Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability

Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 23; no. 33; pp. 4123 - 4132
Main Authors Shi, Zhi-cheng, Fan, Run-hua, Yan, Ke-lan, Sun, Kai, Zhang, Meng, Wang, Cheng-guo, Liu, Xiang-fa, Zhang, Xi-hua
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 06.09.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal‐like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation‐reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials. Iron particles are hosted in porous alumina via a facile impregnation‐reduction process. When the iron content exceeds the percolation threshold, iron networks are formed. The iron content and reduction temperature can easily tune the amplitude and frequency range of the negative permittivity and permeability. The impregnation‐reduction process has great potential for the preparation of random composites with tunable double negative properties.
AbstractList Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation-reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal-like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation-reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials. Iron particles are hosted in porous alumina via a facile impregnation-reduction process. When the iron content exceeds the percolation threshold, iron networks are formed. The iron content and reduction temperature can easily tune the amplitude and frequency range of the negative permittivity and permeability. The impregnation-reduction process has great potential for the preparation of random composites with tunable double negative properties.
Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal‐like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation‐reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials. Iron particles are hosted in porous alumina via a facile impregnation‐reduction process. When the iron content exceeds the percolation threshold, iron networks are formed. The iron content and reduction temperature can easily tune the amplitude and frequency range of the negative permittivity and permeability. The impregnation‐reduction process has great potential for the preparation of random composites with tunable double negative properties.
Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal‐like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation‐reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials.
Author Liu, Xiang-fa
Zhang, Xi-hua
Fan, Run-hua
Sun, Kai
Yan, Ke-lan
Wang, Cheng-guo
Zhang, Meng
Shi, Zhi-cheng
Author_xml – sequence: 1
  givenname: Zhi-cheng
  surname: Shi
  fullname: Shi, Zhi-cheng
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 2
  givenname: Run-hua
  surname: Fan
  fullname: Fan, Run-hua
  email: fan@sdu.edu.cn
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 3
  givenname: Ke-lan
  surname: Yan
  fullname: Yan, Ke-lan
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 4
  givenname: Kai
  surname: Sun
  fullname: Sun, Kai
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 5
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 6
  givenname: Cheng-guo
  surname: Wang
  fullname: Wang, Cheng-guo
  email: wangchg@sdu.edu.cn
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 7
  givenname: Xiang-fa
  surname: Liu
  fullname: Liu, Xiang-fa
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
– sequence: 8
  givenname: Xi-hua
  surname: Zhang
  fullname: Zhang, Xi-hua
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
BookMark eNqFkUFv2zAMhYWiBdaku-6s4y7OJNmyrGPQLG2ArM2hQ3YTZJlutdpWJinN8u-nNEVQDBh2ISnifST0OELngxsAoU-UTCgh7Itu2n7CCGWEVZKfoUta0jLL0-v8VNMfH9AohJ-EUCHy4hLZlYeN9jpaN2DX4oVP-Q7izvnngG9diNBgO-CV824b8LTb9nbQeGfjE37YDrruIMkfE_8CeAW-tzGVNu6xHprXBujadqlxhS5a3QX4-JbH6Pv868P1bba8v1lcT5eZyUvCs0K2xHADrOYUeFNRU9bMgGBCykqKnPEUa1lVTcFZS6EydQmirGoooJFtmY_R5-PcjXe_thCi6m0w0HV6gPQFRYtcCpaG8SSdHKXGuxA8tGrjba_9XlGiDp6qg6fq5GkCir8AY-Ord9Fr2_0bk0dsZzvY_2eJms7m396z2ZG16RS_T6z2z6oUueBqfXejOF-vqZyt1Tz_AwXHnqA
CitedBy_id crossref_primary_10_1007_s40820_022_00865_x
crossref_primary_10_1016_j_ceramint_2019_05_202
crossref_primary_10_1007_s10854_018_8588_0
crossref_primary_10_1016_j_jeurceramsoc_2020_01_024
crossref_primary_10_1016_j_matdes_2016_02_119
crossref_primary_10_1016_j_scriptamat_2020_08_027
crossref_primary_10_4028_www_scientific_net_KEM_655_182
crossref_primary_10_1007_s12598_015_0595_1
crossref_primary_10_1039_C9TC00291J
crossref_primary_10_1039_C7NR01516J
crossref_primary_10_1021_acs_jpcc_7b03580
crossref_primary_10_1088_2053_1591_3_9_095801
crossref_primary_10_1039_C6RA15529D
crossref_primary_10_1002_polb_24407
crossref_primary_10_1016_j_jallcom_2014_12_137
crossref_primary_10_1002_mame_201900709
crossref_primary_10_1007_s42114_022_00548_6
crossref_primary_10_1021_acsami_6b12786
crossref_primary_10_1007_s10854_020_03731_x
crossref_primary_10_1016_j_ceramint_2019_09_213
crossref_primary_10_1063_1_4949560
crossref_primary_10_1016_j_ceramint_2020_08_262
crossref_primary_10_1007_s11664_022_09483_0
crossref_primary_10_1002_aelm_201900011
crossref_primary_10_1016_j_ceramint_2020_12_142
crossref_primary_10_1016_j_jallcom_2018_02_024
crossref_primary_10_1016_j_orgel_2022_106470
crossref_primary_10_1039_C6RA06157E
crossref_primary_10_4028_www_scientific_net_MSF_816_113
crossref_primary_10_1007_s10854_017_8027_7
crossref_primary_10_1063_1_5031857
crossref_primary_10_1007_s42114_024_00831_8
crossref_primary_10_1016_j_compositesa_2024_108410
crossref_primary_10_1007_s12034_024_03188_2
crossref_primary_10_1007_s12666_023_03014_z
crossref_primary_10_1016_j_spmi_2020_106755
crossref_primary_10_1088_2053_1591_aabe0f
crossref_primary_10_1039_C4TC01117A
crossref_primary_10_1021_acs_langmuir_3c00056
crossref_primary_10_1016_j_ceramint_2020_09_060
crossref_primary_10_1016_j_jallcom_2017_04_248
crossref_primary_10_1021_acs_jpcc_9b06753
crossref_primary_10_1002_adfm_202100280
crossref_primary_10_1016_j_ceramint_2019_12_191
crossref_primary_10_1007_s42114_018_0041_6
crossref_primary_10_1016_j_orgel_2016_07_029
crossref_primary_10_1021_acs_jpcc_1c07415
crossref_primary_10_1016_j_ceramint_2019_05_349
crossref_primary_10_1016_j_ceramint_2025_03_311
crossref_primary_10_1016_j_polymer_2019_122129
crossref_primary_10_1063_1_4898072
crossref_primary_10_1016_j_polymer_2019_122125
crossref_primary_10_1016_j_coco_2021_100820
crossref_primary_10_1039_D3MH00061C
crossref_primary_10_1016_j_compositesa_2019_105753
crossref_primary_10_1039_C3TC31906G
crossref_primary_10_1016_j_mtcomm_2022_105287
crossref_primary_10_1016_j_jmmm_2017_07_018
crossref_primary_10_1149_2162_8777_abe4a4
crossref_primary_10_1007_s10854_019_01846_4
crossref_primary_10_1007_s12598_024_02823_5
crossref_primary_10_1016_j_compscitech_2018_12_016
crossref_primary_10_1007_s42114_024_01136_6
crossref_primary_10_1149_2162_8777_abf170
crossref_primary_10_1039_C7TC03384B
crossref_primary_10_1149_2_0221809jss
crossref_primary_10_1149_2162_8777_ad7402
crossref_primary_10_1016_j_jallcom_2020_157499
crossref_primary_10_1016_j_ceramint_2019_12_141
crossref_primary_10_1039_C9TC06291B
crossref_primary_10_1016_j_jmmm_2014_12_067
crossref_primary_10_1016_j_jallcom_2018_09_053
crossref_primary_10_34133_2019_1021368
crossref_primary_10_1039_D4TC00237G
crossref_primary_10_3390_molecules29163862
crossref_primary_10_1007_s00339_015_9133_0
crossref_primary_10_1016_j_jallcom_2015_12_171
crossref_primary_10_1021_acsami_7b02270
crossref_primary_10_1021_acs_jpcc_7b02036
crossref_primary_10_3390_ma17143546
crossref_primary_10_1016_j_jmmm_2016_03_081
crossref_primary_10_1016_j_matdes_2016_01_027
crossref_primary_10_1016_j_matchemphys_2015_12_027
crossref_primary_10_1038_s41598_018_33295_0
crossref_primary_10_1063_5_0049612
crossref_primary_10_1016_j_compositesa_2020_106132
crossref_primary_10_1142_S1793604718501011
crossref_primary_10_1088_2053_1591_aab4de
crossref_primary_10_1016_j_cap_2017_03_022
crossref_primary_10_1149_2162_8777_abb4a3
crossref_primary_10_1016_j_compscitech_2022_109600
crossref_primary_10_1016_j_jmmm_2018_01_058
crossref_primary_10_1016_j_jeurceramsoc_2024_117178
crossref_primary_10_1016_j_ceramint_2021_12_212
crossref_primary_10_1016_j_jallcom_2014_10_171
crossref_primary_10_1021_acs_jpcc_0c07544
crossref_primary_10_1039_D4TC00650J
crossref_primary_10_1016_j_carbon_2019_03_028
crossref_primary_10_1016_j_matdes_2016_07_099
crossref_primary_10_1007_s42114_024_01102_2
crossref_primary_10_1021_acsami_2c07229
crossref_primary_10_1007_s10853_021_05813_5
crossref_primary_10_1016_j_ceramint_2016_01_072
crossref_primary_10_1016_j_compositesa_2021_106559
crossref_primary_10_1016_j_jallcom_2024_178414
crossref_primary_10_1039_D1TC05008G
crossref_primary_10_1155_2019_1021368
crossref_primary_10_1016_j_oceram_2023_100485
crossref_primary_10_1016_j_ceramint_2015_05_097
crossref_primary_10_1021_acsnano_6b02039
crossref_primary_10_1016_j_compscitech_2021_109092
crossref_primary_10_1016_j_polymer_2017_07_083
crossref_primary_10_1016_j_mattod_2023_07_023
crossref_primary_10_1039_C7TA03403B
crossref_primary_10_1149_2_0261707jss
crossref_primary_10_3390_ma16144901
crossref_primary_10_1016_j_ceramint_2021_08_124
crossref_primary_10_1088_1361_648X_aa7b5d
crossref_primary_10_1016_j_compositesa_2023_107660
crossref_primary_10_1007_s10854_021_06150_8
crossref_primary_10_1016_j_jallcom_2024_173513
crossref_primary_10_1016_j_carbon_2017_09_037
crossref_primary_10_1007_s12598_023_02346_5
crossref_primary_10_1039_C7TA05392D
crossref_primary_10_1021_acsami_8b09063
crossref_primary_10_1063_1_4918998
crossref_primary_10_30919_es8d656
crossref_primary_10_1016_j_carbon_2017_12_009
crossref_primary_10_1039_D0TC02278K
crossref_primary_10_1016_j_mtcomm_2020_101230
crossref_primary_10_1002_pc_29587
crossref_primary_10_1021_acs_jpcc_2c03543
crossref_primary_10_1149_2162_8777_ac96a3
crossref_primary_10_1016_j_ceramint_2021_09_164
crossref_primary_10_1038_s41598_017_16059_0
crossref_primary_10_1016_j_carbon_2016_05_055
crossref_primary_10_1063_1_4885550
crossref_primary_10_1007_s12598_023_02510_x
crossref_primary_10_1142_S1793604721500156
crossref_primary_10_1111_jace_16763
crossref_primary_10_1007_s40145_017_0247_z
crossref_primary_10_1016_j_synthmet_2023_117524
crossref_primary_10_1149_2162_8777_ab9a5b
crossref_primary_10_1149_2162_8777_ac2d4f
crossref_primary_10_4028_www_scientific_net_MSF_816_107
crossref_primary_10_1016_j_jmst_2022_10_047
crossref_primary_10_1039_C4RA15413D
crossref_primary_10_1002_adfm_202308338
crossref_primary_10_1007_s42114_023_00778_2
crossref_primary_10_1016_j_jallcom_2020_156526
crossref_primary_10_1039_C9CP06196G
crossref_primary_10_1016_j_carbon_2015_10_003
crossref_primary_10_1051_epjam_2021005
crossref_primary_10_1016_j_actamat_2019_12_034
crossref_primary_10_1063_1_4858976
crossref_primary_10_1002_pc_29533
crossref_primary_10_1016_j_compscitech_2022_109415
crossref_primary_10_1016_j_matlet_2018_08_027
crossref_primary_10_1039_C7TC05911F
crossref_primary_10_1016_j_jmst_2019_07_015
crossref_primary_10_1039_C6RA19591A
crossref_primary_10_1007_s10854_019_01349_2
crossref_primary_10_1021_acs_jpcc_7b11177
crossref_primary_10_1016_j_compositesa_2021_106351
crossref_primary_10_1016_j_materresbull_2023_112649
crossref_primary_10_1039_C4RA15274C
crossref_primary_10_1016_j_ceramint_2023_01_212
crossref_primary_10_1016_j_ceramint_2024_11_182
crossref_primary_10_1007_s10854_018_0225_4
crossref_primary_10_1016_j_jeurceramsoc_2018_06_036
crossref_primary_10_1111_jace_15283
crossref_primary_10_1007_s42114_023_00800_7
crossref_primary_10_1021_acsami_9b15909
crossref_primary_10_1016_j_jallcom_2020_155164
crossref_primary_10_1007_s10854_018_0007_z
crossref_primary_10_1016_j_jeurceramsoc_2014_10_034
crossref_primary_10_1016_j_coco_2020_02_004
crossref_primary_10_1002_pssr_201409435
crossref_primary_10_1007_s10854_018_8557_7
Cites_doi 10.1002/anie.201104888
10.1103/RevModPhys.72.873
10.1002/adma.201004341
10.1039/b904030g
10.1002/adma.200900653
10.1002/anie.200906211
10.1038/nature09278
10.1002/adma.200903865
10.1002/adma.201200157
10.1063/1.3608156
10.1063/1.366145
10.1002/anie.200902994
10.1038/ncomms2285
10.1038/nature11615
10.1063/1.3681299
10.1063/1.3442916
10.1103/PhysRevLett.84.4184
10.1063/1.2198113
10.1002/(SICI)1521-4095(200002)12:4<294::AID-ADMA294>3.0.CO;2-D
10.1016/S1369-7021(09)70072-0
10.1103/PhysRevB.73.041101
10.1103/PhysRevB.77.092401
10.1103/PhysRevLett.98.197401
10.1063/1.3626057
10.1063/1.3409120
10.1103/PhysRevB.65.144407
10.1002/adma.201000412
10.1038/nphoton.2006.49
10.1021/jp1062463
10.1002/adma.201001222
10.1103/PhysRevLett.76.4773
10.1016/j.jnoncrysol.2006.01.006
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7QF
7QQ
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201202895
DatabaseName Istex
CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4132
ExternalDocumentID 10_1002_adfm_201202895
ADFM201202895
ark_67375_WNG_55WW19DW_F
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
1OB
7QF
7QQ
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3605-49f0c5ce2b51e5d81c6b2ce72799897325897b988d452f1e8cb6e768be4ed9f63
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Tue Aug 05 10:17:31 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Jul 01 01:30:08 EDT 2025
Wed Jan 22 16:43:26 EST 2025
Wed Oct 30 09:49:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3605-49f0c5ce2b51e5d81c6b2ce72799897325897b988d452f1e8cb6e768be4ed9f63
Notes istex:6316FEBCD23AECB691220A68C55D1613E8041AAF
ark:/67375/WNG-55WW19DW-F
ArticleID:ADFM201202895
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1439729985
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1439729985
crossref_primary_10_1002_adfm_201202895
crossref_citationtrail_10_1002_adfm_201202895
wiley_primary_10_1002_adfm_201202895_ADFM201202895
istex_primary_ark_67375_WNG_55WW19DW_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 6, 2013
PublicationDateYYYYMMDD 2013-09-06
PublicationDate_xml – month: 09
  year: 2013
  text: September 6, 2013
  day: 06
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References J. H. Zhu, S. Y. Wei, L. Zhang, Y. B. Mao, J. Ryu, P. Mavinakuli, A. B. Karki, D. P. Young, Z. H. Guo, J. Phys. Chem. C 2010, 1142, 16335.
A. Moreau, C. Ciracı´, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith. Nature 2012, 492, 86.
C. H. Hsieh, A. H. Lee, C. D. Liu, J. L. Han, K. H. Hsieh, S. N. Lee, AIP Adv. 2012, 2, 012127.
T. Kasagi, T. Tsutaoka, K. Hatakeyama, J. Appl. Phys. 1997, 82, 3068-3071.
B. Li, G. Sui, W. H. Zhong, Adv. Mater. 2009, 21, 4176.
E. N. Economou, T. Koschny, C. M. Soukoulis. Phys. Rev. B 2008, 77, 092401.
Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, R. F. Chen, Appl. Phys. Lett. 2010, 96, 161902.
P. Alitalo, S. Tretyakov, Mater. Today 2009, 12, 22.
T. Paul, C. Menzel, C. Rockstuhl, F. Lederer. Adv. Mater. 2010, 22, 2354.
M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats. Adv. Mater. 2010, 22, 4368.
W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, N. I. Zheludev. Nat. Commun. 2012, 3, 1274.
J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, Phys. Rev. B 2006, 73, 041101R.
B. C. Tappan, S. A. Steiner III, Erik P. Luther, Angew. Chem. Int. Ed. 2010, 49, 4544.
V. M. Shalaev, Nat. Photonics 2007, 1, 41.
H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Adv. Mater. 2010, 22, 3527.
T. Kasagi, T. Tsutaoka, K. Hatakeyama, Appl. Phys. Lett. 2006, 88, 172502.
Z. C. Shi, R. H. Fan, Z. D. Zhang, H. Y. Gong, J. Ouyang, Y. J. Bai, X. H. Zhang, L. W. Yin, Appl. Phys. Lett. 2011, 99, 032903.
D. Y. Zhang, P. P. Wang, R. Murakami, X. P. Song, Appl. Phys. Lett. 2010, 96, 233114.
S. T. Chui, L. B. Hu, Phys. Rev. B 2002, 65, 144407.
A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, K. Samwer, Phys. Rev. Lett. 2007, 98, 197401.
N. Liu, H. Giessen, Angew. Chem. Int. Ed. 2010, 49, 9838.
J. C. Dyre, T. B. Schrøder, Rev. Mod. Phys. 2000, 72, 873.
S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, Nature 2010, 466, 735.
D. R. Smith, W. J. Padilla, D. J. Vier, S. C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 2000, 84, 4184.
Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L. T. Zheng, X. H. Zhang, L.W. Yin. Adv. Mater. 2012, 24, 2349.
C. Pecharromμn, J. S. Moya. Adv. Mater. 2000, 12, 294.
T. Tsutaoka, T. Kasagi, K. Hatakeyama, J. Appl. Phys. 2011, 110, 053909.
G. Sui, B. Li, G. Bratzel, L. Baker, W. H. Zhong, X. P. Yang, Soft Matter 2009, 5, 3592-3598.
K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, U. Wiesner, Angew. Chem. Int. Ed. 2011, 50, 11985.
S. Basu, D. Chakravorty, J. Non-Cryst. Solids 2006, 352, 380-385.
J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 1996, 76, 4773-4776.
Agilent Impedance Measurement Handbook(5950-3000), Agilent Technologies, USA 2009, p. 8-10.
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, Adv. Mater. 2011, 23, 1792.
2009; 21
1997; 82
2006; 73
2010; 466
2000; 72
2009
2011; 99
2006; 352
2008; 77
2007; 98
1996; 76
2011; 110
2009; 12
2010; 22
2012; 492
2010; 49
2012; 2
2012; 3
2000; 12
2006; 88
2002; 65
2011; 50
2000; 84
2011; 23
2009; 5
2007; 1
2010; 1142
2012; 24
2010; 96
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
(e_1_2_6_33_2) 2009
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: N. Liu, H. Giessen, Angew. Chem. Int. Ed. 2010, 49, 9838.
– reference: J. H. Zhu, S. Y. Wei, L. Zhang, Y. B. Mao, J. Ryu, P. Mavinakuli, A. B. Karki, D. P. Young, Z. H. Guo, J. Phys. Chem. C 2010, 1142, 16335.
– reference: K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, U. Wiesner, Angew. Chem. Int. Ed. 2011, 50, 11985.
– reference: J. C. Dyre, T. B. Schrøder, Rev. Mod. Phys. 2000, 72, 873.
– reference: W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, Adv. Mater. 2011, 23, 1792.
– reference: G. Sui, B. Li, G. Bratzel, L. Baker, W. H. Zhong, X. P. Yang, Soft Matter 2009, 5, 3592-3598.
– reference: B. C. Tappan, S. A. Steiner III, Erik P. Luther, Angew. Chem. Int. Ed. 2010, 49, 4544.
– reference: C. Pecharromμn, J. S. Moya. Adv. Mater. 2000, 12, 294.
– reference: Agilent Impedance Measurement Handbook(5950-3000), Agilent Technologies, USA 2009, p. 8-10.
– reference: H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Adv. Mater. 2010, 22, 3527.
– reference: T. Tsutaoka, T. Kasagi, K. Hatakeyama, J. Appl. Phys. 2011, 110, 053909.
– reference: S. Basu, D. Chakravorty, J. Non-Cryst. Solids 2006, 352, 380-385.
– reference: J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 1996, 76, 4773-4776.
– reference: A. Moreau, C. Ciracı´, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith. Nature 2012, 492, 86.
– reference: D. Y. Zhang, P. P. Wang, R. Murakami, X. P. Song, Appl. Phys. Lett. 2010, 96, 233114.
– reference: V. M. Shalaev, Nat. Photonics 2007, 1, 41.
– reference: D. R. Smith, W. J. Padilla, D. J. Vier, S. C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 2000, 84, 4184.
– reference: A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, K. Samwer, Phys. Rev. Lett. 2007, 98, 197401.
– reference: M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats. Adv. Mater. 2010, 22, 4368.
– reference: S. T. Chui, L. B. Hu, Phys. Rev. B 2002, 65, 144407.
– reference: W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, N. I. Zheludev. Nat. Commun. 2012, 3, 1274.
– reference: Z. C. Shi, R. H. Fan, Z. D. Zhang, H. Y. Gong, J. Ouyang, Y. J. Bai, X. H. Zhang, L. W. Yin, Appl. Phys. Lett. 2011, 99, 032903.
– reference: E. N. Economou, T. Koschny, C. M. Soukoulis. Phys. Rev. B 2008, 77, 092401.
– reference: P. Alitalo, S. Tretyakov, Mater. Today 2009, 12, 22.
– reference: J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, Phys. Rev. B 2006, 73, 041101R.
– reference: T. Paul, C. Menzel, C. Rockstuhl, F. Lederer. Adv. Mater. 2010, 22, 2354.
– reference: B. Li, G. Sui, W. H. Zhong, Adv. Mater. 2009, 21, 4176.
– reference: Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L. T. Zheng, X. H. Zhang, L.W. Yin. Adv. Mater. 2012, 24, 2349.
– reference: S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, Nature 2010, 466, 735.
– reference: Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, R. F. Chen, Appl. Phys. Lett. 2010, 96, 161902.
– reference: C. H. Hsieh, A. H. Lee, C. D. Liu, J. L. Han, K. H. Hsieh, S. N. Lee, AIP Adv. 2012, 2, 012127.
– reference: T. Kasagi, T. Tsutaoka, K. Hatakeyama, Appl. Phys. Lett. 2006, 88, 172502.
– reference: T. Kasagi, T. Tsutaoka, K. Hatakeyama, J. Appl. Phys. 1997, 82, 3068-3071.
– volume: 1
  start-page: 41
  year: 2007
  publication-title: Nat. Photonics
– start-page: 8
  year: 2009
  end-page: 10
– volume: 84
  start-page: 4184
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 3527
  year: 2010
  publication-title: Adv. Mater.
– volume: 77
  start-page: 092401
  year: 2008
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 2354
  year: 2010
  publication-title: Adv. Mater.
– volume: 49
  start-page: 9838
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 88
  start-page: 172502
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 352
  start-page: 380
  year: 2006
  end-page: 385
  publication-title: J. Non‐Cryst. Solids
– volume: 12
  start-page: 22
  year: 2009
  publication-title: Mater. Today
– volume: 73
  start-page: 041101R
  year: 2006
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 2349
  year: 2012
  publication-title: Adv. Mater.
– volume: 466
  start-page: 735
  year: 2010
  publication-title: Nature
– volume: 23
  start-page: 1792
  year: 2011
  publication-title: Adv. Mater.
– volume: 110
  start-page: 053909
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 294
  year: 2000
  publication-title: Adv. Mater.
– volume: 72
  start-page: 873
  year: 2000
  publication-title: Rev. Mod. Phys.
– volume: 2
  start-page: 012127
  year: 2012
  publication-title: AIP Adv.
– volume: 492
  start-page: 86
  year: 2012
  publication-title: Nature
– volume: 5
  start-page: 3592
  year: 2009
  end-page: 3598
  publication-title: Soft Matter
– volume: 3
  start-page: 1274
  year: 2012
  publication-title: Nat. Commun.
– volume: 99
  start-page: 032903
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 3068
  year: 1997
  end-page: 3071
  publication-title: J. Appl. Phys.
– volume: 50
  start-page: 11985
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 4368
  year: 2010
  publication-title: Adv. Mater.
– volume: 1142
  start-page: 16335
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 49
  start-page: 4544
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 76
  start-page: 4773
  year: 1996
  end-page: 4776
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 197401
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 144407
  year: 2002
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 233114
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 4176
  year: 2009
  publication-title: Adv. Mater.
– volume: 96
  start-page: 161902
  year: 2010
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_6_20_2
  doi: 10.1002/anie.201104888
– ident: e_1_2_6_25_2
  doi: 10.1103/RevModPhys.72.873
– ident: e_1_2_6_10_2
  doi: 10.1002/adma.201004341
– ident: e_1_2_6_26_2
  doi: 10.1039/b904030g
– ident: e_1_2_6_13_2
  doi: 10.1002/adma.200900653
– ident: e_1_2_6_3_2
  doi: 10.1002/anie.200906211
– ident: e_1_2_6_6_2
  doi: 10.1038/nature09278
– ident: e_1_2_6_8_2
  doi: 10.1002/adma.200903865
– ident: e_1_2_6_23_2
  doi: 10.1002/adma.201200157
– ident: e_1_2_6_15_2
  doi: 10.1063/1.3608156
– ident: e_1_2_6_31_2
  doi: 10.1063/1.366145
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.200902994
– ident: e_1_2_6_11_2
  doi: 10.1038/ncomms2285
– ident: e_1_2_6_12_2
  doi: 10.1038/nature11615
– ident: e_1_2_6_27_2
  doi: 10.1063/1.3681299
– ident: e_1_2_6_28_2
  doi: 10.1063/1.3442916
– ident: e_1_2_6_4_2
  doi: 10.1103/PhysRevLett.84.4184
– ident: e_1_2_6_16_2
  doi: 10.1063/1.2198113
– ident: e_1_2_6_24_2
  doi: 10.1002/(SICI)1521-4095(200002)12:4<294::AID-ADMA294>3.0.CO;2-D
– ident: e_1_2_6_2_2
  doi: 10.1016/S1369-7021(09)70072-0
– ident: e_1_2_6_5_2
  doi: 10.1103/PhysRevB.73.041101
– ident: e_1_2_6_21_2
  doi: 10.1103/PhysRevB.77.092401
– ident: e_1_2_6_18_2
  doi: 10.1103/PhysRevLett.98.197401
– ident: e_1_2_6_17_2
  doi: 10.1063/1.3626057
– ident: e_1_2_6_32_2
  doi: 10.1063/1.3409120
– ident: e_1_2_6_19_2
  doi: 10.1103/PhysRevB.65.144407
– ident: e_1_2_6_7_2
  doi: 10.1002/adma.201000412
– start-page: 8
  volume-title: Agilent Impedance Measurement Handbook(5950‐3000)
  year: 2009
  ident: e_1_2_6_33_2
– ident: e_1_2_6_1_2
  doi: 10.1038/nphoton.2006.49
– ident: e_1_2_6_14_2
  doi: 10.1021/jp1062463
– ident: e_1_2_6_9_2
  doi: 10.1002/adma.201001222
– ident: e_1_2_6_30_2
  doi: 10.1103/PhysRevLett.76.4773
– ident: e_1_2_6_29_2
  doi: 10.1016/j.jnoncrysol.2006.01.006
SSID ssj0017734
Score 2.5097792
Snippet Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content...
Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation-reduction process. Interestingly, when the iron content...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4123
SubjectTerms Aluminum oxide
Dielectric constant
dielectrics
double negative materials
Iron
metal-insulators
metal/ceramic composites
metamaterials
Networks
Particulate composites
Permeability
Permittivity
Reduction
Title Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability
URI https://api.istex.fr/ark:/67375/WNG-55WW19DW-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201202895
https://www.proquest.com/docview/1439729985
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejfdkeuq3tWNa1qFDaJ7eRbDn2Y2iaZWMJoR8kb0KS5RIy7OEk0Pav752UeMmgDNYXGxvJHyed9JPu7neEnDSzWFsA4kGSZDyI8hR0judJkLEY0K0RXGmMd-4P4t5d9GMsxmtR_J4fot5wQ81w4zUquNKziz-koSrLMZKccbSVYZQ5OmwhKrqu-aNYq-XNyjFDBy82XrE2NvnFZvWNWWkbBfywATnXgaubebrviVp9s3c4mZ4v5vrcPP1F5_ian_pAdpawlLZ9P_pI3thil7xbIyvcI5NhZT1ReFnQMqffKzgPvBf5jPZcsAidFHRYVuViRtsw6k0KRXGjl94uXIgWFL93RON0iD44c5-5gqoiczes5wx_3Cd33avby16wTNQQmBCWQ0GU5k0jjOVaMCuyhJlYc2MBGsFiDumABBx1Ct0hEjxnNjE6trDO0TayWZrH4SeyVZSF_UwoE8pwzP2RpaEz6epER0mo8alhy8YNEqwaSpolizkm0_glPf8ylyhCWYuwQc7q8r89f8eLJU9du9fFVDVFr7eWkKPBNynEaMTSzkh2G-R41TEk6CIaWFRhQbKwjAJ0B_N7Ag_jrpn_8U7Z7nT79dWX_6l0QN5yl6EDySS-kq15tbCHgJPm-ohstzv9nzdHTieeAQjKCu8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7QF4YONjWtkYRkLwlK124jR5rBhdB2tVoU7dmxU7zlQNJShrJeCv353dhHXShAQviRKd83H22Xe-u98BvO_msbaoiAdJkosgKlKUOVEkQc5j1G6NFJmmfOfROB5eRF8uZRNNSLkwHh-i3XAjyXDzNQk4bUgf_0ENzfKCUsm5IGeZfARbVNbbWVXfWgQp3ut5x3LMKcSLXza4jV1xvN5-bV3aIhb_XFM676qubu0ZbINuvtqHnFwfLRf6yPy-B-j4X7-1A89Wminr-6H0HDZs-QKe3sErfAnzSW09VnhVsqpgZzWexz6Q_IYNXb4Im5dsUtXV8ob1ceKblxmjvV42XbosLSS_cljjbEJhOAtfvIJlZe5uWA8b_usVXAw-Tz8Ng1WthsCEaBEFUVp0jTRWaMmtzBNuYi2MRe0I7TlCBJJ41CmOiEiKgtvE6NiiqaNtZPO0iMNd2Cyr0u4B4zIzgsp_5GnovLo60VESanpq2LNxB4Kmp5RZAZlTPY3vykMwC0UsVC0LO_Cxpf_hITwepPzgOr4ly-prCnzrSTUbnyopZzOenszUoAPvmpGhUBzJx5KVFjmLlhQqeLjEJ_gw4fr5L-9U_ZPBqL16_S-N3sLj4XR0rs7Pxl_34YlwBTsIW-IANhf10r5BtWmhD51g3AJLRw12
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgkxA8jM-Jji8jIXjKVjux6zxWlNABqyq0qX2z4o-gaiiZslYC_nru7Da0SAgJXhIlOufj7LPvfHe_I-RV30njQRFPlHI8yaocZI5XKnFMgnZrBS8N5jufTeT4IvswF_OtLP6ID9FtuKFkhPkaBfzKVSe_QENLV2EmOePoKxM3yX4m-wrH9ehzByDFBoPoV5YMI7zYfAPb2Ocnu-13lqV95PC3HZ1zW3MNS09xl5Sbj44RJ5fHq6U5tj9-w3P8n7-6Rw7WeikdxoF0n9zw9QNyZwut8CFZTFsfkcKbmjYVPW3hPIlh5Nd0HLJF6KKm06ZtVtd0CNPeoi4p7vTS81XI0QLyLwFpnE4xCGcZS1fQsnbhho-g4d8fkYvi3fnbcbKu1JDYFOyhJMurvhXWcyOYF04xKw23HnQjsOYQD0jA0eQwHjLBK-aVNdKDoWN85l1eyfSQ7NVN7R8TykRpORb_cHkafLpGmUylBp-aDrzskWTTUdquYcyxmsZXHQGYuUYW6o6FPfKmo7-KAB5_pHwd-r0jK9tLDHsbCD2bvNdCzGYsH8100SMvNwNDgzCih6WsPXAW7ChQ72CBV_AwHrr5L-_Uw1Fx1l0d_UujF-TWdFToT6eTj0_IbR6qdSCwxFOyt2xX_hnoTEvzPIjFTy2oDC4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Iron+Networks+Hosted+in+Porous+Alumina+with+Tunable+Negative+Permittivity+and+Permeability&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Zhi%E2%80%90cheng&rft.au=Fan%2C+Run%E2%80%90hua&rft.au=Yan%2C+Ke%E2%80%90lan&rft.au=Sun%2C+Kai&rft.date=2013-09-06&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=23&rft.issue=33&rft.spage=4123&rft.epage=4132&rft_id=info:doi/10.1002%2Fadfm.201202895&rft.externalDBID=10.1002%252Fadfm.201202895&rft.externalDocID=ADFM201202895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon