 article-title: Darcy–Forchheimer flow of micropolar nanofluid between two plates in the rotating frame with non-uniform heat generation/absorption publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018808850 – volume: 133 start-page: 262 year: 2018 ident: 10.1016/j.csite.2023.103806_bib3 article-title: Application of the modern trend of fractional differentiation to the MHD flow of a generalized Casson fluid in a microchannel: modelling and solution publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/i2018-11899-9 – volume: 5 start-page: 205 year: 2014 ident: 10.1016/j.csite.2023.103806_bib11 article-title: Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.05.003 – volume: 22 year: 2022 ident: 10.1016/j.csite.2023.103806_bib38 article-title: Heat transfer applications in curved micro-channel driven by electroosmosis and peristaltic pumping publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519422500300 – volume: 647 year: 2022 ident: 10.1016/j.csite.2023.103806_bib39 article-title: Electroosmotic pressure-driven oscillatory flow and mass transport of Oldroyd-B fluid under high zeta potential and slippage conditions in microchannels publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2022.129070 – volume: 12 year: 2022 ident: 10.1016/j.csite.2023.103806_bib25 article-title: Numerical solution for MHD peristaltic transport in an inclined nanofluid symmetric channel with porous medium publication-title: Sci. Rep. doi: 10.1038/s41598-022-07193-5 – volume: 234 start-page: 2569 year: 2020 ident: 10.1016/j.csite.2023.103806_bib34 article-title: Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406220908624 – volume: 31 start-page: 2534 year: 2021 ident: 10.1016/j.csite.2023.103806_bib42 article-title: Electroosmosis forces EOF driven boundary layer flow for a non-Newtonian fluid with planktonic microorganism: Darcy Forchheimer model publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-10-2020-0666 – volume: 23 year: 2014 ident: 10.1016/j.csite.2023.103806_bib7 article-title: Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux publication-title: Chin. Phys. B doi: 10.1088/1674-1056/23/4/044702 – volume: 49 start-page: 3030 year: 2020 ident: 10.1016/j.csite.2023.103806_bib32 article-title: Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms publication-title: Heat Transf. doi: 10.1002/htj.21759 – volume: 8 start-page: 1094 year: 2020 ident: 10.1016/j.csite.2023.103806_bib14 article-title: A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force publication-title: Mathematics doi: 10.3390/math8071094 – volume: 34 year: 2022 ident: 10.1016/j.csite.2023.103806_bib40 article-title: Efficacy of microconfined fluid mixing in a combined electroosmotic and pressure driven transport of complex fluid over discrete electrodes publication-title: Phys. Fluids doi: 10.1063/5.0086541 – volume: 7 start-page: 1 year: 2019 ident: 10.1016/j.csite.2023.103806_bib5 article-title: Numerical solution of casson nanofluid flow over a non-linear inclined surface with Soret and Dufour effects by Keller-box method publication-title: Front. Physiol. – volume: 9 year: 2021 ident: 10.1016/j.csite.2023.103806_bib10 article-title: Heat transport phenomena for the Darcy–Forchheimer flow of casson fluid over stretching sheets with electro-osmosis forces and Newtonian heating publication-title: Mathematics doi: 10.3390/math9192525 – volume: 13 start-page: 1 year: 2022 ident: 10.1016/j.csite.2023.103806_bib37 article-title: Dual solutions of radiative magneto NON-Newtonian carreau nanofluid with arrhenius activation energy and binary chemical reaction over a stretching/shrinking sheet publication-title: Nanosci. Technol. Int. J. doi: 10.1615/NanoSciTechnolIntJ.2022041674 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.csite.2023.103806_bib8 article-title: Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-72266-2 – volume: 382 start-page: 2749 year: 2018 ident: 10.1016/j.csite.2023.103806_bib21 article-title: Convective heat transfer flow of nanofluid in a porous medium over wavy surface publication-title: Phys. Lett. doi: 10.1016/j.physleta.2018.06.026 – year: 2022 ident: 10.1016/j.csite.2023.103806_bib24 article-title: Heat transfer in a non-uniform channel on MHD peristaltic flow of a fractional Jeffrey model via porous medium publication-title: Indian J. Phys. – volume: 19 start-page: 1985 year: 2016 ident: 10.1016/j.csite.2023.103806_bib4 article-title: Variable viscosity and MHD flow in Casson fluid with Cattaneo–Christov heat flux model: using Keller box method publication-title: Eng. Sci. Technol. Int. J. – volume: 130 year: 2022 ident: 10.1016/j.csite.2023.103806_bib31 article-title: The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105832 – volume: 14 start-page: 39 year: 2022 ident: 10.1016/j.csite.2023.103806_bib12 article-title: Alkasasbeh, numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect publication-title: CFD Lett. doi: 10.37934/cfdl.14.3.3952 – volume: 7 start-page: 2791 year: 2017 ident: 10.1016/j.csite.2023.103806_bib26 article-title: A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.052 – volume: 23 start-page: 527 year: 2022 ident: 10.1016/j.csite.2023.103806_bib28 article-title: MHD Darcy-Forchheimer Cu-Ag/H 2 O-C 2 H 6 O 2 hybrid nanofluid flow via a porous stretching sheet with suction/blowing and viscous dissipation publication-title: Int. J. Comput. Methods Eng. Sci. Mech. doi: 10.1080/15502287.2022.2030426 – volume: 14 start-page: 1 year: 2023 ident: 10.1016/j.csite.2023.103806_bib17 article-title: HALL and ION effects on bioconvective maxwell nanofluid IN NON-Darcy porous medium publication-title: Spec. Top Rev. Porous Media Int. J. doi: 10.1615/SpecialTopicsRevPorousMedia.v14.i4.10 – year: 2023 ident: 10.1016/j.csite.2023.103806_bib2 article-title: Soret and Dufour effects in the flow of Casson nanofluid in a vertical channel with thermal radiation: entropy analysis publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-11962-3 – volume: 29 start-page: 1189 year: 2018 ident: 10.1016/j.csite.2023.103806_bib22 article-title: Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2018.02.010 – volume: 67 start-page: 314 year: 2020 ident: 10.1016/j.csite.2023.103806_bib41 article-title: Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed segment publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.07.011 – volume: 23 start-page: 12 year: 2022 ident: 10.1016/j.csite.2023.103806_bib6 article-title: Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction publication-title: Int. J. Comput. Methods Eng. Sci. Mech. doi: 10.1080/15502287.2021.1900451 – volume: 13 start-page: 1022 year: 2023 ident: 10.1016/j.csite.2023.103806_bib16 article-title: Stagnation point flow of bioconvective MHD nanofluids over Darcy forchheimer porous medium with thermal radiation and buoyancy effect publication-title: Bionanoscience doi: 10.1007/s12668-023-01132-y – volume: 12 start-page: 296 year: 2022 ident: 10.1016/j.csite.2023.103806_bib13 article-title: Mixed convection flow of magnetized casson nanofluid over a cylindrical surface publication-title: Coatings doi: 10.3390/coatings12030296 – volume: 13 start-page: 11 year: 2022 ident: 10.1016/j.csite.2023.103806_bib33 article-title: Soret effects of upper convected maxwell magnetized nanofluids with chemical reaction publication-title: Nanosci. Technol. Int. J. doi: 10.1615/NanoSciTechnolIntJ.2021038892 – volume: 82 start-page: 1 year: 2021 ident: 10.1016/j.csite.2023.103806_bib36 article-title: MHD stagnation point flow and heat transfer over a stretching sheet in a blood-based casson Ferrofluid with Newtonian heating publication-title: J. Adv. Res. Fluid Mech. Therm. Sci. doi: 10.37934/arfmts.82.1.111 – volume: 52 start-page: 1529 year: 2023 ident: 10.1016/j.csite.2023.103806_bib15 article-title: Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation publication-title: Heat Transf. doi: 10.1002/htj.22753 – volume: 23 start-page: 517 year: 2020 ident: 10.1016/j.csite.2023.103806_bib20 article-title: A numerical study of nanofluid flow over a porous vertical plate with internal heat generation and nonlinear thermal radiation publication-title: J. Porous Media doi: 10.1615/JPorMedia.2020026624 – year: 2022 ident: 10.1016/j.csite.2023.103806_bib23 article-title: Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with chemical reaction and wall properties publication-title: Alex. Eng. J. – volume: 10 year: 2020 ident: 10.1016/j.csite.2023.103806_bib9 article-title: Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface publication-title: Sci. Rep. doi: 10.1038/s41598-020-69411-2 – volume: 16 year: 2020 ident: 10.1016/j.csite.2023.103806_bib35 article-title: MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102818 – volume: 24 start-page: 15 year: 2021 ident: 10.1016/j.csite.2023.103806_bib19 article-title: Bioconvection in nanofluid flow embedded IN NON-Darcy porous medium with VISCOUS dissipation and ohmic heating publication-title: J. Porous Media doi: 10.1615/JPorMedia.2020036165 |
SSID | ssj0001738144 |
Score | 2.446832 |
Snippet | A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 103806 |
SubjectTerms | Darcy–Forchheimer porous medium Electro-osmosis forces (EOFs) Lobatto IIIA method MHD Ohmic heating Stretching sheet |
Title | Electroosmosis‐modulated Darcy–Forchheimer flow of Casson nanofluid over stretching sheets in the presence of Newtonian heating |
URI | https://doaj.org/article/0fcc292f54394ea6ae2e48ae7a250736 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkInGcJh1paVUYmKjULXL8UIvauGpSIbZK_AEk_mF_CXdOW2WChSVDZEfW3Wff2Tl_HyG3rSwODY8jz_g887hk3EtgSsFWxc9Q2xYJXbDa4qXZH_DnYTSsSX1hTVhFD1wZ7t43UrIWMxFe4dSiKTTTPBE6FhC849CRbUPMq22m3OlKDJGI8w3NkCvoku53LMqFO1Zw1DiqhaIaY78LLb1DcrDOCelDNZYjsqPzY7JfYwo8IZ_dSq7GFlNbjIvV8mtqFSpvaUUfAasfq-V3zwJmR3o81XNqJvadWkM7kBvbnOYit2ayGCuKFZsUL4iUroiSFiOty4KOcwqZIJ25y0hSY1dY_iAvBPRQXK-h7SkZ9Lqvnb631k_wZNj0Sy_QJmgaEWctA5ZjSRL5PFAcnCBFJLmCqci0yIJQZuAtrRwbmfBF4AvmSxaFZ2Q3t7k-JzRUikuhpIpFzBULBJLawAIVKPCsSmSDsI0pU7kmF0eNi0m6qSJ7S539U7R_Wtm_Qe62nWYVt8bvzdvoo21TJMZ2LwAu6Rou6V9wufiPj1ySPRgXr05irshuOV_oa8hNyuzGwRCeT8P2D0oM5sw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroosmosis%E2%80%90modulated+Darcy%E2%80%93Forchheimer+flow+of+Casson+nanofluid+over+stretching+sheets+in+the+presence+of+Newtonian+heating&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=N.M.+Hafez&rft.au=Esraa+N.+Thabet&rft.au=Zeeshan+Khan&rft.au=A.M.+Abd-Alla&rft.date=2024-01-01&rft.pub=Elsevier&rft.eissn=2214-157X&rft.volume=53&rft.spage=103806&rft_id=info:doi/10.1016%2Fj.csite.2023.103806&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0fcc292f54394ea6ae2e48ae7a250736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |