BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties

Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 23; no. 35; pp. 4317 - 4323
Main Authors Li, Jianhui, Tan, Qing, Li, Jing-Feng, Liu, Da-Wei, Li, Fu, Li, Zong-Yue, Zou, Minmin, Wang, Ke
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 20.09.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication. A high figure of merit (ZT) up to 1.33 at 373 K is achieved by incorporating a tiny number of SiC particles to a traditional Bi0.3Sb1.7Te3 thermoelectric material. The existence of SiC nanoinclusions in the p‐type Bi0.3Sb1.7Te3 thermoelectric matrix reduces the electrical resistivity and increases the Seebeck coefficient, which leads to the remarkable ZT enhancement.
AbstractList Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state-of-the-art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi sub(0.3)Sb sub(1.7)Te sub(3) incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi sub(0.3)Sb sub(1.7)Te sub(3) matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano-SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication. A high figure of merit (ZT) up to 1.33 at 373 K is achieved by incorporating a tiny number of SiC particles to a traditional Bi sub(0.3)Sb sub(1.7)Te sub(3) thermoelectric material. The existence of SiC nanoinclusions in the p-type Bi sub(0.3)Sb sub(1.7)Te sub(3) thermoelectric matrix reduces the electrical resistivity and increases the Seebeck coefficient, which leads to the remarkable ZT enhancement.
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication. A high figure of merit (ZT) up to 1.33 at 373 K is achieved by incorporating a tiny number of SiC particles to a traditional Bi0.3Sb1.7Te3 thermoelectric material. The existence of SiC nanoinclusions in the p‐type Bi0.3Sb1.7Te3 thermoelectric matrix reduces the electrical resistivity and increases the Seebeck coefficient, which leads to the remarkable ZT enhancement.
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit ( ZT ) value of up to 1.33 at 373 K is obtained in Bi 0.3 Sb 1.7 Te 3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi 0.3 Sb 1.7 Te 3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication.
Author Li, Zong-Yue
Li, Jing-Feng
Tan, Qing
Zou, Minmin
Wang, Ke
Liu, Da-Wei
Li, Fu
Li, Jianhui
Author_xml – sequence: 1
  givenname: Jianhui
  surname: Li
  fullname: Li, Jianhui
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 2
  givenname: Qing
  surname: Tan
  fullname: Tan, Qing
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 3
  givenname: Jing-Feng
  surname: Li
  fullname: Li, Jing-Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Da-Wei
  surname: Liu
  fullname: Liu, Da-Wei
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Fu
  surname: Li
  fullname: Li, Fu
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 6
  givenname: Zong-Yue
  surname: Li
  fullname: Li, Zong-Yue
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Minmin
  surname: Zou
  fullname: Zou, Minmin
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 8
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
BookMark eNqFkM9PIyEUx4nRxF973TNHL1NhmMKMN63Vuqm6id3sxgthmIdFZ4YKmOp_v2hNY0yMCYSXvM8HHt9dtNm7HhD6ScmAEpIfqsZ0g5xQRggt-AbaoZzyjJG83FzX9N822g3hPiFCsGIH3Z3Ym3oG2YkK0OAr1TvtuoULNkLASxvneGLv5vh2doRnc8BjY0BH7Ay-saM3vLFhAT5Y1-O0EuM7B22CvNX4t3epGS2EfbRlVBvgx_u5h_6cjWejSTa9Pr8YHU8zzThJE-Z1QVjJWK65YZSJpgJj8qJqNMmrkjSibso6dWtS58SkXYgatC65oXUJhO2hg9W9C-8enyBE2dmgoW1VD-4pSMoFHbKKV0VCBytUexeCByMX3nbKv0hK5Gui8jVRuU40CcUnQduoYvp69Mq2X2vVSlvaFl6-eUQen55dfnSzlWtDhOe1q_yD5IKJofx7dS6Ht2x6Sae_pGD_AUcEnGY
CitedBy_id crossref_primary_10_1021_jp4053133
crossref_primary_10_1016_j_mtcomm_2025_111995
crossref_primary_10_1021_acs_analchem_9b05218
crossref_primary_10_1016_j_ceramint_2020_10_242
crossref_primary_10_1002_advs_202200432
crossref_primary_10_1111_jace_16469
crossref_primary_10_1039_D4MA00309H
crossref_primary_10_1002_adfm_202214163
crossref_primary_10_1039_D0TC02182B
crossref_primary_10_1039_D2TA09850D
crossref_primary_10_1016_j_nanoen_2021_106530
crossref_primary_10_1016_j_actamat_2022_117692
crossref_primary_10_1021_acsami_4c01635
crossref_primary_10_3390_e21111058
crossref_primary_10_1016_j_jeurceramsoc_2024_03_045
crossref_primary_10_1039_C5TC02219C
crossref_primary_10_1007_s10853_020_04949_0
crossref_primary_10_1007_s40843_023_2485_5
crossref_primary_10_3390_bios12100882
crossref_primary_10_1016_j_mtphys_2022_100670
crossref_primary_10_1021_jacs_7b02399
crossref_primary_10_1021_acsami_1c16299
crossref_primary_10_1039_C5RA04435A
crossref_primary_10_1021_acsami_0c01014
crossref_primary_10_1016_j_jallcom_2024_177917
crossref_primary_10_1016_j_mattod_2018_03_039
crossref_primary_10_1002_adfm_202208813
crossref_primary_10_1039_C9EE03446C
crossref_primary_10_1007_s10854_022_09760_y
crossref_primary_10_1016_j_materresbull_2020_111023
crossref_primary_10_1016_j_scriptamat_2017_11_045
crossref_primary_10_1007_s10854_022_07710_2
crossref_primary_10_1039_C7CP04240J
crossref_primary_10_1016_j_actamat_2014_10_062
crossref_primary_10_1088_1674_1056_ac20c9
crossref_primary_10_1002_smsc_202400284
crossref_primary_10_1016_j_ceramint_2020_03_029
crossref_primary_10_1039_C5TC02537K
crossref_primary_10_1007_s11664_019_07006_y
crossref_primary_10_1002_advs_202302688
crossref_primary_10_1016_j_nanoen_2017_10_034
crossref_primary_10_1007_s11664_017_5954_2
crossref_primary_10_1007_s00339_016_0738_8
crossref_primary_10_1039_c3ta15211a
crossref_primary_10_1007_s10854_020_03042_1
crossref_primary_10_1021_acs_chemmater_9b00747
crossref_primary_10_1016_j_cap_2023_03_002
crossref_primary_10_3390_ma10060617
crossref_primary_10_1021_acsaem_9b02093
crossref_primary_10_1038_s41598_020_57991_y
crossref_primary_10_1016_j_scriptamat_2025_116630
crossref_primary_10_1021_acsami_2c13109
crossref_primary_10_1016_j_ceramint_2019_05_341
crossref_primary_10_1016_j_mtphys_2022_100764
crossref_primary_10_1063_5_0160384
crossref_primary_10_1007_s11431_019_9498_y
crossref_primary_10_1002_smll_201902827
crossref_primary_10_1063_1_5091577
crossref_primary_10_1007_s10853_019_03502_y
crossref_primary_10_1093_nsr_nwae329
crossref_primary_10_1002_smll_202101328
crossref_primary_10_1002_admt_202401922
crossref_primary_10_1088_2631_6331_ab0c83
crossref_primary_10_1016_j_cap_2016_03_028
crossref_primary_10_1002_andp_201800437
crossref_primary_10_1007_s11664_021_09312_w
crossref_primary_10_1007_s12598_020_01615_x
crossref_primary_10_1038_s41467_024_50946_1
crossref_primary_10_1016_j_jallcom_2024_175770
crossref_primary_10_1016_j_jallcom_2020_158376
crossref_primary_10_1016_j_matdes_2016_09_089
crossref_primary_10_1021_acsnano_1c00154
crossref_primary_10_1016_j_actamat_2025_120761
crossref_primary_10_1016_j_jallcom_2017_05_004
crossref_primary_10_1007_s11664_014_3264_5
crossref_primary_10_1557_mrs_2018_7
crossref_primary_10_1016_j_jallcom_2022_165390
crossref_primary_10_1088_1361_6528_aac901
crossref_primary_10_1002_aenm_201700524
crossref_primary_10_1016_j_jmat_2023_11_011
crossref_primary_10_1016_j_actamat_2022_118565
crossref_primary_10_1016_j_scriptamat_2020_03_018
crossref_primary_10_1016_j_mtcomm_2020_101121
crossref_primary_10_1016_j_ceramint_2021_05_233
crossref_primary_10_1016_j_scriptamat_2018_11_015
crossref_primary_10_1142_S2010135X16300024
crossref_primary_10_1002_adfm_201901789
crossref_primary_10_1021_acsami_0c15991
crossref_primary_10_1016_j_mtphys_2021_100350
crossref_primary_10_1039_D2TA02888C
crossref_primary_10_1007_s12540_020_00699_5
crossref_primary_10_1002_adfm_202308970
crossref_primary_10_1016_j_jallcom_2019_01_084
crossref_primary_10_1002_smll_202301963
crossref_primary_10_1016_j_cej_2022_140923
crossref_primary_10_1039_C3TA13952B
crossref_primary_10_1039_C9TA01962F
crossref_primary_10_1016_j_matlet_2021_130278
crossref_primary_10_1016_j_actamat_2023_118753
crossref_primary_10_1016_j_nanoen_2017_10_003
crossref_primary_10_1021_acsami_8b06533
crossref_primary_10_1021_acsami_2c11369
crossref_primary_10_1007_s11664_020_07956_8
crossref_primary_10_1021_acsaem_2c02675
crossref_primary_10_1039_C8TC03646B
crossref_primary_10_1038_s41467_019_08883_x
crossref_primary_10_1002_eom2_12391
crossref_primary_10_1007_s11431_017_9058_8
crossref_primary_10_1021_acs_chemrev_6b00255
crossref_primary_10_1021_acs_jpcc_1c05375
crossref_primary_10_1016_j_materresbull_2017_11_025
crossref_primary_10_1016_j_jallcom_2018_10_408
crossref_primary_10_1039_D2EE00119E
crossref_primary_10_1016_j_ceramint_2023_07_183
crossref_primary_10_1016_j_jeurceramsoc_2023_07_053
crossref_primary_10_1016_j_jallcom_2025_179543
crossref_primary_10_1016_j_jmat_2017_06_002
crossref_primary_10_1002_aenm_202103191
crossref_primary_10_1007_s12598_019_01348_6
crossref_primary_10_1039_C5RA28088E
crossref_primary_10_1038_s41598_017_02507_4
crossref_primary_10_1002_adem_201600295
crossref_primary_10_1039_C7TC04573E
crossref_primary_10_1016_j_jallcom_2017_01_340
crossref_primary_10_1039_C7RA00541E
crossref_primary_10_1021_acsaem_9b02150
crossref_primary_10_3390_ma17153636
crossref_primary_10_1016_j_jmrt_2021_04_016
crossref_primary_10_1016_j_ceramint_2016_03_035
crossref_primary_10_1039_D3EE03720G
crossref_primary_10_1002_advs_202206395
crossref_primary_10_1016_j_cclet_2019_07_034
crossref_primary_10_1016_j_jallcom_2016_10_076
crossref_primary_10_1016_j_cej_2020_126407
crossref_primary_10_1093_nsr_nwx011
crossref_primary_10_1016_j_nanoen_2015_02_001
crossref_primary_10_1016_j_cej_2021_131153
crossref_primary_10_1038_s41467_024_50371_4
crossref_primary_10_1007_s10853_017_1063_0
crossref_primary_10_1063_5_0039883
crossref_primary_10_1002_adfm_202310335
crossref_primary_10_1016_j_intermet_2015_06_020
crossref_primary_10_1080_10407782_2024_2326959
crossref_primary_10_1016_j_ceramint_2018_07_266
crossref_primary_10_1007_s00339_018_2095_2
crossref_primary_10_1080_09506608_2016_1183075
crossref_primary_10_1016_j_ceramint_2023_07_080
crossref_primary_10_1039_C5TC02087E
crossref_primary_10_1021_acsami_9b07414
crossref_primary_10_1002_adfm_201904862
crossref_primary_10_1021_acsaelm_3c00385
crossref_primary_10_1002_adfm_202301971
crossref_primary_10_1016_j_cej_2021_133699
crossref_primary_10_1016_j_electacta_2019_04_139
crossref_primary_10_1002_asia_202000793
crossref_primary_10_1002_adma_202103633
crossref_primary_10_1063_1_5127175
crossref_primary_10_1016_j_ceramint_2024_08_119
crossref_primary_10_1088_1361_6641_aa6b89
crossref_primary_10_1021_acsami_1c13372
crossref_primary_10_1016_j_apsusc_2021_149783
crossref_primary_10_1002_adfm_202008851
crossref_primary_10_1016_j_ceramint_2022_05_139
crossref_primary_10_1007_s11664_015_4297_0
crossref_primary_10_1016_j_applthermaleng_2023_121164
crossref_primary_10_1016_j_jallcom_2024_173520
crossref_primary_10_1039_D1NR06962D
crossref_primary_10_1038_s41467_024_50175_6
crossref_primary_10_1021_acsami_2c03011
crossref_primary_10_1021_acsami_7b11989
crossref_primary_10_1063_1_4984914
crossref_primary_10_1016_j_jallcom_2019_07_147
crossref_primary_10_1002_aenm_201902986
crossref_primary_10_1016_j_jmat_2021_03_003
crossref_primary_10_1016_j_nxmate_2023_100048
crossref_primary_10_1007_s10853_015_8960_x
crossref_primary_10_1021_acsami_1c05525
crossref_primary_10_1016_j_intermet_2019_03_001
crossref_primary_10_1016_j_jmst_2018_05_010
crossref_primary_10_1016_j_scriptamat_2020_01_014
crossref_primary_10_1016_j_pmatsci_2016_07_002
crossref_primary_10_1111_jace_13773
crossref_primary_10_1007_s11664_014_3550_2
crossref_primary_10_3365_KJMM_2024_62_10_796
crossref_primary_10_1016_j_jeurceramsoc_2023_09_082
crossref_primary_10_1016_j_jeurceramsoc_2025_117192
crossref_primary_10_1038_am_2016_134
crossref_primary_10_1002_adma_202102990
crossref_primary_10_1088_2053_1591_abc0a1
crossref_primary_10_1021_acsnano_9b02574
crossref_primary_10_1002_adfm_202401240
crossref_primary_10_1007_s10854_017_6824_7
crossref_primary_10_1016_j_mseb_2020_114846
crossref_primary_10_1007_s40843_021_1647_0
crossref_primary_10_1016_j_jallcom_2020_154065
crossref_primary_10_1080_09276440_2021_1937856
crossref_primary_10_1007_s10853_022_07532_x
crossref_primary_10_3390_ma13010155
crossref_primary_10_1063_1_4864220
crossref_primary_10_1007_s11664_014_3430_9
crossref_primary_10_1016_j_nanoen_2016_11_010
crossref_primary_10_1002_smtd_202301256
crossref_primary_10_1039_C7TA08701B
crossref_primary_10_1007_s11664_018_6150_8
crossref_primary_10_1021_acsomega_0c01334
crossref_primary_10_1039_D0TC00572J
crossref_primary_10_1016_j_jpowsour_2024_235191
crossref_primary_10_1002_advs_201600004
crossref_primary_10_1016_j_mtphys_2020_100327
crossref_primary_10_1039_C5TC02263K
crossref_primary_10_1016_j_rser_2021_110800
crossref_primary_10_1002_adem_201600696
crossref_primary_10_1016_j_nanoen_2017_05_031
crossref_primary_10_1002_idm2_12009
crossref_primary_10_1039_D0TA04830E
crossref_primary_10_1002_advs_202203250
crossref_primary_10_1016_j_jssc_2019_120995
crossref_primary_10_2139_ssrn_4049541
crossref_primary_10_1021_acsami_0c09656
crossref_primary_10_1007_s40948_019_00134_z
crossref_primary_10_1016_j_jallcom_2016_06_133
crossref_primary_10_1142_S1793604719500097
crossref_primary_10_1002_admi_202200785
crossref_primary_10_1002_jcc_24865
crossref_primary_10_1088_1674_1056_26_1_017202
crossref_primary_10_1016_j_intermet_2015_01_009
crossref_primary_10_1007_s40820_021_00637_z
crossref_primary_10_1016_j_matchemphys_2017_04_010
crossref_primary_10_26599_JAC_2023_9220740
crossref_primary_10_1007_s11664_018_06839_3
crossref_primary_10_1039_C9TA13284H
crossref_primary_10_1039_D0TA00245C
crossref_primary_10_1039_C7QI00304H
crossref_primary_10_1002_adfm_201402663
crossref_primary_10_1021_acsami_0c00873
crossref_primary_10_1002_smll_202306701
crossref_primary_10_1002_aenm_202303942
crossref_primary_10_1021_acsaem_9b01207
crossref_primary_10_1016_j_cej_2021_131205
crossref_primary_10_1002_cnl2_28
crossref_primary_10_1016_j_ceramint_2019_11_185
crossref_primary_10_1016_j_ceramint_2022_01_119
crossref_primary_10_1016_j_nanoen_2024_110045
crossref_primary_10_1021_acsami_8b01719
crossref_primary_10_1088_2053_1591_aabca8
crossref_primary_10_1002_adfm_201400474
crossref_primary_10_1016_j_arabjc_2020_06_026
crossref_primary_10_1016_j_mseb_2023_116976
crossref_primary_10_1016_j_icheatmasstransfer_2021_105203
crossref_primary_10_1039_C4DT01543F
crossref_primary_10_1002_smll_202408794
crossref_primary_10_1002_ente_201500071
crossref_primary_10_1016_j_nanoen_2015_09_015
crossref_primary_10_1016_j_jmst_2020_10_062
crossref_primary_10_1016_j_jallcom_2017_02_182
crossref_primary_10_1007_s00339_024_07354_5
crossref_primary_10_1021_acs_chemmater_1c01496
crossref_primary_10_1002_aenm_201500411
crossref_primary_10_1016_j_intermet_2016_11_002
crossref_primary_10_1021_acsami_9b16781
crossref_primary_10_1007_s11664_018_6290_x
crossref_primary_10_1002_adma_202300338
crossref_primary_10_1063_1_4941757
crossref_primary_10_1002_aelm_202100173
crossref_primary_10_1021_acsaem_8b00909
crossref_primary_10_1016_j_mtcomm_2023_106228
crossref_primary_10_1039_D4TA00552J
crossref_primary_10_1002_adfm_201803617
crossref_primary_10_1021_acs_chemmater_1c03785
crossref_primary_10_1016_j_pnsc_2022_09_010
crossref_primary_10_1016_j_mseb_2015_03_011
crossref_primary_10_1039_C9TA09972G
crossref_primary_10_1016_j_jssc_2015_02_016
crossref_primary_10_1016_j_cej_2018_09_200
crossref_primary_10_4236_jectc_2017_72003
crossref_primary_10_1002_adfm_202214854
crossref_primary_10_1007_s10854_019_01538_z
crossref_primary_10_1002_adfm_202103197
crossref_primary_10_1016_j_apsusc_2018_10_163
crossref_primary_10_1016_j_jmat_2021_02_013
crossref_primary_10_1016_j_energy_2016_07_034
crossref_primary_10_1002_aenm_201902435
crossref_primary_10_1016_j_cej_2021_130381
crossref_primary_10_1063_5_0066932
crossref_primary_10_1088_1361_6463_aa94f7
crossref_primary_10_1016_j_cej_2024_155652
crossref_primary_10_1021_acsanm_3c00439
crossref_primary_10_1039_C6CE01002D
crossref_primary_10_1007_s10853_018_2209_4
crossref_primary_10_1021_acsami_3c14996
crossref_primary_10_1016_j_mtener_2024_101643
crossref_primary_10_1021_acsami_0c09529
crossref_primary_10_1007_s11664_016_5095_z
crossref_primary_10_1021_acsami_9b16309
crossref_primary_10_1016_j_jallcom_2021_162035
crossref_primary_10_1021_acsami_2c07557
crossref_primary_10_1021_acsami_4c21820
crossref_primary_10_1016_j_nanoen_2021_106040
crossref_primary_10_1016_j_jallcom_2019_152899
crossref_primary_10_1088_2631_7990_acfd68
crossref_primary_10_1016_j_mtphys_2017_06_003
crossref_primary_10_1002_aenm_202000757
crossref_primary_10_1002_aelm_201600312
crossref_primary_10_1021_acsaem_1c03540
crossref_primary_10_1155_2015_202415
crossref_primary_10_1002_aenm_201300937
crossref_primary_10_1007_s11664_019_07851_x
crossref_primary_10_1016_j_jmat_2023_05_011
crossref_primary_10_1007_s10854_016_4920_8
crossref_primary_10_1007_s10854_018_8765_1
crossref_primary_10_1021_acsaem_1c00388
crossref_primary_10_1016_j_actamat_2015_06_052
crossref_primary_10_1021_acs_chemmater_3c00229
crossref_primary_10_1016_j_solidstatesciences_2020_106191
crossref_primary_10_1016_j_jallcom_2016_07_235
crossref_primary_10_1016_j_jallcom_2019_152204
crossref_primary_10_1016_j_nanoen_2018_10_069
crossref_primary_10_1016_j_jmat_2016_08_002
crossref_primary_10_1016_j_jallcom_2016_11_331
crossref_primary_10_1021_acsami_2c19131
crossref_primary_10_1002_advs_201700259
crossref_primary_10_1007_s10853_016_9830_x
crossref_primary_10_1016_j_jobe_2025_112312
crossref_primary_10_1016_j_cej_2022_135460
crossref_primary_10_1016_j_nanoen_2016_08_008
crossref_primary_10_1016_j_mtener_2018_06_011
crossref_primary_10_1016_j_cej_2025_160822
crossref_primary_10_1039_C7EE02677C
crossref_primary_10_1007_s00339_021_05066_8
crossref_primary_10_1016_j_heliyon_2024_e39618
crossref_primary_10_1142_S1793604714500362
crossref_primary_10_1016_j_mssp_2020_105292
crossref_primary_10_1051_e3sconf_202016705003
crossref_primary_10_1063_5_0220462
crossref_primary_10_1007_s11837_021_04699_7
crossref_primary_10_1016_j_ceramint_2023_08_203
crossref_primary_10_1021_acsaelm_1c01075
crossref_primary_10_1021_acsami_1c12533
crossref_primary_10_1063_1_4975467
crossref_primary_10_1016_j_mssp_2019_104848
crossref_primary_10_1002_smll_202100554
crossref_primary_10_1039_C7CP07986A
crossref_primary_10_1007_s41779_023_00979_4
crossref_primary_10_1021_acsaelm_2c00617
crossref_primary_10_1016_j_mseb_2021_115270
crossref_primary_10_1016_j_actamat_2013_10_072
crossref_primary_10_1039_D4EE02008A
crossref_primary_10_1038_am_2015_36
crossref_primary_10_1088_1361_6528_aa810b
crossref_primary_10_1039_C6CE02191C
crossref_primary_10_1002_aenm_201600595
crossref_primary_10_1016_j_mtphys_2021_100423
crossref_primary_10_20517_microstructures_2024_56
crossref_primary_10_1002_adfm_202315591
crossref_primary_10_1002_pssa_201600451
crossref_primary_10_1021_acs_chemmater_7b02270
crossref_primary_10_1038_am_2013_86
crossref_primary_10_1016_j_jeurceramsoc_2023_04_052
crossref_primary_10_1016_j_mattod_2019_11_010
crossref_primary_10_1016_j_jpcs_2023_111329
crossref_primary_10_1016_j_actamat_2014_11_023
crossref_primary_10_1021_acsami_1c23206
crossref_primary_10_1039_D4EE00132J
crossref_primary_10_1039_C8RA09280J
crossref_primary_10_1134_S263516762103006X
crossref_primary_10_1007_s12598_018_1005_2
crossref_primary_10_1002_advs_202400870
crossref_primary_10_1039_D1TC05455D
crossref_primary_10_3390_ma12101637
crossref_primary_10_1039_D1RA07138F
crossref_primary_10_1002_advs_202106052
crossref_primary_10_1039_D1CS00347J
crossref_primary_10_1039_D0EE01349H
crossref_primary_10_1007_s11664_016_4962_y
crossref_primary_10_1002_adma_202311278
crossref_primary_10_1007_s12598_023_02576_7
crossref_primary_10_1021_acs_inorgchem_8b00061
crossref_primary_10_1007_s11051_020_05025_z
crossref_primary_10_1039_C8TA08238C
crossref_primary_10_1007_s12598_021_01901_2
crossref_primary_10_1063_1_4984067
crossref_primary_10_1016_j_jmat_2022_09_017
crossref_primary_10_1002_aenm_201600498
crossref_primary_10_1021_acssuschemeng_8b03949
crossref_primary_10_1016_j_energy_2024_132397
crossref_primary_10_1039_C4EE00997E
crossref_primary_10_1016_j_jeurceramsoc_2018_11_053
crossref_primary_10_1016_j_matdes_2021_109974
crossref_primary_10_1002_aenm_202404653
crossref_primary_10_1038_s41560_017_0071_2
crossref_primary_10_1016_j_mtphys_2025_101697
crossref_primary_10_1002_aenm_202101877
crossref_primary_10_1002_ejic_201501063
crossref_primary_10_1021_acsami_9b14744
crossref_primary_10_1021_acsami_9b11115
crossref_primary_10_1021_acsaem_3c02490
crossref_primary_10_1088_2053_1591_3_3_035015
crossref_primary_10_1016_j_ceramint_2020_08_182
crossref_primary_10_1016_j_jpowsour_2025_236254
crossref_primary_10_1016_j_inoche_2024_113596
crossref_primary_10_1016_j_actamat_2014_12_042
crossref_primary_10_1002_smll_202104067
crossref_primary_10_1007_s11664_015_3747_z
crossref_primary_10_1002_pssr_201900679
crossref_primary_10_1016_j_jmat_2023_03_004
crossref_primary_10_1016_j_jallcom_2021_161119
crossref_primary_10_1039_C7TC03614K
crossref_primary_10_1016_j_mtphys_2022_100820
crossref_primary_10_1016_j_jeurceramsoc_2022_01_049
crossref_primary_10_1142_S0217984922501573
crossref_primary_10_1016_j_jallcom_2016_07_291
crossref_primary_10_1007_s12598_020_01487_1
crossref_primary_10_1016_j_jallcom_2018_09_268
crossref_primary_10_1016_j_ceramint_2021_07_243
crossref_primary_10_1016_j_jssc_2015_10_030
crossref_primary_10_1021_acsami_2c20348
crossref_primary_10_1063_1_4869220
crossref_primary_10_1016_j_jeurceramsoc_2023_02_017
crossref_primary_10_4150_KPMI_2017_24_2_115
crossref_primary_10_1016_j_jallcom_2020_154625
crossref_primary_10_1016_j_matchemphys_2019_05_023
crossref_primary_10_1142_S1793604721510231
crossref_primary_10_1021_acsami_2c07044
crossref_primary_10_1002_aenm_201401391
crossref_primary_10_1016_j_cej_2021_132738
crossref_primary_10_1039_D0TC02959A
crossref_primary_10_1007_s10853_018_3172_9
crossref_primary_10_1111_ijac_12789
crossref_primary_10_1021_acs_nanolett_0c01225
crossref_primary_10_4150_KPMI_2017_24_2_108
crossref_primary_10_1515_rams_2020_0023
crossref_primary_10_1016_j_mtphys_2019_100130
crossref_primary_10_1021_acsami_8b15997
crossref_primary_10_1093_nsr_nwaa259
crossref_primary_10_1016_j_mtphys_2022_100808
crossref_primary_10_1016_j_ceramint_2020_07_057
Cites_doi 10.1007/s11664-010-1476-x
10.1063/1.3097026
10.1063/1.3143104
10.1126/science.1092963
10.1007/s11664-010-1129-0
10.1063/1.3515298
10.1038/nmat2090
10.1002/adma.201000839
10.1016/j.jallcom.2007.01.015
10.1088/0960-1317/20/12/125031
10.1021/nl803235n
10.1103/PhysRevB.77.214304
10.1002/anie.200900598
10.1126/science.1072886
10.1002/adfm.201001292
10.1016/j.solidstatesciences.2009.06.007
10.1002/pssa.200622011
10.1007/s11664-010-1463-2
10.1126/science.285.5428.703
10.1038/asiamat.2010.138
10.1103/PhysRevB.56.15081
10.1126/science.1159725
10.1021/ja7110652
10.1016/j.solidstatesciences.2007.10.022
10.1021/cm901956r
10.1002/adma.200600527
10.1063/1.2345249
10.1016/j.mseb.2005.01.002
10.1038/nchem.955
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201300146
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4323
ExternalDocumentID 10_1002_adfm_201300146
ADFM201300146
ark_67375_WNG_5Z3LM1LJ_7
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3606-32b4038332c6f3137d9eff249dc02980d7bd8b32cb0b20fb2047becc86f1b8e03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 04:26:43 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 01:30:08 EDT 2025
Wed Jan 22 16:18:56 EST 2025
Wed Oct 30 09:50:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3606-32b4038332c6f3137d9eff249dc02980d7bd8b32cb0b20fb2047becc86f1b8e03
Notes istex:501D123AC0228D7A75F787BD8D4AD633CC227A9C
ark:/67375/WNG-5Z3LM1LJ-7
ArticleID:ADFM201300146
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671539694
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1671539694
crossref_primary_10_1002_adfm_201300146
crossref_citationtrail_10_1002_adfm_201300146
wiley_primary_10_1002_adfm_201300146_ADFM201300146
istex_primary_ark_67375_WNG_5Z3LM1LJ_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 20, 2013
PublicationDateYYYYMMDD 2013-09-20
PublicationDate_xml – month: 09
  year: 2013
  text: September 20, 2013
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao, Q. Wang, Mater. Sci. Eng. B 2005, 117, 334.
V. Lankau, H. P. Martin, R. H. Weber, N. Oeschler, A. Michaelis, J. Electron. Mater. 2010, 39, 1809.
C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970.
Y. C. Yan, A. J. Minnich, G. Chen, Z. F. Ren, Adv. Funct. Mater. 2010, 20, 357.
B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, J. R. Thompson, Phys. Rev. B 1997, 56, 15081.
D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, J. Electron. Mater. 2011, 40, 992.
W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, T. M. Tritt, Appl. Phys. Lett. 2009, 94, 102111.
T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Science 2002, 297, 2229.
X. H. Yang, X. Y. Qin, Appl. Phys. Lett. 2010, 97, 192101.
M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043.
G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
M. Neuberger, Mater. Res. Bull. 1969, 4, S365.
L. D. Zhao, B. P. Zhang, J.-F. Li, H. L. Zhang, W. S. Liu, Solid State Sci. 2008, 10, 651.
J.-F. Li, J. Liu, Phys. Status Solidi 2006, 203, 3768.
W. J. Xie, X. F. Tang, Y. G. Yan, Q. J Zhang, T. M. Tritt, J. Appl. Phys. 2009, 105, 113713.
J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616.
J.-F. Li, W. S. Liu, L. D. Zhao, M. Zhou, NPG Asia Mater. 2010, 2, 152.
K. Biswas, J. Q. He, Q. C. Zhang, G. Y. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160.
S. V. Faleev, F. Léonard, Phys. Rev. B 2008, 77, 214304.
Z. Xiong, X. H. Chen, X. Y. Zhao, S. Q. Bai, X. Y. Huang, L. D. Chen, Solid State Sci. 2009, 11, 1612.
L. D. Zhao, B. P. Zhang, J.-F. Li, M. Zhou, W. S. Liu, J. Liu, J. Alloys. Compd. 2008, 455, 259.
D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, L. L. Li, J. Micromech. Microeng. 2010, 20, 125031.
E. S. Toberer, A. F. May, G. J. Snyder, Chem. Mater. 2010, 22, 624.
M. Zhou, J. -F. Li, T. Kita, J. Am. Chem. Soc. 2008, 130, 4527.
X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li, T. Goto, Appl. Phys. Lett. 2009, 89, 092121.
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818.
F. J. DiSalvo, Science 1999, 285, 703.
Y. C. Lan, B. Poudel, Y. Ma, D. Z. Wang, M. S. Dresselhaus, G. Chen, Z. F. Ren, Nano Lett. 2009, 9, 1419.
J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554.
C. Chen, D. W. Liu, B. P. Zhang, J.-F. Li, J. Electron. Mater. 2011, 40, 942.
2009; 89
2007; 19
2010; 97
2004; 303
2002; 297
2010; 39
2011; 40
2005; 117
1999; 285
2008; 7
2008; 10
2008; 77
2008; 321
2011; 3
2009; 48
2010; 22
2009; 11
2010; 20
2009; 94
1969; 4
1997; 56
2009; 9
2008; 455
2010; 2
2006; 203
2008; 130
2009; 105
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_25_2
Neuberger M. (e_1_2_7_28_2) 1969; 4
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
References_xml – reference: Z. Xiong, X. H. Chen, X. Y. Zhao, S. Q. Bai, X. Y. Huang, L. D. Chen, Solid State Sci. 2009, 11, 1612.
– reference: G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
– reference: M. Zhou, J. -F. Li, T. Kita, J. Am. Chem. Soc. 2008, 130, 4527.
– reference: J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554.
– reference: C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 2010, 22, 3970.
– reference: M. Neuberger, Mater. Res. Bull. 1969, 4, S365.
– reference: V. Lankau, H. P. Martin, R. H. Weber, N. Oeschler, A. Michaelis, J. Electron. Mater. 2010, 39, 1809.
– reference: C. Chen, D. W. Liu, B. P. Zhang, J.-F. Li, J. Electron. Mater. 2011, 40, 942.
– reference: K. Biswas, J. Q. He, Q. C. Zhang, G. Y. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160.
– reference: J.-F. Li, W. S. Liu, L. D. Zhao, M. Zhou, NPG Asia Mater. 2010, 2, 152.
– reference: L. D. Zhao, B. P. Zhang, J.-F. Li, M. Zhou, W. S. Liu, J. Liu, J. Alloys. Compd. 2008, 455, 259.
– reference: X. H. Yang, X. Y. Qin, Appl. Phys. Lett. 2010, 97, 192101.
– reference: B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, J. R. Thompson, Phys. Rev. B 1997, 56, 15081.
– reference: W. J. Xie, X. F. Tang, Y. G. Yan, Q. J Zhang, T. M. Tritt, J. Appl. Phys. 2009, 105, 113713.
– reference: K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818.
– reference: J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao, Q. Wang, Mater. Sci. Eng. B 2005, 117, 334.
– reference: X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li, T. Goto, Appl. Phys. Lett. 2009, 89, 092121.
– reference: J.-F. Li, J. Liu, Phys. Status Solidi 2006, 203, 3768.
– reference: Y. C. Yan, A. J. Minnich, G. Chen, Z. F. Ren, Adv. Funct. Mater. 2010, 20, 357.
– reference: D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, L. L. Li, J. Micromech. Microeng. 2010, 20, 125031.
– reference: L. D. Zhao, B. P. Zhang, J.-F. Li, H. L. Zhang, W. S. Liu, Solid State Sci. 2008, 10, 651.
– reference: E. S. Toberer, A. F. May, G. J. Snyder, Chem. Mater. 2010, 22, 624.
– reference: J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616.
– reference: S. V. Faleev, F. Léonard, Phys. Rev. B 2008, 77, 214304.
– reference: Y. C. Lan, B. Poudel, Y. Ma, D. Z. Wang, M. S. Dresselhaus, G. Chen, Z. F. Ren, Nano Lett. 2009, 9, 1419.
– reference: D. W. Liu, J.-F. Li, C. Chen, B. P. Zhang, J. Electron. Mater. 2011, 40, 992.
– reference: T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Science 2002, 297, 2229.
– reference: F. J. DiSalvo, Science 1999, 285, 703.
– reference: W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, T. M. Tritt, Appl. Phys. Lett. 2009, 94, 102111.
– reference: M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043.
– volume: 20
  start-page: 125031
  year: 2010
  publication-title: J. Micromech. Microeng.
– volume: 94
  start-page: 102111
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 48
  start-page: 8616
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 160
  year: 2011
  publication-title: Nat. Chem.
– volume: 4
  start-page: S365
  year: 1969
  publication-title: Mater. Res. Bull.
– volume: 40
  start-page: 992
  year: 2011
  publication-title: J. Electron. Mater.
– volume: 89
  start-page: 092121
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 942
  year: 2011
  publication-title: J. Electron. Mater.
– volume: 117
  start-page: 334
  year: 2005
  publication-title: Mater. Sci. Eng. B
– volume: 56
  start-page: 15081
  year: 1997
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 105
  year: 2008
  publication-title: Nat. Mater.
– volume: 10
  start-page: 651
  year: 2008
  publication-title: Solid State Sci.
– volume: 297
  start-page: 2229
  year: 2002
  publication-title: Science
– volume: 39
  start-page: 1809
  year: 2010
  publication-title: J. Electron. Mater.
– volume: 2
  start-page: 152
  year: 2010
  publication-title: NPG Asia Mater.
– volume: 285
  start-page: 703
  year: 1999
  publication-title: Science
– volume: 455
  start-page: 259
  year: 2008
  publication-title: J. Alloys. Compd.
– volume: 203
  start-page: 3768
  year: 2006
  publication-title: Phys. Status Solidi
– volume: 19
  start-page: 1043
  year: 2007
  publication-title: Adv. Mater.
– volume: 303
  start-page: 818
  year: 2004
  publication-title: Science
– volume: 20
  start-page: 357
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 97
  start-page: 192101
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 1419
  year: 2009
  publication-title: Nano Lett.
– volume: 22
  start-page: 3970
  year: 2010
  publication-title: Adv. Mater.
– volume: 321
  start-page: 554
  year: 2008
  publication-title: Science
– volume: 11
  start-page: 1612
  year: 2009
  publication-title: Solid State Sci.
– volume: 22
  start-page: 624
  year: 2010
  publication-title: Chem. Mater.
– volume: 77
  start-page: 214304
  year: 2008
  publication-title: Phys. Rev. B
– volume: 130
  start-page: 4527
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 113713
  year: 2009
  publication-title: J. Appl. Phys.
– ident: e_1_2_7_19_2
  doi: 10.1007/s11664-010-1476-x
– ident: e_1_2_7_27_2
  doi: 10.1063/1.3097026
– ident: e_1_2_7_18_2
  doi: 10.1063/1.3143104
– ident: e_1_2_7_6_2
  doi: 10.1126/science.1092963
– ident: e_1_2_7_11_2
  doi: 10.1007/s11664-010-1129-0
– ident: e_1_2_7_23_2
  doi: 10.1063/1.3515298
– ident: e_1_2_7_5_2
  doi: 10.1038/nmat2090
– ident: e_1_2_7_21_2
  doi: 10.1002/adma.201000839
– ident: e_1_2_7_13_2
  doi: 10.1016/j.jallcom.2007.01.015
– ident: e_1_2_7_14_2
  doi: 10.1088/0960-1317/20/12/125031
– ident: e_1_2_7_17_2
  doi: 10.1021/nl803235n
– ident: e_1_2_7_24_2
  doi: 10.1103/PhysRevB.77.214304
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.200900598
– ident: e_1_2_7_4_2
  doi: 10.1126/science.1072886
– ident: e_1_2_7_9_2
  doi: 10.1002/adfm.201001292
– ident: e_1_2_7_22_2
  doi: 10.1016/j.solidstatesciences.2009.06.007
– ident: e_1_2_7_12_2
  doi: 10.1002/pssa.200622011
– ident: e_1_2_7_30_2
  doi: 10.1007/s11664-010-1463-2
– ident: e_1_2_7_1_2
  doi: 10.1126/science.285.5428.703
– ident: e_1_2_7_2_2
  doi: 10.1038/asiamat.2010.138
– ident: e_1_2_7_29_2
  doi: 10.1103/PhysRevB.56.15081
– ident: e_1_2_7_25_2
  doi: 10.1126/science.1159725
– ident: e_1_2_7_7_2
  doi: 10.1021/ja7110652
– ident: e_1_2_7_15_2
  doi: 10.1016/j.solidstatesciences.2007.10.022
– ident: e_1_2_7_20_2
  doi: 10.1021/cm901956r
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.200600527
– volume: 4
  start-page: S365
  year: 1969
  ident: e_1_2_7_28_2
  publication-title: Mater. Res. Bull.
– ident: e_1_2_7_10_2
  doi: 10.1063/1.2345249
– ident: e_1_2_7_16_2
  doi: 10.1016/j.mseb.2005.01.002
– ident: e_1_2_7_8_2
  doi: 10.1038/nchem.955
SSID ssj0017734
Score 2.593259
Snippet Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4317
SubjectTerms Alloys
BiSbTe alloys
Devices
Nanocomposites
Nanomaterials
Nanostructure
SiC nanodispersion
Silicon carbide
Thermoelectric materials
thermoelectric properties
Thermoelectricity
Title BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties
URI https://api.istex.fr/ark:/67375/WNG-5Z3LM1LJ-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201300146
https://www.proquest.com/docview/1671539694
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB6kfdEHbb3g2lpGEH1Km0ySmYxv29a1lN0i7haXvgxzhdC6kb1A8cmf4G_0l_ScZDfuCiIoJA8hZ8hk5txmzpnvEPI6NlxzaYrI6sxHWSZDJFnwUS6ktamzjtW1CAYX_OwyOx_n47VT_A0-RLvhhpJR62sUcG1mR79AQ7ULeJIcwzEg7aCEMWELvaJPLX5UIkQTVuYJJngl4xVqY8yONptvWKVtHODbDZdz3XGtLU_vEdGrPjcJJ9eHi7k5tN9-g3P8n5_aIQ-XbintNny0S-75yWPyYA2s8Akpj8uhGfmf338cg-VzFPRyhQnpmPXlZxQ3dClmjdCr0TsK3EcbYGRaBTosT2pyVyIuOe7PUbiAZvqlaurwlJZ-xLDAFPFdn5LL3vvRyVm0LNQQ2ZRj7hwzWQxL3ZRZHtIkFU76EGBh5ywivMdOGFcYeGtiw-IAdyaQdwoeElP4OH1GtibVxD8nVDqfOJnmFhG0vS8KlxkNbqADX0TD0rFDotVEKbtEMcdiGjeqwV9mCodQtUPYIW9b-q8NfscfKd_U896S6ek1Zr2JXH2--KDyq7Q_SPrnSnTIqxVjKJBFDLDoia8WM5VwAQZEcgndZPU0_-WbqnvaG7RPL_6l0R65z-oKHRIU3j7Zmk8X_iX4SXNzQLa7p4P-8KCWiTuqhQtM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAOtDwqFtpiJASntImT2HFvfS1L2V0huhVVL1b8kqLCBm13JcSpP6G_sb-kM8kmdJEQEkjJIcpYcewZz3hm_A0hb0LNcy51Fpg8cUGSSB9I5l2QCmlMbI1lVS2CwZD3TpPjs7TJJsSzMDU-ROtwQ8mo1msUcHRI7_xCDc2tx6PkGI8Bcb9HVrCsN8LnH35uEaQiIerAMo8wxSs6a3AbQ7az2H5BL63gEP9YMDrvmq6V7umuEt30uk45udieTfW2-fkboON__dYaeTS3TOlezUqPyZIbPyEP7-AVPiXFfnGiR-7m6noflJ-lsDSXmJOOiV_ukqJPl2LiCD0f7VJgQFpjI9PS05PioCK3BUKTo4uOwgU0k29lXYqnMPQTRgYmCPH6jJx2j0YHvWBeqyEwMcf0OaaTEHa7MTPcx1EsrHTew97OGgR5D63QNtPwVoeahR7uRCD7ZNxHOnNhvE6Wx-XYPSdUWhdZGacGQbSdyzKb6BwsQQvmSA67xw4JmplSZg5kjvU0vqoagpkpHELVDmGHvGvpv9cQHn-kfFtNfEuWTy4w8U2k6svwvUrP4_4g6h8r0SGvG85QII4YY8nHrpxdqogL0CGSS-gmq-b5L99Ue4fdQfv04l8avSL3e6NBX_U_DD--JA9YVbBDwvq3QZank5nbBLNpqrcqwbgF8zcN1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdbC2N92P_SbGurwdie3NqyLVl9a5tmXZeEsqYs9EVY_8C0jUuawNjTPkI_4z7J7uzESwZjsIH9YHzCsnSnu9OdfkfI21DznEudBSZPXJAk0geSeRekQhoTW2NZVYug1-fH58nJMB0unOKv8SGaDTeUjGq9RgG_sX73F2hobj2eJMdwDEj7fbKa8FBi8Yb25wZAKhKijivzCDO8ouEctjFku8vtl9TSKo7w1yWbc9FyrVRP5zHJ552uM04ud6YTvWO-_Ybn-D9_9YQ8mtmldL9mpKfknhs9I2sLaIXPSXFQnOmB-_H97gBUn6WwMJeYkY5pX-6W4o4uxbQRejHYo8B-tEZGpqWnZ8VhRW4LBCbHDToKF9CMr8u6EE9h6CnGBcYI8PqCnHeOBofHwaxSQ2BijslzTCch-LoxM9zHUSysdN6DZ2cNQryHVmibaXirQ81CD3cikHky7iOduTBeJyujcuQ2CJXWRVbGqUEIbeeyzCY6BzvQgjGSg-_YIsF8opSZwZhjNY0rVQMwM4VDqJohbJH3Df1NDeDxR8p31bw3ZPn4EtPeRKq-9D-o9CLu9qLuiRIt8mbOGAqEESMs-ciV01sVcQEaRHIJ3WTVNP_lm2q_3ek1Ty__pdE2eXDa7qjux_6nV-Qhq6p1SFj8XpOVyXjqNsFmmuitSix-ArgyDIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiSbTe%E2%80%90Based+Nanocomposites+with+High+ZT+%3A+The+Effect+of+SiC+Nanodispersion+on+Thermoelectric+Properties&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Jianhui&rft.au=Tan%2C+Qing&rft.au=Li%2C+Jing%E2%80%90Feng&rft.au=Liu%2C+Da%E2%80%90Wei&rft.date=2013-09-20&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=23&rft.issue=35&rft.spage=4317&rft.epage=4323&rft_id=info:doi/10.1002%2Fadfm.201300146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201300146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon