Compact broadband Compton spectroscopy used for intense laser-driven gamma rays
A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma rays are converted into electrons in low-Z materials by Compton scattering. Produced by a pair of stepped magnets, a weaker-front–stronger-rear...
Saved in:
Published in | Review of scientific instruments Vol. 92; no. 5; pp. 053546 - 53555 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma rays are converted into electrons in low-Z materials by Compton scattering. Produced by a pair of stepped magnets, a weaker-front–stronger-rear nonuniform magnetic field in the electron magnetic spectrometer is used to spectrally resolve the scattered electrons, leading to a broadband gamma-ray spectral coverage of 2–20 MeV in a compact volume. Flat imaging-plate detectors are placed near the focused imaging points of the magnetic spectrometer to record the dispersed electrons, thereby achieving an optimal spectral resolution of 6%–13% in the energy range of 3–20 MeV. The spectrometer is used successfully to measure the gamma-ray spectrum generated by the high-energy electron beams produced by a femtosecond-laser-driven wakefield. |
---|---|
AbstractList | A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma rays are converted into electrons in low-Z materials by Compton scattering. Produced by a pair of stepped magnets, a weaker-front–stronger-rear nonuniform magnetic field in the electron magnetic spectrometer is used to spectrally resolve the scattered electrons, leading to a broadband gamma-ray spectral coverage of 2–20 MeV in a compact volume. Flat imaging-plate detectors are placed near the focused imaging points of the magnetic spectrometer to record the dispersed electrons, thereby achieving an optimal spectral resolution of 6%–13% in the energy range of 3–20 MeV. The spectrometer is used successfully to measure the gamma-ray spectrum generated by the high-energy electron beams produced by a femtosecond-laser-driven wakefield. A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma rays are converted into electrons in low-Z materials by Compton scattering. Produced by a pair of stepped magnets, a weaker-front–stronger-rear nonuniform magnetic field in the electron magnetic spectrometer is used to spectrally resolve the scattered electrons, leading to a broadband gamma-ray spectral coverage of 2–20 MeV in a compact volume. Flat imaging-plate detectors are placed near the focused imaging points of the magnetic spectrometer to record the dispersed electrons, thereby achieving an optimal spectral resolution of 6%–13% in the energy range of 3–20 MeV. The spectrometer is used successfully to measure the gamma-ray spectrum generated by the high-energy electron beams produced by a femtosecond-laser-driven wakefield. A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma rays are converted into electrons in low-Z materials by Compton scattering. Produced by a pair of stepped magnets, a weaker-front-stronger-rear nonuniform magnetic field in the electron magnetic spectrometer is used to spectrally resolve the scattered electrons, leading to a broadband gamma-ray spectral coverage of 2-20 MeV in a compact volume. Flat imaging-plate detectors are placed near the focused imaging points of the magnetic spectrometer to record the dispersed electrons, thereby achieving an optimal spectral resolution of 6%-13% in the energy range of 3-20 MeV. The spectrometer is used successfully to measure the gamma-ray spectrum generated by the high-energy electron beams produced by a femtosecond-laser-driven wakefield.A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma rays are converted into electrons in low-Z materials by Compton scattering. Produced by a pair of stepped magnets, a weaker-front-stronger-rear nonuniform magnetic field in the electron magnetic spectrometer is used to spectrally resolve the scattered electrons, leading to a broadband gamma-ray spectral coverage of 2-20 MeV in a compact volume. Flat imaging-plate detectors are placed near the focused imaging points of the magnetic spectrometer to record the dispersed electrons, thereby achieving an optimal spectral resolution of 6%-13% in the energy range of 3-20 MeV. The spectrometer is used successfully to measure the gamma-ray spectrum generated by the high-energy electron beams produced by a femtosecond-laser-driven wakefield. |
Author | Ma, Yue Lian, Chang-wang Yang, Tao Li, Meng-ting Zhang, Zhen-chi Hu, Guang-yue Zheng, Jian Luo, Wen |
Author_xml | – sequence: 1 givenname: Tao surname: Yang fullname: Yang, Tao organization: CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China – sequence: 2 givenname: Guang-yue surname: Hu fullname: Hu, Guang-yue organization: 5Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Meng-ting surname: Li fullname: Li, Meng-ting organization: CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China – sequence: 4 givenname: Chang-wang surname: Lian fullname: Lian, Chang-wang organization: CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China – sequence: 5 givenname: Zhen-chi surname: Zhang fullname: Zhang, Zhen-chi organization: CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China – sequence: 6 givenname: Wen surname: Luo fullname: Luo, Wen organization: School of Nuclear Science and Technology, University of South China – sequence: 7 givenname: Yue surname: Ma fullname: Ma, Yue organization: Department of Engineering Physics, Tsinghua University – sequence: 8 givenname: Jian surname: Zheng fullname: Zheng, Jian organization: 5Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China |
BookMark | eNp90F1LwzAUBuAgE5zTC_9BwBsVuuWrTXspwy8Y7Eavy2mSSkeb1CQb7N_bsakwxdwcyHnOS3LO0cg6axC6omRKScZn6ZQQlpMiP0FjSvIikRnjIzQmhIskkyI_Q-chrMhwUkrHaDl3XQ8q4so70BVYjXc30VkceqOid0G5fovXwWhcO48bG40NBrcQjE-0bzbG4nfoOsAetuECndbQBnN5qBP09vjwOn9OFsunl_n9IlE8IzGhEoSpM6YVAaa44rmWKtWmkFlaU6EKQwTVAFlRc2CGi1SzSg5dSRWvoOYTdLPP7b37WJsQy64JyrQtWOPWoWRpSlgmJSsGen1EV27t7fC6QXFChRCFGNRsr9Tw5eBNXaomQmycjR6atqSk3C24TMvDgoeJ26OJ3jcd-O2f9m5vw1fqN944_wPLXtf_4d_Jn3WVmIw |
CODEN | RSINAK |
CitedBy_id | crossref_primary_10_3390_s24123736 |
Cites_doi | 10.1063/1.4738650 10.1093/oxfordjournals.rpd.a006062 10.1063/1.1476715 10.1017/hpl.2015.36 10.1016/s0168-9002(98)00491-4 10.1063/1.4884643 10.1103/PhysRev.21.483 10.1063/1.1364515 10.1118/1.597845 10.7538/yzk.2017.51.06.1090 10.1103/physrevstab.12.020701 10.3788/CJL201946.0100002 10.1063/1.1824371 10.1103/physrevlett.81.4887 10.1088/1361-6587/ab3310 10.1103/physrevlett.69.1383 10.1007/s00340-006-2565-7 10.1016/j.hedp.2014.06.004 10.1016/j.nima.2016.01.086 10.1088/1748-0221/4/03/p03027 10.1063/1.2093767 10.1137/0509044 10.1137/0501006 10.1016/s0168-9002(03)01368-8 10.1063/1.1370557 10.1088/0741-3335/38/6/001 10.1088/1674-1137/39/1/017001 10.1093/oxfordjournals.rpd.a032758 10.1063/1.4826084 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0028098 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1089-7623 |
ExternalDocumentID | 10_1063_5_0028098 rsi |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11775223; 11375197; 11605200; 11275202 funderid: https://doi.org/10.13039/501100001809 – fundername: Science Challenge Project grantid: TZ2016005 funderid: https://doi.org/10.13039/501100013287 |
GroupedDBID | --- -DZ -~X .DC 123 1UP 2-P 29P 4.4 53G 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADIYS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c360t-17a4ef62dc0a2c3c38d7c5de9765f14c9e041daa69f3a2e345d2b797671c3baf3 |
ISSN | 0034-6748 1089-7623 |
IngestDate | Fri Jul 11 03:07:16 EDT 2025 Mon Jun 30 02:27:09 EDT 2025 Tue Jul 01 03:22:44 EDT 2025 Thu Apr 24 22:58:25 EDT 2025 Fri Jun 21 00:13:45 EDT 2024 Thu Jun 23 13:44:56 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 0034-6748/2021/92(5)/053546/10/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c360t-17a4ef62dc0a2c3c38d7c5de9765f14c9e041daa69f3a2e345d2b797671c3baf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6873-9974 0000-0002-4977-757X 0000-0001-8290-4772 0000-0001-9636-8958 0000-0002-7491-0627 0000-0002-9923-8187 0000-0002-2857-2620 0000-0003-0043-8769 |
PQID | 2530144494 |
PQPubID | 2050675 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2530144494 crossref_citationtrail_10_1063_5_0028098 crossref_primary_10_1063_5_0028098 scitation_primary_10_1063_5_0028098 proquest_miscellaneous_2550267729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210501 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210501 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Review of scientific instruments |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Franklin (c26) 1978; 9 Yu, Tan, Yan, Chen, Zhang, Han, Wu, Dong, Zhu, Yang (c15) 2017; 51 Gibbon, Förster (c4) 1996; 38 Grüner, Becker, Schramm, Eichner, Fuchs, Weingartner, Habs, Meyer-ter-Vehn, Geissler, Ferrario (c33) 2007; 86 Zamponi, Kämpfer, Morak, Uschmann, Förster (c6) 2005; 76 Seely, Back, Deslattes, Hudson, Holland, Bell, Miller (c10) 2001; 72 Nolte, Behrens, Schnürer, Rousse, Ambrosi (c12) 1999; 84 Wilks, Kruer, Tabak, Langdon (c2) 1992; 69 Behrens (c14) 2009; 4 Yu, Hu, An, Qian, Wu, Zhang, Gu, Wang, Zheng (c11) 2016; 4 Tikhonov (c27) 1963; 4 Tanaka (c21) 2005; 76 Compton (c22) 1923; 21 Bonnet, Comet, Denis-Petit, Gobet, Hannachi, Tarisien, Versteegen, Aléonard (c30) 2013; 84 Hudson, Henins, Deslattes, Seely, Holland, Atkin, Marlin, Meyerhofer, Stoeckl (c9) 2002; 73 Grüner, Schroeder, Maier, Becker, Mikhailova (c32) 2009; 12 Umstadter (c3) 2001; 8 Miller (c28) 1970; 1 Yang, Hu, Yuan, Tao, Zhou, Wu, Zheng (c7) 2019; 61 Corvan, Sarri, Zepf (c18) 2014; 85 Hudson, Deslattes, Henins, Chantler, Kessler, Schweppe (c8) 1996; 23 Taniguchi, Yamadera, Nakamura, Fukumura (c29) 1998; 413 Behrens, Ambrosi (c13) 2002; 101 Henderson, Liang, Riley, Yepes, Dyer, Serratto, Shagin (c17) 2014; 12 Agostinelli, Allison, Amako, Apostolakis, Araujo, Arce, Asai, Axen, Banerjee, Barrand (c25) 2003; 506 Döpp, Guillaume, Thaury, Lifschitz, Sylla, Goddet, Tafzi, Iaquanello, Lefrou, Rousseau (c35) 2016; 830 Kim, Herrmann, Hilsabeck, Moy, Stoeffl, Mack, Young, Wu, Barlow, Schillig (c16) 2012; 83 Hua, Yan, Pai, Zhang, Li, Wan, Wu, Xu, Du, Huang (c20) 2015; 39 Zhu, Chen, Zheng, Huang, Liu, Tang, Zhang, Xu, Shen, Chen (c19) 2019; 46 Liang, Wilks, Tabak (c1) 1998; 81 (2023080608190277100_c20) 2015; 39 (2023080608190277100_c32) 2009; 12 2023080608190277100_c31 (2023080608190277100_c28) 1970; 1 (2023080608190277100_c12) 1999; 84 (2023080608190277100_c16) 2012; 83 (2023080608190277100_c22) 1923; 21 (2023080608190277100_c11) 2016; 4 (2023080608190277100_c2) 1992; 69 (2023080608190277100_c15) 2017; 51 (2023080608190277100_c17) 2014; 12 (2023080608190277100_c34) 1996 (2023080608190277100_c6) 2005; 76 (2023080608190277100_c8) 1996; 23 (2023080608190277100_c23) 1980 (2023080608190277100_c30) 2013; 84 2023080608190277100_c24 (2023080608190277100_c3) 2001; 8 (2023080608190277100_c5) 2005 (2023080608190277100_c35) 2016; 830 (2023080608190277100_c21) 2005; 76 (2023080608190277100_c25) 2003; 506 (2023080608190277100_c29) 1998; 413 (2023080608190277100_c9) 2002; 73 (2023080608190277100_c13) 2002; 101 (2023080608190277100_c14) 2009; 4 (2023080608190277100_c7) 2019; 61 (2023080608190277100_c10) 2001; 72 (2023080608190277100_c27) 1963; 4 (2023080608190277100_c33) 2007; 86 (2023080608190277100_c1) 1998; 81 (2023080608190277100_c4) 1996; 38 (2023080608190277100_c18) 2014; 85 (2023080608190277100_c19) 2019; 46 (2023080608190277100_c26) 1978; 9 |
References_xml | – volume: 12 start-page: 46 year: 2014 ident: c17 publication-title: High Energy Density Phys. – volume: 9 start-page: 638 year: 1978 ident: c26 publication-title: SIAM J. Math. Anal. – volume: 76 start-page: 013507 year: 2005 ident: c21 publication-title: Rev. Sci. Instrum. – volume: 1 start-page: 52 year: 1970 ident: c28 publication-title: SIAM J. Math. Anal. – volume: 61 start-page: 095008 year: 2019 ident: c7 publication-title: Plasma Phys. Controlled Fusion – volume: 72 start-page: 2562 year: 2001 ident: c10 publication-title: Rev. Sci. Instrum. – volume: 76 start-page: 116101 year: 2005 ident: c6 publication-title: Rev. Sci. Instrum. – volume: 23 start-page: 1659 year: 1996 ident: c8 publication-title: Med. Phys. – volume: 4 start-page: P03027 year: 2009 ident: c14 publication-title: J. Instrum. – volume: 81 start-page: 4887 year: 1998 ident: c1 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 1774 year: 2001 ident: c3 publication-title: Phys. Plasmas – volume: 39 start-page: 017001 year: 2015 ident: c20 publication-title: Chin. Phys. C – volume: 21 start-page: 483 year: 1923 ident: c22 publication-title: Phys. Rev. – volume: 84 start-page: 103510 year: 2013 ident: c30 publication-title: Rev. Sci. Instrum. – volume: 85 start-page: 065119 year: 2014 ident: c18 publication-title: Rev. Sci. Instrum. – volume: 38 start-page: 769 year: 1996 ident: c4 publication-title: Plasma Phys. Controlled Fusion – volume: 46 start-page: 0100002 year: 2019 ident: c19 publication-title: Acta Agron. Sin. – volume: 101 start-page: 73 year: 2002 ident: c13 publication-title: Radiat. Prot. Dosim. – volume: 86 start-page: 431 year: 2007 ident: c33 publication-title: Appl. Phys. B – volume: 51 start-page: 1090 year: 2017 ident: c15 publication-title: At. Energy Sci. Technol. – volume: 506 start-page: 250 year: 2003 ident: c25 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 830 start-page: 515 year: 2016 ident: c35 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 4 start-page: 1035 year: 1963 ident: c27 publication-title: Sov. Math. Dokl. – volume: 83 start-page: 10D311 year: 2012 ident: c16 publication-title: Rev. Sci. Instrum. – volume: 69 start-page: 1383 year: 1992 ident: c2 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 020701 year: 2009 ident: c32 publication-title: Phys. Rev. Spec. Top. Accel. Beams – volume: 413 start-page: 119 year: 1998 ident: c29 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 84 start-page: 367 year: 1999 ident: c12 publication-title: Radiat. Prot. Dosim. – volume: 73 start-page: 2270 year: 2002 ident: c9 publication-title: Rev. Sci. Instrum. – volume: 4 start-page: e2 year: 2016 ident: c11 publication-title: High Power Laser Sci. Eng. – volume: 83 start-page: 10D311 year: 2012 ident: 2023080608190277100_c16 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4738650 – volume: 101 start-page: 73 year: 2002 ident: 2023080608190277100_c13 publication-title: Radiat. Prot. Dosim. doi: 10.1093/oxfordjournals.rpd.a006062 – volume: 73 start-page: 2270 year: 2002 ident: 2023080608190277100_c9 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1476715 – volume: 4 start-page: e2 year: 2016 ident: 2023080608190277100_c11 publication-title: High Power Laser Sci. Eng. doi: 10.1017/hpl.2015.36 – volume: 413 start-page: 119 year: 1998 ident: 2023080608190277100_c29 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/s0168-9002(98)00491-4 – volume: 85 start-page: 065119 year: 2014 ident: 2023080608190277100_c18 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4884643 – volume: 21 start-page: 483 year: 1923 ident: 2023080608190277100_c22 publication-title: Phys. Rev. doi: 10.1103/PhysRev.21.483 – volume: 8 start-page: 1774 year: 2001 ident: 2023080608190277100_c3 publication-title: Phys. Plasmas doi: 10.1063/1.1364515 – volume: 23 start-page: 1659 year: 1996 ident: 2023080608190277100_c8 publication-title: Med. Phys. doi: 10.1118/1.597845 – volume: 51 start-page: 1090 year: 2017 ident: 2023080608190277100_c15 publication-title: At. Energy Sci. Technol. doi: 10.7538/yzk.2017.51.06.1090 – volume: 12 start-page: 020701 year: 2009 ident: 2023080608190277100_c32 publication-title: Phys. Rev. Spec. Top. Accel. Beams doi: 10.1103/physrevstab.12.020701 – volume: 46 start-page: 0100002 year: 2019 ident: 2023080608190277100_c19 publication-title: Acta Agron. Sin. doi: 10.3788/CJL201946.0100002 – volume: 76 start-page: 013507 year: 2005 ident: 2023080608190277100_c21 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1824371 – volume: 81 start-page: 4887 year: 1998 ident: 2023080608190277100_c1 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.81.4887 – volume: 61 start-page: 095008 year: 2019 ident: 2023080608190277100_c7 publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/1361-6587/ab3310 – volume: 69 start-page: 1383 year: 1992 ident: 2023080608190277100_c2 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.69.1383 – volume: 86 start-page: 431 year: 2007 ident: 2023080608190277100_c33 publication-title: Appl. Phys. B doi: 10.1007/s00340-006-2565-7 – volume: 12 start-page: 46 year: 2014 ident: 2023080608190277100_c17 publication-title: High Energy Density Phys. doi: 10.1016/j.hedp.2014.06.004 – volume: 830 start-page: 515 year: 2016 ident: 2023080608190277100_c35 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2016.01.086 – volume: 4 start-page: P03027 year: 2009 ident: 2023080608190277100_c14 publication-title: J. Instrum. doi: 10.1088/1748-0221/4/03/p03027 – volume: 76 start-page: 116101 year: 2005 ident: 2023080608190277100_c6 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2093767 – volume: 9 start-page: 638 year: 1978 ident: 2023080608190277100_c26 publication-title: SIAM J. Math. Anal. doi: 10.1137/0509044 – volume: 1 start-page: 52 year: 1970 ident: 2023080608190277100_c28 publication-title: SIAM J. Math. Anal. doi: 10.1137/0501006 – start-page: 1241 year: 1996 ident: 2023080608190277100_c34 – volume: 506 start-page: 250 year: 2003 ident: 2023080608190277100_c25 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/s0168-9002(03)01368-8 – volume-title: The Classical Theory of Fields year: 1980 ident: 2023080608190277100_c23 – volume: 72 start-page: 2562 year: 2001 ident: 2023080608190277100_c10 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1370557 – ident: 2023080608190277100_c31 – volume: 38 start-page: 769 year: 1996 ident: 2023080608190277100_c4 publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/38/6/001 – volume: 39 start-page: 017001 year: 2015 ident: 2023080608190277100_c20 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/39/1/017001 – ident: 2023080608190277100_c24 – volume: 84 start-page: 367 year: 1999 ident: 2023080608190277100_c12 publication-title: Radiat. Prot. Dosim. doi: 10.1093/oxfordjournals.rpd.a032758 – volume: 84 start-page: 103510 year: 2013 ident: 2023080608190277100_c30 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4826084 – volume: 4 start-page: 1035 year: 1963 ident: 2023080608190277100_c27 publication-title: Sov. Math. Dokl. – start-page: 127 volume-title: Short Pulse Interactions with Matter: An Introduction year: 2005 ident: 2023080608190277100_c5 |
SSID | ssj0000511 |
Score | 2.3448832 |
Snippet | A compact broadband Compton spectrometer is designed to measure the continuous spectrum of gamma-ray sources driven by an intense laser. The incident gamma... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 053546 |
SubjectTerms | Broadband Elastic scattering Electron beams Gamma ray sources Gamma rays High energy electrons Lasers Magnets Nonuniform magnetic fields Scientific apparatus & instruments Spectra Spectral resolution Spectrum analysis |
Title | Compact broadband Compton spectroscopy used for intense laser-driven gamma rays |
URI | http://dx.doi.org/10.1063/5.0028098 https://www.proquest.com/docview/2530144494 https://www.proquest.com/docview/2550267729 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ALojzEQkHmcSiKTBM_8jhW0KpCSyvBrrTiEjm2U5BostpNQeXXM3acR6VVBVyilTPKRp7P4_HkmxmE3nABPgWNFFEp5YRHJYc1l8REw25W8MxEkXQE2dP4ZME_LsVyoI257JKmeKd-b80r-R-twhjo1WbJ_oNm-4fCAPwG_cIVNAzXv9KxW8yqCYp1LXVhQ-B2xBbKcAmUtlBlvboKLjfgVZaOeG756iYAj9msiV5bSxecy4sLGazl1WbsqH7uU1ralEnLKLLE9cYWW_Dln5y18PHmuax73ZnqnDS-V8rs-4hAAOO_ZDc-wPLrN1MR5boLBy6APQ5F0Ggg_o3Y_7K6znNwTFY1jjyGjBPb46Tdglq7G6YZAbvMxoY5oyMAiq32HhwsUJILi6Vhlg6bWvch__QsP17MZvn8aDm_jXYoHCboBO0cfvg0-zLs2CJqOyv6F-sqUMXsoH_0db9lOIzcAS20pImRXzK_j-75AwU-bNGxi26Z6gHa9SZ7g_d9XfG3D9GZhwvu4YI9XPAYLtjCBQNcsIcLHsMFO7hgC5dHaHF8NH9_Qnw_DaJYHDYkSiQ3ZUy1CiVVTLFUJ0poAx6pKCOuMhPySEsZZyWT1DAuNC0SuJtEihWyZI_RpKor8wRh2OcypTNVuKiGFGlShpqb0Jg4zRIlp2i_m628mx_b8-RH7kgPMctF7id2il71oqu2wso2ob1uynO_ADc5FS4ewDM-RS_722Ae7TcvWZn60soI22MNjpBT9LpX1U1_tEXqZ70eJPKVLp_e_DrP0N1heeyhCSxN8xx816Z44aH3B-UlnIU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+broadband+Compton+spectroscopy+used+for+intense+laser-driven+gamma+rays&rft.jtitle=Review+of+scientific+instruments&rft.au=Yang%2C+Tao&rft.au=Meng-ting%2C+Li&rft.au=Chang-wang%2C+Lian&rft.au=Zhen-chi%2C+Zhang&rft.date=2021-05-01&rft.pub=American+Institute+of+Physics&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=92&rft.issue=5&rft_id=info:doi/10.1063%2F5.0028098&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |