BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles...
Saved in:
Published in | Advanced functional materials Vol. 23; no. 35; pp. 4317 - 4323 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
20.09.2013
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication.
A high figure of merit (ZT) up to 1.33 at 373 K is achieved by incorporating a tiny number of SiC particles to a traditional Bi0.3Sb1.7Te3 thermoelectric material. The existence of SiC nanoinclusions in the p‐type Bi0.3Sb1.7Te3 thermoelectric matrix reduces the electrical resistivity and increases the Seebeck coefficient, which leads to the remarkable ZT enhancement. |
---|---|
AbstractList | Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state-of-the-art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi sub(0.3)Sb sub(1.7)Te sub(3) incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi sub(0.3)Sb sub(1.7)Te sub(3) matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano-SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication. A high figure of merit (ZT) up to 1.33 at 373 K is achieved by incorporating a tiny number of SiC particles to a traditional Bi sub(0.3)Sb sub(1.7)Te sub(3) thermoelectric material. The existence of SiC nanoinclusions in the p-type Bi sub(0.3)Sb sub(1.7)Te sub(3) thermoelectric matrix reduces the electrical resistivity and increases the Seebeck coefficient, which leads to the remarkable ZT enhancement. Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication. A high figure of merit (ZT) up to 1.33 at 373 K is achieved by incorporating a tiny number of SiC particles to a traditional Bi0.3Sb1.7Te3 thermoelectric material. The existence of SiC nanoinclusions in the p‐type Bi0.3Sb1.7Te3 thermoelectric matrix reduces the electrical resistivity and increases the Seebeck coefficient, which leads to the remarkable ZT enhancement. Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit ( ZT ) value of up to 1.33 at 373 K is obtained in Bi 0.3 Sb 1.7 Te 3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi 0.3 Sb 1.7 Te 3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication. |
Author | Li, Zong-Yue Li, Jing-Feng Tan, Qing Zou, Minmin Wang, Ke Liu, Da-Wei Li, Fu Li, Jianhui |
Author_xml | – sequence: 1 givenname: Jianhui surname: Li fullname: Li, Jianhui organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 2 givenname: Qing surname: Tan fullname: Tan, Qing organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 3 givenname: Jing-Feng surname: Li fullname: Li, Jing-Feng email: jingfeng@mail.tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 4 givenname: Da-Wei surname: Liu fullname: Liu, Da-Wei organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 5 givenname: Fu surname: Li fullname: Li, Fu organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 6 givenname: Zong-Yue surname: Li fullname: Li, Zong-Yue organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Minmin surname: Zou fullname: Zou, Minmin organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 8 givenname: Ke surname: Wang fullname: Wang, Ke organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China |
BookMark | eNqFkM9PIyEUx4nRxF973TNHL1NhmMKMN63Vuqm6id3sxgthmIdFZ4YKmOp_v2hNY0yMCYSXvM8HHt9dtNm7HhD6ScmAEpIfqsZ0g5xQRggt-AbaoZzyjJG83FzX9N822g3hPiFCsGIH3Z3Ym3oG2YkK0OAr1TvtuoULNkLASxvneGLv5vh2doRnc8BjY0BH7Ay-saM3vLFhAT5Y1-O0EuM7B22CvNX4t3epGS2EfbRlVBvgx_u5h_6cjWejSTa9Pr8YHU8zzThJE-Z1QVjJWK65YZSJpgJj8qJqNMmrkjSibso6dWtS58SkXYgatC65oXUJhO2hg9W9C-8enyBE2dmgoW1VD-4pSMoFHbKKV0VCBytUexeCByMX3nbKv0hK5Gui8jVRuU40CcUnQduoYvp69Mq2X2vVSlvaFl6-eUQen55dfnSzlWtDhOe1q_yD5IKJofx7dS6Ht2x6Sae_pGD_AUcEnGY |
CitedBy_id | crossref_primary_10_1021_jp4053133 crossref_primary_10_1016_j_mtcomm_2025_111995 crossref_primary_10_1021_acs_analchem_9b05218 crossref_primary_10_1016_j_ceramint_2020_10_242 crossref_primary_10_1002_advs_202200432 crossref_primary_10_1111_jace_16469 crossref_primary_10_1039_D4MA00309H crossref_primary_10_1002_adfm_202214163 crossref_primary_10_1039_D0TC02182B crossref_primary_10_1039_D2TA09850D crossref_primary_10_1016_j_nanoen_2021_106530 crossref_primary_10_1016_j_actamat_2022_117692 crossref_primary_10_1021_acsami_4c01635 crossref_primary_10_3390_e21111058 crossref_primary_10_1016_j_jeurceramsoc_2024_03_045 crossref_primary_10_1039_C5TC02219C crossref_primary_10_1007_s10853_020_04949_0 crossref_primary_10_1007_s40843_023_2485_5 crossref_primary_10_3390_bios12100882 crossref_primary_10_1016_j_mtphys_2022_100670 crossref_primary_10_1021_jacs_7b02399 crossref_primary_10_1021_acsami_1c16299 crossref_primary_10_1039_C5RA04435A crossref_primary_10_1021_acsami_0c01014 crossref_primary_10_1016_j_jallcom_2024_177917 crossref_primary_10_1016_j_mattod_2018_03_039 crossref_primary_10_1002_adfm_202208813 crossref_primary_10_1039_C9EE03446C crossref_primary_10_1007_s10854_022_09760_y crossref_primary_10_1016_j_materresbull_2020_111023 crossref_primary_10_1016_j_scriptamat_2017_11_045 crossref_primary_10_1007_s10854_022_07710_2 crossref_primary_10_1039_C7CP04240J crossref_primary_10_1016_j_actamat_2014_10_062 crossref_primary_10_1088_1674_1056_ac20c9 crossref_primary_10_1002_smsc_202400284 crossref_primary_10_1016_j_ceramint_2020_03_029 crossref_primary_10_1039_C5TC02537K crossref_primary_10_1007_s11664_019_07006_y crossref_primary_10_1002_advs_202302688 crossref_primary_10_1016_j_nanoen_2017_10_034 crossref_primary_10_1007_s11664_017_5954_2 crossref_primary_10_1007_s00339_016_0738_8 crossref_primary_10_1039_c3ta15211a crossref_primary_10_1007_s10854_020_03042_1 crossref_primary_10_1021_acs_chemmater_9b00747 crossref_primary_10_1016_j_cap_2023_03_002 crossref_primary_10_3390_ma10060617 crossref_primary_10_1021_acsaem_9b02093 crossref_primary_10_1038_s41598_020_57991_y crossref_primary_10_1016_j_scriptamat_2025_116630 crossref_primary_10_1021_acsami_2c13109 crossref_primary_10_1016_j_ceramint_2019_05_341 crossref_primary_10_1016_j_mtphys_2022_100764 crossref_primary_10_1063_5_0160384 crossref_primary_10_1007_s11431_019_9498_y crossref_primary_10_1002_smll_201902827 crossref_primary_10_1063_1_5091577 crossref_primary_10_1007_s10853_019_03502_y crossref_primary_10_1093_nsr_nwae329 crossref_primary_10_1002_smll_202101328 crossref_primary_10_1002_admt_202401922 crossref_primary_10_1088_2631_6331_ab0c83 crossref_primary_10_1016_j_cap_2016_03_028 crossref_primary_10_1002_andp_201800437 crossref_primary_10_1007_s11664_021_09312_w crossref_primary_10_1007_s12598_020_01615_x crossref_primary_10_1038_s41467_024_50946_1 crossref_primary_10_1016_j_jallcom_2024_175770 crossref_primary_10_1016_j_jallcom_2020_158376 crossref_primary_10_1016_j_matdes_2016_09_089 crossref_primary_10_1021_acsnano_1c00154 crossref_primary_10_1016_j_actamat_2025_120761 crossref_primary_10_1016_j_jallcom_2017_05_004 crossref_primary_10_1007_s11664_014_3264_5 crossref_primary_10_1557_mrs_2018_7 crossref_primary_10_1016_j_jallcom_2022_165390 crossref_primary_10_1088_1361_6528_aac901 crossref_primary_10_1002_aenm_201700524 crossref_primary_10_1016_j_jmat_2023_11_011 crossref_primary_10_1016_j_actamat_2022_118565 crossref_primary_10_1016_j_scriptamat_2020_03_018 crossref_primary_10_1016_j_mtcomm_2020_101121 crossref_primary_10_1016_j_ceramint_2021_05_233 crossref_primary_10_1016_j_scriptamat_2018_11_015 crossref_primary_10_1142_S2010135X16300024 crossref_primary_10_1002_adfm_201901789 crossref_primary_10_1021_acsami_0c15991 crossref_primary_10_1016_j_mtphys_2021_100350 crossref_primary_10_1039_D2TA02888C crossref_primary_10_1007_s12540_020_00699_5 crossref_primary_10_1002_adfm_202308970 crossref_primary_10_1016_j_jallcom_2019_01_084 crossref_primary_10_1002_smll_202301963 crossref_primary_10_1016_j_cej_2022_140923 crossref_primary_10_1039_C3TA13952B crossref_primary_10_1039_C9TA01962F crossref_primary_10_1016_j_matlet_2021_130278 crossref_primary_10_1016_j_actamat_2023_118753 crossref_primary_10_1016_j_nanoen_2017_10_003 crossref_primary_10_1021_acsami_8b06533 crossref_primary_10_1021_acsami_2c11369 crossref_primary_10_1007_s11664_020_07956_8 crossref_primary_10_1021_acsaem_2c02675 crossref_primary_10_1039_C8TC03646B crossref_primary_10_1038_s41467_019_08883_x crossref_primary_10_1002_eom2_12391 crossref_primary_10_1007_s11431_017_9058_8 crossref_primary_10_1021_acs_chemrev_6b00255 crossref_primary_10_1021_acs_jpcc_1c05375 crossref_primary_10_1016_j_materresbull_2017_11_025 crossref_primary_10_1016_j_jallcom_2018_10_408 crossref_primary_10_1039_D2EE00119E crossref_primary_10_1016_j_ceramint_2023_07_183 crossref_primary_10_1016_j_jeurceramsoc_2023_07_053 crossref_primary_10_1016_j_jallcom_2025_179543 crossref_primary_10_1016_j_jmat_2017_06_002 crossref_primary_10_1002_aenm_202103191 crossref_primary_10_1007_s12598_019_01348_6 crossref_primary_10_1039_C5RA28088E crossref_primary_10_1038_s41598_017_02507_4 crossref_primary_10_1002_adem_201600295 crossref_primary_10_1039_C7TC04573E crossref_primary_10_1016_j_jallcom_2017_01_340 crossref_primary_10_1039_C7RA00541E crossref_primary_10_1021_acsaem_9b02150 crossref_primary_10_3390_ma17153636 crossref_primary_10_1016_j_jmrt_2021_04_016 crossref_primary_10_1016_j_ceramint_2016_03_035 crossref_primary_10_1039_D3EE03720G crossref_primary_10_1002_advs_202206395 crossref_primary_10_1016_j_cclet_2019_07_034 crossref_primary_10_1016_j_jallcom_2016_10_076 crossref_primary_10_1016_j_cej_2020_126407 crossref_primary_10_1093_nsr_nwx011 crossref_primary_10_1016_j_nanoen_2015_02_001 crossref_primary_10_1016_j_cej_2021_131153 crossref_primary_10_1038_s41467_024_50371_4 crossref_primary_10_1007_s10853_017_1063_0 crossref_primary_10_1063_5_0039883 crossref_primary_10_1002_adfm_202310335 crossref_primary_10_1016_j_intermet_2015_06_020 crossref_primary_10_1080_10407782_2024_2326959 crossref_primary_10_1016_j_ceramint_2018_07_266 crossref_primary_10_1007_s00339_018_2095_2 crossref_primary_10_1080_09506608_2016_1183075 crossref_primary_10_1016_j_ceramint_2023_07_080 crossref_primary_10_1039_C5TC02087E crossref_primary_10_1021_acsami_9b07414 crossref_primary_10_1002_adfm_201904862 crossref_primary_10_1021_acsaelm_3c00385 crossref_primary_10_1002_adfm_202301971 crossref_primary_10_1016_j_cej_2021_133699 crossref_primary_10_1016_j_electacta_2019_04_139 crossref_primary_10_1002_asia_202000793 crossref_primary_10_1002_adma_202103633 crossref_primary_10_1063_1_5127175 crossref_primary_10_1016_j_ceramint_2024_08_119 crossref_primary_10_1088_1361_6641_aa6b89 crossref_primary_10_1021_acsami_1c13372 crossref_primary_10_1016_j_apsusc_2021_149783 crossref_primary_10_1002_adfm_202008851 crossref_primary_10_1016_j_ceramint_2022_05_139 crossref_primary_10_1007_s11664_015_4297_0 crossref_primary_10_1016_j_applthermaleng_2023_121164 crossref_primary_10_1016_j_jallcom_2024_173520 crossref_primary_10_1039_D1NR06962D crossref_primary_10_1038_s41467_024_50175_6 crossref_primary_10_1021_acsami_2c03011 crossref_primary_10_1021_acsami_7b11989 crossref_primary_10_1063_1_4984914 crossref_primary_10_1016_j_jallcom_2019_07_147 crossref_primary_10_1002_aenm_201902986 crossref_primary_10_1016_j_jmat_2021_03_003 crossref_primary_10_1016_j_nxmate_2023_100048 crossref_primary_10_1007_s10853_015_8960_x crossref_primary_10_1021_acsami_1c05525 crossref_primary_10_1016_j_intermet_2019_03_001 crossref_primary_10_1016_j_jmst_2018_05_010 crossref_primary_10_1016_j_scriptamat_2020_01_014 crossref_primary_10_1016_j_pmatsci_2016_07_002 crossref_primary_10_1111_jace_13773 crossref_primary_10_1007_s11664_014_3550_2 crossref_primary_10_3365_KJMM_2024_62_10_796 crossref_primary_10_1016_j_jeurceramsoc_2023_09_082 crossref_primary_10_1016_j_jeurceramsoc_2025_117192 crossref_primary_10_1038_am_2016_134 crossref_primary_10_1002_adma_202102990 crossref_primary_10_1088_2053_1591_abc0a1 crossref_primary_10_1021_acsnano_9b02574 crossref_primary_10_1002_adfm_202401240 crossref_primary_10_1007_s10854_017_6824_7 crossref_primary_10_1016_j_mseb_2020_114846 crossref_primary_10_1007_s40843_021_1647_0 crossref_primary_10_1016_j_jallcom_2020_154065 crossref_primary_10_1080_09276440_2021_1937856 crossref_primary_10_1007_s10853_022_07532_x crossref_primary_10_3390_ma13010155 crossref_primary_10_1063_1_4864220 crossref_primary_10_1007_s11664_014_3430_9 crossref_primary_10_1016_j_nanoen_2016_11_010 crossref_primary_10_1002_smtd_202301256 crossref_primary_10_1039_C7TA08701B crossref_primary_10_1007_s11664_018_6150_8 crossref_primary_10_1021_acsomega_0c01334 crossref_primary_10_1039_D0TC00572J crossref_primary_10_1016_j_jpowsour_2024_235191 crossref_primary_10_1002_advs_201600004 crossref_primary_10_1016_j_mtphys_2020_100327 crossref_primary_10_1039_C5TC02263K crossref_primary_10_1016_j_rser_2021_110800 crossref_primary_10_1002_adem_201600696 crossref_primary_10_1016_j_nanoen_2017_05_031 crossref_primary_10_1002_idm2_12009 crossref_primary_10_1039_D0TA04830E crossref_primary_10_1002_advs_202203250 crossref_primary_10_1016_j_jssc_2019_120995 crossref_primary_10_2139_ssrn_4049541 crossref_primary_10_1021_acsami_0c09656 crossref_primary_10_1007_s40948_019_00134_z crossref_primary_10_1016_j_jallcom_2016_06_133 crossref_primary_10_1142_S1793604719500097 crossref_primary_10_1002_admi_202200785 crossref_primary_10_1002_jcc_24865 crossref_primary_10_1088_1674_1056_26_1_017202 crossref_primary_10_1016_j_intermet_2015_01_009 crossref_primary_10_1007_s40820_021_00637_z crossref_primary_10_1016_j_matchemphys_2017_04_010 crossref_primary_10_26599_JAC_2023_9220740 crossref_primary_10_1007_s11664_018_06839_3 crossref_primary_10_1039_C9TA13284H crossref_primary_10_1039_D0TA00245C crossref_primary_10_1039_C7QI00304H crossref_primary_10_1002_adfm_201402663 crossref_primary_10_1021_acsami_0c00873 crossref_primary_10_1002_smll_202306701 crossref_primary_10_1002_aenm_202303942 crossref_primary_10_1021_acsaem_9b01207 crossref_primary_10_1016_j_cej_2021_131205 crossref_primary_10_1002_cnl2_28 crossref_primary_10_1016_j_ceramint_2019_11_185 crossref_primary_10_1016_j_ceramint_2022_01_119 crossref_primary_10_1016_j_nanoen_2024_110045 crossref_primary_10_1021_acsami_8b01719 crossref_primary_10_1088_2053_1591_aabca8 crossref_primary_10_1002_adfm_201400474 crossref_primary_10_1016_j_arabjc_2020_06_026 crossref_primary_10_1016_j_mseb_2023_116976 crossref_primary_10_1016_j_icheatmasstransfer_2021_105203 crossref_primary_10_1039_C4DT01543F crossref_primary_10_1002_smll_202408794 crossref_primary_10_1002_ente_201500071 crossref_primary_10_1016_j_nanoen_2015_09_015 crossref_primary_10_1016_j_jmst_2020_10_062 crossref_primary_10_1016_j_jallcom_2017_02_182 crossref_primary_10_1007_s00339_024_07354_5 crossref_primary_10_1021_acs_chemmater_1c01496 crossref_primary_10_1002_aenm_201500411 crossref_primary_10_1016_j_intermet_2016_11_002 crossref_primary_10_1021_acsami_9b16781 crossref_primary_10_1007_s11664_018_6290_x crossref_primary_10_1002_adma_202300338 crossref_primary_10_1063_1_4941757 crossref_primary_10_1002_aelm_202100173 crossref_primary_10_1021_acsaem_8b00909 crossref_primary_10_1016_j_mtcomm_2023_106228 crossref_primary_10_1039_D4TA00552J crossref_primary_10_1002_adfm_201803617 crossref_primary_10_1021_acs_chemmater_1c03785 crossref_primary_10_1016_j_pnsc_2022_09_010 crossref_primary_10_1016_j_mseb_2015_03_011 crossref_primary_10_1039_C9TA09972G crossref_primary_10_1016_j_jssc_2015_02_016 crossref_primary_10_1016_j_cej_2018_09_200 crossref_primary_10_4236_jectc_2017_72003 crossref_primary_10_1002_adfm_202214854 crossref_primary_10_1007_s10854_019_01538_z crossref_primary_10_1002_adfm_202103197 crossref_primary_10_1016_j_apsusc_2018_10_163 crossref_primary_10_1016_j_jmat_2021_02_013 crossref_primary_10_1016_j_energy_2016_07_034 crossref_primary_10_1002_aenm_201902435 crossref_primary_10_1016_j_cej_2021_130381 crossref_primary_10_1063_5_0066932 crossref_primary_10_1088_1361_6463_aa94f7 crossref_primary_10_1016_j_cej_2024_155652 crossref_primary_10_1021_acsanm_3c00439 crossref_primary_10_1039_C6CE01002D crossref_primary_10_1007_s10853_018_2209_4 crossref_primary_10_1021_acsami_3c14996 crossref_primary_10_1016_j_mtener_2024_101643 crossref_primary_10_1021_acsami_0c09529 crossref_primary_10_1007_s11664_016_5095_z crossref_primary_10_1021_acsami_9b16309 crossref_primary_10_1016_j_jallcom_2021_162035 crossref_primary_10_1021_acsami_2c07557 crossref_primary_10_1021_acsami_4c21820 crossref_primary_10_1016_j_nanoen_2021_106040 crossref_primary_10_1016_j_jallcom_2019_152899 crossref_primary_10_1088_2631_7990_acfd68 crossref_primary_10_1016_j_mtphys_2017_06_003 crossref_primary_10_1002_aenm_202000757 crossref_primary_10_1002_aelm_201600312 crossref_primary_10_1021_acsaem_1c03540 crossref_primary_10_1155_2015_202415 crossref_primary_10_1002_aenm_201300937 crossref_primary_10_1007_s11664_019_07851_x crossref_primary_10_1016_j_jmat_2023_05_011 crossref_primary_10_1007_s10854_016_4920_8 crossref_primary_10_1007_s10854_018_8765_1 crossref_primary_10_1021_acsaem_1c00388 crossref_primary_10_1016_j_actamat_2015_06_052 crossref_primary_10_1021_acs_chemmater_3c00229 crossref_primary_10_1016_j_solidstatesciences_2020_106191 crossref_primary_10_1016_j_jallcom_2016_07_235 crossref_primary_10_1016_j_jallcom_2019_152204 crossref_primary_10_1016_j_nanoen_2018_10_069 crossref_primary_10_1016_j_jmat_2016_08_002 crossref_primary_10_1016_j_jallcom_2016_11_331 crossref_primary_10_1021_acsami_2c19131 crossref_primary_10_1002_advs_201700259 crossref_primary_10_1007_s10853_016_9830_x crossref_primary_10_1016_j_jobe_2025_112312 crossref_primary_10_1016_j_cej_2022_135460 crossref_primary_10_1016_j_nanoen_2016_08_008 crossref_primary_10_1016_j_mtener_2018_06_011 crossref_primary_10_1016_j_cej_2025_160822 crossref_primary_10_1039_C7EE02677C crossref_primary_10_1007_s00339_021_05066_8 crossref_primary_10_1016_j_heliyon_2024_e39618 crossref_primary_10_1142_S1793604714500362 crossref_primary_10_1016_j_mssp_2020_105292 crossref_primary_10_1051_e3sconf_202016705003 crossref_primary_10_1063_5_0220462 crossref_primary_10_1007_s11837_021_04699_7 crossref_primary_10_1016_j_ceramint_2023_08_203 crossref_primary_10_1021_acsaelm_1c01075 crossref_primary_10_1021_acsami_1c12533 crossref_primary_10_1063_1_4975467 crossref_primary_10_1016_j_mssp_2019_104848 crossref_primary_10_1002_smll_202100554 crossref_primary_10_1039_C7CP07986A crossref_primary_10_1007_s41779_023_00979_4 crossref_primary_10_1021_acsaelm_2c00617 crossref_primary_10_1016_j_mseb_2021_115270 crossref_primary_10_1016_j_actamat_2013_10_072 crossref_primary_10_1039_D4EE02008A crossref_primary_10_1038_am_2015_36 crossref_primary_10_1088_1361_6528_aa810b crossref_primary_10_1039_C6CE02191C crossref_primary_10_1002_aenm_201600595 crossref_primary_10_1016_j_mtphys_2021_100423 crossref_primary_10_20517_microstructures_2024_56 crossref_primary_10_1002_adfm_202315591 crossref_primary_10_1002_pssa_201600451 crossref_primary_10_1021_acs_chemmater_7b02270 crossref_primary_10_1038_am_2013_86 crossref_primary_10_1016_j_jeurceramsoc_2023_04_052 crossref_primary_10_1016_j_mattod_2019_11_010 crossref_primary_10_1016_j_jpcs_2023_111329 crossref_primary_10_1016_j_actamat_2014_11_023 crossref_primary_10_1021_acsami_1c23206 crossref_primary_10_1039_D4EE00132J crossref_primary_10_1039_C8RA09280J crossref_primary_10_1134_S263516762103006X crossref_primary_10_1007_s12598_018_1005_2 crossref_primary_10_1002_advs_202400870 crossref_primary_10_1039_D1TC05455D crossref_primary_10_3390_ma12101637 crossref_primary_10_1039_D1RA07138F crossref_primary_10_1002_advs_202106052 crossref_primary_10_1039_D1CS00347J crossref_primary_10_1039_D0EE01349H crossref_primary_10_1007_s11664_016_4962_y crossref_primary_10_1002_adma_202311278 crossref_primary_10_1007_s12598_023_02576_7 crossref_primary_10_1021_acs_inorgchem_8b00061 crossref_primary_10_1007_s11051_020_05025_z crossref_primary_10_1039_C8TA08238C crossref_primary_10_1007_s12598_021_01901_2 crossref_primary_10_1063_1_4984067 crossref_primary_10_1016_j_jmat_2022_09_017 crossref_primary_10_1002_aenm_201600498 crossref_primary_10_1021_acssuschemeng_8b03949 crossref_primary_10_1016_j_energy_2024_132397 crossref_primary_10_1039_C4EE00997E crossref_primary_10_1016_j_jeurceramsoc_2018_11_053 crossref_primary_10_1016_j_matdes_2021_109974 crossref_primary_10_1002_aenm_202404653 crossref_primary_10_1038_s41560_017_0071_2 crossref_primary_10_1016_j_mtphys_2025_101697 crossref_primary_10_1002_aenm_202101877 crossref_primary_10_1002_ejic_201501063 crossref_primary_10_1021_acsami_9b14744 crossref_primary_10_1021_acsami_9b11115 crossref_primary_10_1021_acsaem_3c02490 crossref_primary_10_1088_2053_1591_3_3_035015 crossref_primary_10_1016_j_ceramint_2020_08_182 crossref_primary_10_1016_j_jpowsour_2025_236254 crossref_primary_10_1016_j_inoche_2024_113596 crossref_primary_10_1016_j_actamat_2014_12_042 crossref_primary_10_1002_smll_202104067 crossref_primary_10_1007_s11664_015_3747_z crossref_primary_10_1002_pssr_201900679 crossref_primary_10_1016_j_jmat_2023_03_004 crossref_primary_10_1016_j_jallcom_2021_161119 crossref_primary_10_1039_C7TC03614K crossref_primary_10_1016_j_mtphys_2022_100820 crossref_primary_10_1016_j_jeurceramsoc_2022_01_049 crossref_primary_10_1142_S0217984922501573 crossref_primary_10_1016_j_jallcom_2016_07_291 crossref_primary_10_1007_s12598_020_01487_1 crossref_primary_10_1016_j_jallcom_2018_09_268 crossref_primary_10_1016_j_ceramint_2021_07_243 crossref_primary_10_1016_j_jssc_2015_10_030 crossref_primary_10_1021_acsami_2c20348 crossref_primary_10_1063_1_4869220 crossref_primary_10_1016_j_jeurceramsoc_2023_02_017 crossref_primary_10_4150_KPMI_2017_24_2_115 crossref_primary_10_1016_j_jallcom_2020_154625 crossref_primary_10_1016_j_matchemphys_2019_05_023 crossref_primary_10_1142_S1793604721510231 crossref_primary_10_1021_acsami_2c07044 crossref_primary_10_1002_aenm_201401391 crossref_primary_10_1016_j_cej_2021_132738 crossref_primary_10_1039_D0TC02959A crossref_primary_10_1007_s10853_018_3172_9 crossref_primary_10_1111_ijac_12789 crossref_primary_10_1021_acs_nanolett_0c01225 crossref_primary_10_4150_KPMI_2017_24_2_108 crossref_primary_10_1515_rams_2020_0023 crossref_primary_10_1016_j_mtphys_2019_100130 crossref_primary_10_1021_acsami_8b15997 crossref_primary_10_1093_nsr_nwaa259 crossref_primary_10_1016_j_mtphys_2022_100808 crossref_primary_10_1016_j_ceramint_2020_07_057 |
Cites_doi | 10.1007/s11664-010-1476-x 10.1063/1.3097026 10.1063/1.3143104 10.1126/science.1092963 10.1007/s11664-010-1129-0 10.1063/1.3515298 10.1038/nmat2090 10.1002/adma.201000839 10.1016/j.jallcom.2007.01.015 10.1088/0960-1317/20/12/125031 10.1021/nl803235n 10.1103/PhysRevB.77.214304 10.1002/anie.200900598 10.1126/science.1072886 10.1002/adfm.201001292 10.1016/j.solidstatesciences.2009.06.007 10.1002/pssa.200622011 10.1007/s11664-010-1463-2 10.1126/science.285.5428.703 10.1038/asiamat.2010.138 10.1103/PhysRevB.56.15081 10.1126/science.1159725 10.1021/ja7110652 10.1016/j.solidstatesciences.2007.10.022 10.1021/cm901956r 10.1002/adma.200600527 10.1063/1.2345249 10.1016/j.mseb.2005.01.002 10.1038/nchem.955 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201300146 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 4323 |
ExternalDocumentID | 10_1002_adfm_201300146 ADFM201300146 ark_67375_WNG_5Z3LM1LJ_7 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3606-32b4038332c6f3137d9eff249dc02980d7bd8b32cb0b20fb2047becc86f1b8e03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 04:26:43 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 01:30:08 EDT 2025 Wed Jan 22 16:18:56 EST 2025 Wed Oct 30 09:50:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3606-32b4038332c6f3137d9eff249dc02980d7bd8b32cb0b20fb2047becc86f1b8e03 |
Notes | istex:501D123AC0228D7A75F787BD8D4AD633CC227A9C ark:/67375/WNG-5Z3LM1LJ-7 ArticleID:ADFM201300146 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671539694 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1671539694 crossref_primary_10_1002_adfm_201300146 crossref_citationtrail_10_1002_adfm_201300146 wiley_primary_10_1002_adfm_201300146_ADFM201300146 istex_primary_ark_67375_WNG_5Z3LM1LJ_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 20, 2013 |
PublicationDateYYYYMMDD | 2013-09-20 |
PublicationDate_xml | – month: 09 year: 2013 text: September 20, 2013 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao, Q. Wang, Mater. Sci. Eng. B 2005, 117, 334. V. Lankau, H. P. Martin, R. H. Weber, N. Oeschler, A. Michaelis, J. Electron. Mater. 2010, 39, 1809. C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970. Y. C. Yan, A. J. Minnich, G. Chen, Z. F. Ren, Adv. Funct. Mater. 2010, 20, 357. B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, J. R. Thompson, Phys. Rev. B 1997, 56, 15081. D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, J. Electron. Mater. 2011, 40, 992. W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, T. M. Tritt, Appl. Phys. Lett. 2009, 94, 102111. T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Science 2002, 297, 2229. X. H. Yang, X. Y. Qin, Appl. Phys. Lett. 2010, 97, 192101. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043. G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105. M. Neuberger, Mater. Res. Bull. 1969, 4, S365. L. D. Zhao, B. P. Zhang, J.-F. Li, H. L. Zhang, W. S. Liu, Solid State Sci. 2008, 10, 651. J.-F. Li, J. Liu, Phys. Status Solidi 2006, 203, 3768. W. J. Xie, X. F. Tang, Y. G. Yan, Q. J Zhang, T. M. Tritt, J. Appl. Phys. 2009, 105, 113713. J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616. J.-F. Li, W. S. Liu, L. D. Zhao, M. Zhou, NPG Asia Mater. 2010, 2, 152. K. Biswas, J. Q. He, Q. C. Zhang, G. Y. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160. S. V. Faleev, F. Léonard, Phys. Rev. B 2008, 77, 214304. Z. Xiong, X. H. Chen, X. Y. Zhao, S. Q. Bai, X. Y. Huang, L. D. Chen, Solid State Sci. 2009, 11, 1612. L. D. Zhao, B. P. Zhang, J.-F. Li, M. Zhou, W. S. Liu, J. Liu, J. Alloys. Compd. 2008, 455, 259. D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, L. L. Li, J. Micromech. Microeng. 2010, 20, 125031. E. S. Toberer, A. F. May, G. J. Snyder, Chem. Mater. 2010, 22, 624. M. Zhou, J. -F. Li, T. Kita, J. Am. Chem. Soc. 2008, 130, 4527. X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li, T. Goto, Appl. Phys. Lett. 2009, 89, 092121. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818. F. J. DiSalvo, Science 1999, 285, 703. Y. C. Lan, B. Poudel, Y. Ma, D. Z. Wang, M. S. Dresselhaus, G. Chen, Z. F. Ren, Nano Lett. 2009, 9, 1419. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554. C. Chen, D. W. Liu, B. P. Zhang, J.-F. Li, J. Electron. Mater. 2011, 40, 942. 2009; 89 2007; 19 2010; 97 2004; 303 2002; 297 2010; 39 2011; 40 2005; 117 1999; 285 2008; 7 2008; 10 2008; 77 2008; 321 2011; 3 2009; 48 2010; 22 2009; 11 2010; 20 2009; 94 1969; 4 1997; 56 2009; 9 2008; 455 2010; 2 2006; 203 2008; 130 2009; 105 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_25_2 Neuberger M. (e_1_2_7_28_2) 1969; 4 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 |
References_xml | – reference: Z. Xiong, X. H. Chen, X. Y. Zhao, S. Q. Bai, X. Y. Huang, L. D. Chen, Solid State Sci. 2009, 11, 1612. – reference: G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105. – reference: M. Zhou, J. -F. Li, T. Kita, J. Am. Chem. Soc. 2008, 130, 4527. – reference: J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554. – reference: C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970. – reference: M. Neuberger, Mater. Res. Bull. 1969, 4, S365. – reference: V. Lankau, H. P. Martin, R. H. Weber, N. Oeschler, A. Michaelis, J. Electron. Mater. 2010, 39, 1809. – reference: C. Chen, D. W. Liu, B. P. Zhang, J.-F. Li, J. Electron. Mater. 2011, 40, 942. – reference: K. Biswas, J. Q. He, Q. C. Zhang, G. Y. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160. – reference: J.-F. Li, W. S. Liu, L. D. Zhao, M. Zhou, NPG Asia Mater. 2010, 2, 152. – reference: L. D. Zhao, B. P. Zhang, J.-F. Li, M. Zhou, W. S. Liu, J. Liu, J. Alloys. Compd. 2008, 455, 259. – reference: X. H. Yang, X. Y. Qin, Appl. Phys. Lett. 2010, 97, 192101. – reference: B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, J. R. Thompson, Phys. Rev. B 1997, 56, 15081. – reference: W. J. Xie, X. F. Tang, Y. G. Yan, Q. J Zhang, T. M. Tritt, J. Appl. Phys. 2009, 105, 113713. – reference: K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818. – reference: J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao, Q. Wang, Mater. Sci. Eng. B 2005, 117, 334. – reference: X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li, T. Goto, Appl. Phys. Lett. 2009, 89, 092121. – reference: J.-F. Li, J. Liu, Phys. Status Solidi 2006, 203, 3768. – reference: Y. C. Yan, A. J. Minnich, G. Chen, Z. F. Ren, Adv. Funct. Mater. 2010, 20, 357. – reference: D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, L. L. Li, J. Micromech. Microeng. 2010, 20, 125031. – reference: L. D. Zhao, B. P. Zhang, J.-F. Li, H. L. Zhang, W. S. Liu, Solid State Sci. 2008, 10, 651. – reference: E. S. Toberer, A. F. May, G. J. Snyder, Chem. Mater. 2010, 22, 624. – reference: J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616. – reference: S. V. Faleev, F. Léonard, Phys. Rev. B 2008, 77, 214304. – reference: Y. C. Lan, B. Poudel, Y. Ma, D. Z. Wang, M. S. Dresselhaus, G. Chen, Z. F. Ren, Nano Lett. 2009, 9, 1419. – reference: D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, J. Electron. Mater. 2011, 40, 992. – reference: T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Science 2002, 297, 2229. – reference: F. J. DiSalvo, Science 1999, 285, 703. – reference: W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, T. M. Tritt, Appl. Phys. Lett. 2009, 94, 102111. – reference: M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043. – volume: 20 start-page: 125031 year: 2010 publication-title: J. Micromech. Microeng. – volume: 94 start-page: 102111 year: 2009 publication-title: Appl. Phys. Lett. – volume: 48 start-page: 8616 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 160 year: 2011 publication-title: Nat. Chem. – volume: 4 start-page: S365 year: 1969 publication-title: Mater. Res. Bull. – volume: 40 start-page: 992 year: 2011 publication-title: J. Electron. Mater. – volume: 89 start-page: 092121 year: 2009 publication-title: Appl. Phys. Lett. – volume: 40 start-page: 942 year: 2011 publication-title: J. Electron. Mater. – volume: 117 start-page: 334 year: 2005 publication-title: Mater. Sci. Eng. B – volume: 56 start-page: 15081 year: 1997 publication-title: Phys. Rev. B – volume: 7 start-page: 105 year: 2008 publication-title: Nat. Mater. – volume: 10 start-page: 651 year: 2008 publication-title: Solid State Sci. – volume: 297 start-page: 2229 year: 2002 publication-title: Science – volume: 39 start-page: 1809 year: 2010 publication-title: J. Electron. Mater. – volume: 2 start-page: 152 year: 2010 publication-title: NPG Asia Mater. – volume: 285 start-page: 703 year: 1999 publication-title: Science – volume: 455 start-page: 259 year: 2008 publication-title: J. Alloys. Compd. – volume: 203 start-page: 3768 year: 2006 publication-title: Phys. Status Solidi – volume: 19 start-page: 1043 year: 2007 publication-title: Adv. Mater. – volume: 303 start-page: 818 year: 2004 publication-title: Science – volume: 20 start-page: 357 year: 2010 publication-title: Adv. Funct. Mater. – volume: 97 start-page: 192101 year: 2010 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 1419 year: 2009 publication-title: Nano Lett. – volume: 22 start-page: 3970 year: 2010 publication-title: Adv. Mater. – volume: 321 start-page: 554 year: 2008 publication-title: Science – volume: 11 start-page: 1612 year: 2009 publication-title: Solid State Sci. – volume: 22 start-page: 624 year: 2010 publication-title: Chem. Mater. – volume: 77 start-page: 214304 year: 2008 publication-title: Phys. Rev. B – volume: 130 start-page: 4527 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 113713 year: 2009 publication-title: J. Appl. Phys. – ident: e_1_2_7_19_2 doi: 10.1007/s11664-010-1476-x – ident: e_1_2_7_27_2 doi: 10.1063/1.3097026 – ident: e_1_2_7_18_2 doi: 10.1063/1.3143104 – ident: e_1_2_7_6_2 doi: 10.1126/science.1092963 – ident: e_1_2_7_11_2 doi: 10.1007/s11664-010-1129-0 – ident: e_1_2_7_23_2 doi: 10.1063/1.3515298 – ident: e_1_2_7_5_2 doi: 10.1038/nmat2090 – ident: e_1_2_7_21_2 doi: 10.1002/adma.201000839 – ident: e_1_2_7_13_2 doi: 10.1016/j.jallcom.2007.01.015 – ident: e_1_2_7_14_2 doi: 10.1088/0960-1317/20/12/125031 – ident: e_1_2_7_17_2 doi: 10.1021/nl803235n – ident: e_1_2_7_24_2 doi: 10.1103/PhysRevB.77.214304 – ident: e_1_2_7_26_2 doi: 10.1002/anie.200900598 – ident: e_1_2_7_4_2 doi: 10.1126/science.1072886 – ident: e_1_2_7_9_2 doi: 10.1002/adfm.201001292 – ident: e_1_2_7_22_2 doi: 10.1016/j.solidstatesciences.2009.06.007 – ident: e_1_2_7_12_2 doi: 10.1002/pssa.200622011 – ident: e_1_2_7_30_2 doi: 10.1007/s11664-010-1463-2 – ident: e_1_2_7_1_2 doi: 10.1126/science.285.5428.703 – ident: e_1_2_7_2_2 doi: 10.1038/asiamat.2010.138 – ident: e_1_2_7_29_2 doi: 10.1103/PhysRevB.56.15081 – ident: e_1_2_7_25_2 doi: 10.1126/science.1159725 – ident: e_1_2_7_7_2 doi: 10.1021/ja7110652 – ident: e_1_2_7_15_2 doi: 10.1016/j.solidstatesciences.2007.10.022 – ident: e_1_2_7_20_2 doi: 10.1021/cm901956r – ident: e_1_2_7_3_2 doi: 10.1002/adma.200600527 – volume: 4 start-page: S365 year: 1969 ident: e_1_2_7_28_2 publication-title: Mater. Res. Bull. – ident: e_1_2_7_10_2 doi: 10.1063/1.2345249 – ident: e_1_2_7_16_2 doi: 10.1016/j.mseb.2005.01.002 – ident: e_1_2_7_8_2 doi: 10.1038/nchem.955 |
SSID | ssj0017734 |
Score | 2.593259 |
Snippet | Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4317 |
SubjectTerms | Alloys BiSbTe alloys Devices Nanocomposites Nanomaterials Nanostructure SiC nanodispersion Silicon carbide Thermoelectric materials thermoelectric properties Thermoelectricity |
Title | BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties |
URI | https://api.istex.fr/ark:/67375/WNG-5Z3LM1LJ-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201300146 https://www.proquest.com/docview/1671539694 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB6kfdEHbb3g2lpGEH1Km0ySmYxv29a1lN0i7haXvgxzhdC6kb1A8cmf4G_0l_ScZDfuCiIoJA8hZ8hk5txmzpnvEPI6NlxzaYrI6sxHWSZDJFnwUS6ktamzjtW1CAYX_OwyOx_n47VT_A0-RLvhhpJR62sUcG1mR79AQ7ULeJIcwzEg7aCEMWELvaJPLX5UIkQTVuYJJngl4xVqY8yONptvWKVtHODbDZdz3XGtLU_vEdGrPjcJJ9eHi7k5tN9-g3P8n5_aIQ-XbintNny0S-75yWPyYA2s8Akpj8uhGfmf338cg-VzFPRyhQnpmPXlZxQ3dClmjdCr0TsK3EcbYGRaBTosT2pyVyIuOe7PUbiAZvqlaurwlJZ-xLDAFPFdn5LL3vvRyVm0LNQQ2ZRj7hwzWQxL3ZRZHtIkFU76EGBh5ywivMdOGFcYeGtiw-IAdyaQdwoeElP4OH1GtibVxD8nVDqfOJnmFhG0vS8KlxkNbqADX0TD0rFDotVEKbtEMcdiGjeqwV9mCodQtUPYIW9b-q8NfscfKd_U896S6ek1Zr2JXH2--KDyq7Q_SPrnSnTIqxVjKJBFDLDoia8WM5VwAQZEcgndZPU0_-WbqnvaG7RPL_6l0R65z-oKHRIU3j7Zmk8X_iX4SXNzQLa7p4P-8KCWiTuqhQtM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAOtDwqFtpiJASntImT2HFvfS1L2V0huhVVL1b8kqLCBm13JcSpP6G_sb-kM8kmdJEQEkjJIcpYcewZz3hm_A0hb0LNcy51Fpg8cUGSSB9I5l2QCmlMbI1lVS2CwZD3TpPjs7TJJsSzMDU-ROtwQ8mo1msUcHRI7_xCDc2tx6PkGI8Bcb9HVrCsN8LnH35uEaQiIerAMo8wxSs6a3AbQ7az2H5BL63gEP9YMDrvmq6V7umuEt30uk45udieTfW2-fkboON__dYaeTS3TOlezUqPyZIbPyEP7-AVPiXFfnGiR-7m6noflJ-lsDSXmJOOiV_ukqJPl2LiCD0f7VJgQFpjI9PS05PioCK3BUKTo4uOwgU0k29lXYqnMPQTRgYmCPH6jJx2j0YHvWBeqyEwMcf0OaaTEHa7MTPcx1EsrHTew97OGgR5D63QNtPwVoeahR7uRCD7ZNxHOnNhvE6Wx-XYPSdUWhdZGacGQbSdyzKb6BwsQQvmSA67xw4JmplSZg5kjvU0vqoagpkpHELVDmGHvGvpv9cQHn-kfFtNfEuWTy4w8U2k6svwvUrP4_4g6h8r0SGvG85QII4YY8nHrpxdqogL0CGSS-gmq-b5L99Ue4fdQfv04l8avSL3e6NBX_U_DD--JA9YVbBDwvq3QZank5nbBLNpqrcqwbgF8zcN1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdbC2N92P_SbGurwdie3NqyLVl9a5tmXZeEsqYs9EVY_8C0jUuawNjTPkI_4z7J7uzESwZjsIH9YHzCsnSnu9OdfkfI21DznEudBSZPXJAk0geSeRekQhoTW2NZVYug1-fH58nJMB0unOKv8SGaDTeUjGq9RgG_sX73F2hobj2eJMdwDEj7fbKa8FBi8Yb25wZAKhKijivzCDO8ouEctjFku8vtl9TSKo7w1yWbc9FyrVRP5zHJ552uM04ud6YTvWO-_Ybn-D9_9YQ8mtmldL9mpKfknhs9I2sLaIXPSXFQnOmB-_H97gBUn6WwMJeYkY5pX-6W4o4uxbQRejHYo8B-tEZGpqWnZ8VhRW4LBCbHDToKF9CMr8u6EE9h6CnGBcYI8PqCnHeOBofHwaxSQ2BijslzTCch-LoxM9zHUSysdN6DZ2cNQryHVmibaXirQ81CD3cikHky7iOduTBeJyujcuQ2CJXWRVbGqUEIbeeyzCY6BzvQgjGSg-_YIsF8opSZwZhjNY0rVQMwM4VDqJohbJH3Df1NDeDxR8p31bw3ZPn4EtPeRKq-9D-o9CLu9qLuiRIt8mbOGAqEESMs-ciV01sVcQEaRHIJ3WTVNP_lm2q_3ek1Ty__pdE2eXDa7qjux_6nV-Qhq6p1SFj8XpOVyXjqNsFmmuitSix-ArgyDIM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiSbTe%E2%80%90Based+Nanocomposites+with+High+ZT+%3A+The+Effect+of+SiC+Nanodispersion+on+Thermoelectric+Properties&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Jianhui&rft.au=Tan%2C+Qing&rft.au=Li%2C+Jing%E2%80%90Feng&rft.au=Liu%2C+Da%E2%80%90Wei&rft.date=2013-09-20&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=23&rft.issue=35&rft.spage=4317&rft.epage=4323&rft_id=info:doi/10.1002%2Fadfm.201300146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201300146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |