Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability
Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change...
Saved in:
Published in | Advanced functional materials Vol. 23; no. 33; pp. 4123 - 4132 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
06.09.2013
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal‐like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation‐reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials.
Iron particles are hosted in porous alumina via a facile impregnation‐reduction process. When the iron content exceeds the percolation threshold, iron networks are formed. The iron content and reduction temperature can easily tune the amplitude and frequency range of the negative permittivity and permeability. The impregnation‐reduction process has great potential for the preparation of random composites with tunable double negative properties. |
---|---|
AbstractList | Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation-reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal-like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation-reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials. Iron particles are hosted in porous alumina via a facile impregnation-reduction process. When the iron content exceeds the percolation threshold, iron networks are formed. The iron content and reduction temperature can easily tune the amplitude and frequency range of the negative permittivity and permeability. The impregnation-reduction process has great potential for the preparation of random composites with tunable double negative properties. Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal‐like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation‐reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials. Iron particles are hosted in porous alumina via a facile impregnation‐reduction process. When the iron content exceeds the percolation threshold, iron networks are formed. The iron content and reduction temperature can easily tune the amplitude and frequency range of the negative permittivity and permeability. The impregnation‐reduction process has great potential for the preparation of random composites with tunable double negative properties. Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content exceeds the percolation threshold, the interconnection of iron particles results in the formation of iron networks. The composites then change from capacitive to inductive and the conductive mechanism changes from hopping conduction to metal‐like conduction. The negative permittivity was attributed to the plasma oscillation of delocalized electrons in iron networks, while the negative permeability could be ascribed to the strong diamagnetic response of current loops in iron networks. The negative permittivity behavior of the iron/alumina composite was analyzed using Drude model. Additionally, the fitting results indicated that the effective plasma frequency of the iron/alumina composite is much lower than bulk iron. Further investigations show that, the iron content and reduction temperature can easily tune the amplitude and frequency ranges of the negative permittivity and permeability. Moreover, the negative permittivity region and the negative permeability region can be pushed to the same frequency region by adjusting the iron content and reduction temperature. The impregnation‐reduction process opens a new way for the realization of tunable negative permittivity and permeability in random composites, and has great potential for the preparation of new types of double negative materials. |
Author | Liu, Xiang-fa Zhang, Xi-hua Fan, Run-hua Sun, Kai Yan, Ke-lan Wang, Cheng-guo Zhang, Meng Shi, Zhi-cheng |
Author_xml | – sequence: 1 givenname: Zhi-cheng surname: Shi fullname: Shi, Zhi-cheng organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 2 givenname: Run-hua surname: Fan fullname: Fan, Run-hua email: fan@sdu.edu.cn organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 3 givenname: Ke-lan surname: Yan fullname: Yan, Ke-lan organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 4 givenname: Kai surname: Sun fullname: Sun, Kai organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 5 givenname: Meng surname: Zhang fullname: Zhang, Meng organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 6 givenname: Cheng-guo surname: Wang fullname: Wang, Cheng-guo email: wangchg@sdu.edu.cn organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 7 givenname: Xiang-fa surname: Liu fullname: Liu, Xiang-fa organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China – sequence: 8 givenname: Xi-hua surname: Zhang fullname: Zhang, Xi-hua organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China |
BookMark | eNqFkUFv2zAMhYWiBdaku-6s4y7OJNmyrGPQLG2ArM2hQ3YTZJlutdpWJinN8u-nNEVQDBh2ISnifST0OELngxsAoU-UTCgh7Itu2n7CCGWEVZKfoUta0jLL0-v8VNMfH9AohJ-EUCHy4hLZlYeN9jpaN2DX4oVP-Q7izvnngG9diNBgO-CV824b8LTb9nbQeGfjE37YDrruIMkfE_8CeAW-tzGVNu6xHprXBujadqlxhS5a3QX4-JbH6Pv868P1bba8v1lcT5eZyUvCs0K2xHADrOYUeFNRU9bMgGBCykqKnPEUa1lVTcFZS6EydQmirGoooJFtmY_R5-PcjXe_thCi6m0w0HV6gPQFRYtcCpaG8SSdHKXGuxA8tGrjba_9XlGiDp6qg6fq5GkCir8AY-Ord9Fr2_0bk0dsZzvY_2eJms7m396z2ZG16RS_T6z2z6oUueBqfXejOF-vqZyt1Tz_AwXHnqA |
CitedBy_id | crossref_primary_10_1007_s40820_022_00865_x crossref_primary_10_1016_j_ceramint_2019_05_202 crossref_primary_10_1007_s10854_018_8588_0 crossref_primary_10_1016_j_jeurceramsoc_2020_01_024 crossref_primary_10_1016_j_matdes_2016_02_119 crossref_primary_10_1016_j_scriptamat_2020_08_027 crossref_primary_10_4028_www_scientific_net_KEM_655_182 crossref_primary_10_1007_s12598_015_0595_1 crossref_primary_10_1039_C9TC00291J crossref_primary_10_1039_C7NR01516J crossref_primary_10_1021_acs_jpcc_7b03580 crossref_primary_10_1088_2053_1591_3_9_095801 crossref_primary_10_1039_C6RA15529D crossref_primary_10_1002_polb_24407 crossref_primary_10_1016_j_jallcom_2014_12_137 crossref_primary_10_1002_mame_201900709 crossref_primary_10_1007_s42114_022_00548_6 crossref_primary_10_1021_acsami_6b12786 crossref_primary_10_1007_s10854_020_03731_x crossref_primary_10_1016_j_ceramint_2019_09_213 crossref_primary_10_1063_1_4949560 crossref_primary_10_1016_j_ceramint_2020_08_262 crossref_primary_10_1007_s11664_022_09483_0 crossref_primary_10_1002_aelm_201900011 crossref_primary_10_1016_j_ceramint_2020_12_142 crossref_primary_10_1016_j_jallcom_2018_02_024 crossref_primary_10_1016_j_orgel_2022_106470 crossref_primary_10_1039_C6RA06157E crossref_primary_10_4028_www_scientific_net_MSF_816_113 crossref_primary_10_1007_s10854_017_8027_7 crossref_primary_10_1063_1_5031857 crossref_primary_10_1007_s42114_024_00831_8 crossref_primary_10_1016_j_compositesa_2024_108410 crossref_primary_10_1007_s12034_024_03188_2 crossref_primary_10_1007_s12666_023_03014_z crossref_primary_10_1016_j_spmi_2020_106755 crossref_primary_10_1088_2053_1591_aabe0f crossref_primary_10_1039_C4TC01117A crossref_primary_10_1021_acs_langmuir_3c00056 crossref_primary_10_1016_j_ceramint_2020_09_060 crossref_primary_10_1016_j_jallcom_2017_04_248 crossref_primary_10_1021_acs_jpcc_9b06753 crossref_primary_10_1002_adfm_202100280 crossref_primary_10_1016_j_ceramint_2019_12_191 crossref_primary_10_1007_s42114_018_0041_6 crossref_primary_10_1016_j_orgel_2016_07_029 crossref_primary_10_1021_acs_jpcc_1c07415 crossref_primary_10_1016_j_ceramint_2019_05_349 crossref_primary_10_1016_j_ceramint_2025_03_311 crossref_primary_10_1016_j_polymer_2019_122129 crossref_primary_10_1063_1_4898072 crossref_primary_10_1016_j_polymer_2019_122125 crossref_primary_10_1016_j_coco_2021_100820 crossref_primary_10_1039_D3MH00061C crossref_primary_10_1016_j_compositesa_2019_105753 crossref_primary_10_1039_C3TC31906G crossref_primary_10_1016_j_mtcomm_2022_105287 crossref_primary_10_1016_j_jmmm_2017_07_018 crossref_primary_10_1149_2162_8777_abe4a4 crossref_primary_10_1007_s10854_019_01846_4 crossref_primary_10_1007_s12598_024_02823_5 crossref_primary_10_1016_j_compscitech_2018_12_016 crossref_primary_10_1007_s42114_024_01136_6 crossref_primary_10_1149_2162_8777_abf170 crossref_primary_10_1039_C7TC03384B crossref_primary_10_1149_2_0221809jss crossref_primary_10_1149_2162_8777_ad7402 crossref_primary_10_1016_j_jallcom_2020_157499 crossref_primary_10_1016_j_ceramint_2019_12_141 crossref_primary_10_1039_C9TC06291B crossref_primary_10_1016_j_jmmm_2014_12_067 crossref_primary_10_1016_j_jallcom_2018_09_053 crossref_primary_10_34133_2019_1021368 crossref_primary_10_1039_D4TC00237G crossref_primary_10_3390_molecules29163862 crossref_primary_10_1007_s00339_015_9133_0 crossref_primary_10_1016_j_jallcom_2015_12_171 crossref_primary_10_1021_acsami_7b02270 crossref_primary_10_1021_acs_jpcc_7b02036 crossref_primary_10_3390_ma17143546 crossref_primary_10_1016_j_jmmm_2016_03_081 crossref_primary_10_1016_j_matdes_2016_01_027 crossref_primary_10_1016_j_matchemphys_2015_12_027 crossref_primary_10_1038_s41598_018_33295_0 crossref_primary_10_1063_5_0049612 crossref_primary_10_1016_j_compositesa_2020_106132 crossref_primary_10_1142_S1793604718501011 crossref_primary_10_1088_2053_1591_aab4de crossref_primary_10_1016_j_cap_2017_03_022 crossref_primary_10_1149_2162_8777_abb4a3 crossref_primary_10_1016_j_compscitech_2022_109600 crossref_primary_10_1016_j_jmmm_2018_01_058 crossref_primary_10_1016_j_jeurceramsoc_2024_117178 crossref_primary_10_1016_j_ceramint_2021_12_212 crossref_primary_10_1016_j_jallcom_2014_10_171 crossref_primary_10_1021_acs_jpcc_0c07544 crossref_primary_10_1039_D4TC00650J crossref_primary_10_1016_j_carbon_2019_03_028 crossref_primary_10_1016_j_matdes_2016_07_099 crossref_primary_10_1007_s42114_024_01102_2 crossref_primary_10_1021_acsami_2c07229 crossref_primary_10_1007_s10853_021_05813_5 crossref_primary_10_1016_j_ceramint_2016_01_072 crossref_primary_10_1016_j_compositesa_2021_106559 crossref_primary_10_1016_j_jallcom_2024_178414 crossref_primary_10_1039_D1TC05008G crossref_primary_10_1155_2019_1021368 crossref_primary_10_1016_j_oceram_2023_100485 crossref_primary_10_1016_j_ceramint_2015_05_097 crossref_primary_10_1021_acsnano_6b02039 crossref_primary_10_1016_j_compscitech_2021_109092 crossref_primary_10_1016_j_polymer_2017_07_083 crossref_primary_10_1016_j_mattod_2023_07_023 crossref_primary_10_1039_C7TA03403B crossref_primary_10_1149_2_0261707jss crossref_primary_10_3390_ma16144901 crossref_primary_10_1016_j_ceramint_2021_08_124 crossref_primary_10_1088_1361_648X_aa7b5d crossref_primary_10_1016_j_compositesa_2023_107660 crossref_primary_10_1007_s10854_021_06150_8 crossref_primary_10_1016_j_jallcom_2024_173513 crossref_primary_10_1016_j_carbon_2017_09_037 crossref_primary_10_1007_s12598_023_02346_5 crossref_primary_10_1039_C7TA05392D crossref_primary_10_1021_acsami_8b09063 crossref_primary_10_1063_1_4918998 crossref_primary_10_30919_es8d656 crossref_primary_10_1016_j_carbon_2017_12_009 crossref_primary_10_1039_D0TC02278K crossref_primary_10_1016_j_mtcomm_2020_101230 crossref_primary_10_1002_pc_29587 crossref_primary_10_1021_acs_jpcc_2c03543 crossref_primary_10_1149_2162_8777_ac96a3 crossref_primary_10_1016_j_ceramint_2021_09_164 crossref_primary_10_1038_s41598_017_16059_0 crossref_primary_10_1016_j_carbon_2016_05_055 crossref_primary_10_1063_1_4885550 crossref_primary_10_1007_s12598_023_02510_x crossref_primary_10_1142_S1793604721500156 crossref_primary_10_1111_jace_16763 crossref_primary_10_1007_s40145_017_0247_z crossref_primary_10_1016_j_synthmet_2023_117524 crossref_primary_10_1149_2162_8777_ab9a5b crossref_primary_10_1149_2162_8777_ac2d4f crossref_primary_10_4028_www_scientific_net_MSF_816_107 crossref_primary_10_1016_j_jmst_2022_10_047 crossref_primary_10_1039_C4RA15413D crossref_primary_10_1002_adfm_202308338 crossref_primary_10_1007_s42114_023_00778_2 crossref_primary_10_1016_j_jallcom_2020_156526 crossref_primary_10_1039_C9CP06196G crossref_primary_10_1016_j_carbon_2015_10_003 crossref_primary_10_1051_epjam_2021005 crossref_primary_10_1016_j_actamat_2019_12_034 crossref_primary_10_1063_1_4858976 crossref_primary_10_1002_pc_29533 crossref_primary_10_1016_j_compscitech_2022_109415 crossref_primary_10_1016_j_matlet_2018_08_027 crossref_primary_10_1039_C7TC05911F crossref_primary_10_1016_j_jmst_2019_07_015 crossref_primary_10_1039_C6RA19591A crossref_primary_10_1007_s10854_019_01349_2 crossref_primary_10_1021_acs_jpcc_7b11177 crossref_primary_10_1016_j_compositesa_2021_106351 crossref_primary_10_1016_j_materresbull_2023_112649 crossref_primary_10_1039_C4RA15274C crossref_primary_10_1016_j_ceramint_2023_01_212 crossref_primary_10_1016_j_ceramint_2024_11_182 crossref_primary_10_1007_s10854_018_0225_4 crossref_primary_10_1016_j_jeurceramsoc_2018_06_036 crossref_primary_10_1111_jace_15283 crossref_primary_10_1007_s42114_023_00800_7 crossref_primary_10_1021_acsami_9b15909 crossref_primary_10_1016_j_jallcom_2020_155164 crossref_primary_10_1007_s10854_018_0007_z crossref_primary_10_1016_j_jeurceramsoc_2014_10_034 crossref_primary_10_1016_j_coco_2020_02_004 crossref_primary_10_1002_pssr_201409435 crossref_primary_10_1007_s10854_018_8557_7 |
Cites_doi | 10.1002/anie.201104888 10.1103/RevModPhys.72.873 10.1002/adma.201004341 10.1039/b904030g 10.1002/adma.200900653 10.1002/anie.200906211 10.1038/nature09278 10.1002/adma.200903865 10.1002/adma.201200157 10.1063/1.3608156 10.1063/1.366145 10.1002/anie.200902994 10.1038/ncomms2285 10.1038/nature11615 10.1063/1.3681299 10.1063/1.3442916 10.1103/PhysRevLett.84.4184 10.1063/1.2198113 10.1002/(SICI)1521-4095(200002)12:4<294::AID-ADMA294>3.0.CO;2-D 10.1016/S1369-7021(09)70072-0 10.1103/PhysRevB.73.041101 10.1103/PhysRevB.77.092401 10.1103/PhysRevLett.98.197401 10.1063/1.3626057 10.1063/1.3409120 10.1103/PhysRevB.65.144407 10.1002/adma.201000412 10.1038/nphoton.2006.49 10.1021/jp1062463 10.1002/adma.201001222 10.1103/PhysRevLett.76.4773 10.1016/j.jnoncrysol.2006.01.006 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7QF 7QQ 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201202895 |
DatabaseName | Istex CrossRef Aluminium Industry Abstracts Ceramic Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 4132 |
ExternalDocumentID | 10_1002_adfm_201202895 ADFM201202895 ark_67375_WNG_55WW19DW_F |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION 1OB 7QF 7QQ 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3605-49f0c5ce2b51e5d81c6b2ce72799897325897b988d452f1e8cb6e768be4ed9f63 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Tue Aug 05 10:17:31 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 01:30:08 EDT 2025 Wed Jan 22 16:43:26 EST 2025 Wed Oct 30 09:49:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3605-49f0c5ce2b51e5d81c6b2ce72799897325897b988d452f1e8cb6e768be4ed9f63 |
Notes | istex:6316FEBCD23AECB691220A68C55D1613E8041AAF ark:/67375/WNG-55WW19DW-F ArticleID:ADFM201202895 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1439729985 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1439729985 crossref_primary_10_1002_adfm_201202895 crossref_citationtrail_10_1002_adfm_201202895 wiley_primary_10_1002_adfm_201202895_ADFM201202895 istex_primary_ark_67375_WNG_55WW19DW_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 6, 2013 |
PublicationDateYYYYMMDD | 2013-09-06 |
PublicationDate_xml | – month: 09 year: 2013 text: September 6, 2013 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | J. H. Zhu, S. Y. Wei, L. Zhang, Y. B. Mao, J. Ryu, P. Mavinakuli, A. B. Karki, D. P. Young, Z. H. Guo, J. Phys. Chem. C 2010, 1142, 16335. A. Moreau, C. Ciracı´, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith. Nature 2012, 492, 86. C. H. Hsieh, A. H. Lee, C. D. Liu, J. L. Han, K. H. Hsieh, S. N. Lee, AIP Adv. 2012, 2, 012127. T. Kasagi, T. Tsutaoka, K. Hatakeyama, J. Appl. Phys. 1997, 82, 3068-3071. B. Li, G. Sui, W. H. Zhong, Adv. Mater. 2009, 21, 4176. E. N. Economou, T. Koschny, C. M. Soukoulis. Phys. Rev. B 2008, 77, 092401. Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, R. F. Chen, Appl. Phys. Lett. 2010, 96, 161902. P. Alitalo, S. Tretyakov, Mater. Today 2009, 12, 22. T. Paul, C. Menzel, C. Rockstuhl, F. Lederer. Adv. Mater. 2010, 22, 2354. M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats. Adv. Mater. 2010, 22, 4368. W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, N. I. Zheludev. Nat. Commun. 2012, 3, 1274. J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, Phys. Rev. B 2006, 73, 041101R. B. C. Tappan, S. A. Steiner III, Erik P. Luther, Angew. Chem. Int. Ed. 2010, 49, 4544. V. M. Shalaev, Nat. Photonics 2007, 1, 41. H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Adv. Mater. 2010, 22, 3527. T. Kasagi, T. Tsutaoka, K. Hatakeyama, Appl. Phys. Lett. 2006, 88, 172502. Z. C. Shi, R. H. Fan, Z. D. Zhang, H. Y. Gong, J. Ouyang, Y. J. Bai, X. H. Zhang, L. W. Yin, Appl. Phys. Lett. 2011, 99, 032903. D. Y. Zhang, P. P. Wang, R. Murakami, X. P. Song, Appl. Phys. Lett. 2010, 96, 233114. S. T. Chui, L. B. Hu, Phys. Rev. B 2002, 65, 144407. A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, K. Samwer, Phys. Rev. Lett. 2007, 98, 197401. N. Liu, H. Giessen, Angew. Chem. Int. Ed. 2010, 49, 9838. J. C. Dyre, T. B. Schrøder, Rev. Mod. Phys. 2000, 72, 873. S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, Nature 2010, 466, 735. D. R. Smith, W. J. Padilla, D. J. Vier, S. C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 2000, 84, 4184. Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L. T. Zheng, X. H. Zhang, L.W. Yin. Adv. Mater. 2012, 24, 2349. C. Pecharromμn, J. S. Moya. Adv. Mater. 2000, 12, 294. T. Tsutaoka, T. Kasagi, K. Hatakeyama, J. Appl. Phys. 2011, 110, 053909. G. Sui, B. Li, G. Bratzel, L. Baker, W. H. Zhong, X. P. Yang, Soft Matter 2009, 5, 3592-3598. K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, U. Wiesner, Angew. Chem. Int. Ed. 2011, 50, 11985. S. Basu, D. Chakravorty, J. Non-Cryst. Solids 2006, 352, 380-385. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 1996, 76, 4773-4776. Agilent Impedance Measurement Handbook(5950-3000), Agilent Technologies, USA 2009, p. 8-10. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, Adv. Mater. 2011, 23, 1792. 2009; 21 1997; 82 2006; 73 2010; 466 2000; 72 2009 2011; 99 2006; 352 2008; 77 2007; 98 1996; 76 2011; 110 2009; 12 2010; 22 2012; 492 2010; 49 2012; 2 2012; 3 2000; 12 2006; 88 2002; 65 2011; 50 2000; 84 2011; 23 2009; 5 2007; 1 2010; 1142 2012; 24 2010; 96 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 (e_1_2_6_33_2) 2009 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: N. Liu, H. Giessen, Angew. Chem. Int. Ed. 2010, 49, 9838. – reference: J. H. Zhu, S. Y. Wei, L. Zhang, Y. B. Mao, J. Ryu, P. Mavinakuli, A. B. Karki, D. P. Young, Z. H. Guo, J. Phys. Chem. C 2010, 1142, 16335. – reference: K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, U. Wiesner, Angew. Chem. Int. Ed. 2011, 50, 11985. – reference: J. C. Dyre, T. B. Schrøder, Rev. Mod. Phys. 2000, 72, 873. – reference: W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, Adv. Mater. 2011, 23, 1792. – reference: G. Sui, B. Li, G. Bratzel, L. Baker, W. H. Zhong, X. P. Yang, Soft Matter 2009, 5, 3592-3598. – reference: B. C. Tappan, S. A. Steiner III, Erik P. Luther, Angew. Chem. Int. Ed. 2010, 49, 4544. – reference: C. Pecharromμn, J. S. Moya. Adv. Mater. 2000, 12, 294. – reference: Agilent Impedance Measurement Handbook(5950-3000), Agilent Technologies, USA 2009, p. 8-10. – reference: H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Adv. Mater. 2010, 22, 3527. – reference: T. Tsutaoka, T. Kasagi, K. Hatakeyama, J. Appl. Phys. 2011, 110, 053909. – reference: S. Basu, D. Chakravorty, J. Non-Cryst. Solids 2006, 352, 380-385. – reference: J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 1996, 76, 4773-4776. – reference: A. Moreau, C. Ciracı´, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith. Nature 2012, 492, 86. – reference: D. Y. Zhang, P. P. Wang, R. Murakami, X. P. Song, Appl. Phys. Lett. 2010, 96, 233114. – reference: V. M. Shalaev, Nat. Photonics 2007, 1, 41. – reference: D. R. Smith, W. J. Padilla, D. J. Vier, S. C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 2000, 84, 4184. – reference: A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, K. Samwer, Phys. Rev. Lett. 2007, 98, 197401. – reference: M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats. Adv. Mater. 2010, 22, 4368. – reference: S. T. Chui, L. B. Hu, Phys. Rev. B 2002, 65, 144407. – reference: W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, N. I. Zheludev. Nat. Commun. 2012, 3, 1274. – reference: Z. C. Shi, R. H. Fan, Z. D. Zhang, H. Y. Gong, J. Ouyang, Y. J. Bai, X. H. Zhang, L. W. Yin, Appl. Phys. Lett. 2011, 99, 032903. – reference: E. N. Economou, T. Koschny, C. M. Soukoulis. Phys. Rev. B 2008, 77, 092401. – reference: P. Alitalo, S. Tretyakov, Mater. Today 2009, 12, 22. – reference: J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, Phys. Rev. B 2006, 73, 041101R. – reference: T. Paul, C. Menzel, C. Rockstuhl, F. Lederer. Adv. Mater. 2010, 22, 2354. – reference: B. Li, G. Sui, W. H. Zhong, Adv. Mater. 2009, 21, 4176. – reference: Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L. T. Zheng, X. H. Zhang, L.W. Yin. Adv. Mater. 2012, 24, 2349. – reference: S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, Nature 2010, 466, 735. – reference: Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, R. F. Chen, Appl. Phys. Lett. 2010, 96, 161902. – reference: C. H. Hsieh, A. H. Lee, C. D. Liu, J. L. Han, K. H. Hsieh, S. N. Lee, AIP Adv. 2012, 2, 012127. – reference: T. Kasagi, T. Tsutaoka, K. Hatakeyama, Appl. Phys. Lett. 2006, 88, 172502. – reference: T. Kasagi, T. Tsutaoka, K. Hatakeyama, J. Appl. Phys. 1997, 82, 3068-3071. – volume: 1 start-page: 41 year: 2007 publication-title: Nat. Photonics – start-page: 8 year: 2009 end-page: 10 – volume: 84 start-page: 4184 year: 2000 publication-title: Phys. Rev. Lett. – volume: 22 start-page: 3527 year: 2010 publication-title: Adv. Mater. – volume: 77 start-page: 092401 year: 2008 publication-title: Phys. Rev. B – volume: 22 start-page: 2354 year: 2010 publication-title: Adv. Mater. – volume: 49 start-page: 9838 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 88 start-page: 172502 year: 2006 publication-title: Appl. Phys. Lett. – volume: 352 start-page: 380 year: 2006 end-page: 385 publication-title: J. Non‐Cryst. Solids – volume: 12 start-page: 22 year: 2009 publication-title: Mater. Today – volume: 73 start-page: 041101R year: 2006 publication-title: Phys. Rev. B – volume: 24 start-page: 2349 year: 2012 publication-title: Adv. Mater. – volume: 466 start-page: 735 year: 2010 publication-title: Nature – volume: 23 start-page: 1792 year: 2011 publication-title: Adv. Mater. – volume: 110 start-page: 053909 year: 2011 publication-title: J. Appl. Phys. – volume: 12 start-page: 294 year: 2000 publication-title: Adv. Mater. – volume: 72 start-page: 873 year: 2000 publication-title: Rev. Mod. Phys. – volume: 2 start-page: 012127 year: 2012 publication-title: AIP Adv. – volume: 492 start-page: 86 year: 2012 publication-title: Nature – volume: 5 start-page: 3592 year: 2009 end-page: 3598 publication-title: Soft Matter – volume: 3 start-page: 1274 year: 2012 publication-title: Nat. Commun. – volume: 99 start-page: 032903 year: 2011 publication-title: Appl. Phys. Lett. – volume: 82 start-page: 3068 year: 1997 end-page: 3071 publication-title: J. Appl. Phys. – volume: 50 start-page: 11985 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 4368 year: 2010 publication-title: Adv. Mater. – volume: 1142 start-page: 16335 year: 2010 publication-title: J. Phys. Chem. C – volume: 49 start-page: 4544 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 76 start-page: 4773 year: 1996 end-page: 4776 publication-title: Phys. Rev. Lett. – volume: 98 start-page: 197401 year: 2007 publication-title: Phys. Rev. Lett. – volume: 65 start-page: 144407 year: 2002 publication-title: Phys. Rev. B – volume: 96 start-page: 233114 year: 2010 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 4176 year: 2009 publication-title: Adv. Mater. – volume: 96 start-page: 161902 year: 2010 publication-title: Appl. Phys. Lett. – ident: e_1_2_6_20_2 doi: 10.1002/anie.201104888 – ident: e_1_2_6_25_2 doi: 10.1103/RevModPhys.72.873 – ident: e_1_2_6_10_2 doi: 10.1002/adma.201004341 – ident: e_1_2_6_26_2 doi: 10.1039/b904030g – ident: e_1_2_6_13_2 doi: 10.1002/adma.200900653 – ident: e_1_2_6_3_2 doi: 10.1002/anie.200906211 – ident: e_1_2_6_6_2 doi: 10.1038/nature09278 – ident: e_1_2_6_8_2 doi: 10.1002/adma.200903865 – ident: e_1_2_6_23_2 doi: 10.1002/adma.201200157 – ident: e_1_2_6_15_2 doi: 10.1063/1.3608156 – ident: e_1_2_6_31_2 doi: 10.1063/1.366145 – ident: e_1_2_6_22_2 doi: 10.1002/anie.200902994 – ident: e_1_2_6_11_2 doi: 10.1038/ncomms2285 – ident: e_1_2_6_12_2 doi: 10.1038/nature11615 – ident: e_1_2_6_27_2 doi: 10.1063/1.3681299 – ident: e_1_2_6_28_2 doi: 10.1063/1.3442916 – ident: e_1_2_6_4_2 doi: 10.1103/PhysRevLett.84.4184 – ident: e_1_2_6_16_2 doi: 10.1063/1.2198113 – ident: e_1_2_6_24_2 doi: 10.1002/(SICI)1521-4095(200002)12:4<294::AID-ADMA294>3.0.CO;2-D – ident: e_1_2_6_2_2 doi: 10.1016/S1369-7021(09)70072-0 – ident: e_1_2_6_5_2 doi: 10.1103/PhysRevB.73.041101 – ident: e_1_2_6_21_2 doi: 10.1103/PhysRevB.77.092401 – ident: e_1_2_6_18_2 doi: 10.1103/PhysRevLett.98.197401 – ident: e_1_2_6_17_2 doi: 10.1063/1.3626057 – ident: e_1_2_6_32_2 doi: 10.1063/1.3409120 – ident: e_1_2_6_19_2 doi: 10.1103/PhysRevB.65.144407 – ident: e_1_2_6_7_2 doi: 10.1002/adma.201000412 – start-page: 8 volume-title: Agilent Impedance Measurement Handbook(5950‐3000) year: 2009 ident: e_1_2_6_33_2 – ident: e_1_2_6_1_2 doi: 10.1038/nphoton.2006.49 – ident: e_1_2_6_14_2 doi: 10.1021/jp1062463 – ident: e_1_2_6_9_2 doi: 10.1002/adma.201001222 – ident: e_1_2_6_30_2 doi: 10.1103/PhysRevLett.76.4773 – ident: e_1_2_6_29_2 doi: 10.1016/j.jnoncrysol.2006.01.006 |
SSID | ssj0017734 |
Score | 2.5097792 |
Snippet | Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation‐reduction process. Interestingly, when the iron content... Random composites of iron particles hosted in porous alumina were prepared from a facile impregnation-reduction process. Interestingly, when the iron content... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4123 |
SubjectTerms | Aluminum oxide Dielectric constant dielectrics double negative materials Iron metal-insulators metal/ceramic composites metamaterials Networks Particulate composites Permeability Permittivity Reduction |
Title | Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability |
URI | https://api.istex.fr/ark:/67375/WNG-55WW19DW-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201202895 https://www.proquest.com/docview/1439729985 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejfdkeuq3tWNa1qFDaJ7eRbDn2Y2iaZWMJoR8kb0KS5RIy7OEk0Pav752UeMmgDNYXGxvJHyed9JPu7neEnDSzWFsA4kGSZDyI8hR0judJkLEY0K0RXGmMd-4P4t5d9GMsxmtR_J4fot5wQ81w4zUquNKziz-koSrLMZKccbSVYZQ5OmwhKrqu-aNYq-XNyjFDBy82XrE2NvnFZvWNWWkbBfywATnXgaubebrviVp9s3c4mZ4v5vrcPP1F5_ian_pAdpawlLZ9P_pI3thil7xbIyvcI5NhZT1ReFnQMqffKzgPvBf5jPZcsAidFHRYVuViRtsw6k0KRXGjl94uXIgWFL93RON0iD44c5-5gqoiczes5wx_3Cd33avby16wTNQQmBCWQ0GU5k0jjOVaMCuyhJlYc2MBGsFiDumABBx1Ct0hEjxnNjE6trDO0TayWZrH4SeyVZSF_UwoE8pwzP2RpaEz6epER0mo8alhy8YNEqwaSpolizkm0_glPf8ylyhCWYuwQc7q8r89f8eLJU9du9fFVDVFr7eWkKPBNynEaMTSzkh2G-R41TEk6CIaWFRhQbKwjAJ0B_N7Ag_jrpn_8U7Z7nT79dWX_6l0QN5yl6EDySS-kq15tbCHgJPm-ohstzv9nzdHTieeAQjKCu8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7QF4YONjWtkYRkLwlK124jR5rBhdB2tVoU7dmxU7zlQNJShrJeCv353dhHXShAQviRKd83H22Xe-u98BvO_msbaoiAdJkosgKlKUOVEkQc5j1G6NFJmmfOfROB5eRF8uZRNNSLkwHh-i3XAjyXDzNQk4bUgf_0ENzfKCUsm5IGeZfARbVNbbWVXfWgQp3ut5x3LMKcSLXza4jV1xvN5-bV3aIhb_XFM676qubu0ZbINuvtqHnFwfLRf6yPy-B-j4X7-1A89Wminr-6H0HDZs-QKe3sErfAnzSW09VnhVsqpgZzWexz6Q_IYNXb4Im5dsUtXV8ob1ceKblxmjvV42XbosLSS_cljjbEJhOAtfvIJlZe5uWA8b_usVXAw-Tz8Ng1WthsCEaBEFUVp0jTRWaMmtzBNuYi2MRe0I7TlCBJJ41CmOiEiKgtvE6NiiqaNtZPO0iMNd2Cyr0u4B4zIzgsp_5GnovLo60VESanpq2LNxB4Kmp5RZAZlTPY3vykMwC0UsVC0LO_Cxpf_hITwepPzgOr4ly-prCnzrSTUbnyopZzOenszUoAPvmpGhUBzJx5KVFjmLlhQqeLjEJ_gw4fr5L-9U_ZPBqL16_S-N3sLj4XR0rs7Pxl_34YlwBTsIW-IANhf10r5BtWmhD51g3AJLRw12 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgkxA8jM-Jji8jIXjKVjux6zxWlNABqyq0qX2z4o-gaiiZslYC_nru7Da0SAgJXhIlOufj7LPvfHe_I-RV30njQRFPlHI8yaocZI5XKnFMgnZrBS8N5jufTeT4IvswF_OtLP6ID9FtuKFkhPkaBfzKVSe_QENLV2EmOePoKxM3yX4m-wrH9ehzByDFBoPoV5YMI7zYfAPb2Ocnu-13lqV95PC3HZ1zW3MNS09xl5Sbj44RJ5fHq6U5tj9-w3P8n7-6Rw7WeikdxoF0n9zw9QNyZwut8CFZTFsfkcKbmjYVPW3hPIlh5Nd0HLJF6KKm06ZtVtd0CNPeoi4p7vTS81XI0QLyLwFpnE4xCGcZS1fQsnbhho-g4d8fkYvi3fnbcbKu1JDYFOyhJMurvhXWcyOYF04xKw23HnQjsOYQD0jA0eQwHjLBK-aVNdKDoWN85l1eyfSQ7NVN7R8TykRpORb_cHkafLpGmUylBp-aDrzskWTTUdquYcyxmsZXHQGYuUYW6o6FPfKmo7-KAB5_pHwd-r0jK9tLDHsbCD2bvNdCzGYsH8100SMvNwNDgzCih6WsPXAW7ChQ72CBV_AwHrr5L-_Uw1Fx1l0d_UujF-TWdFToT6eTj0_IbR6qdSCwxFOyt2xX_hnoTEvzPIjFTy2oDC4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Iron+Networks+Hosted+in+Porous+Alumina+with+Tunable+Negative+Permittivity+and+Permeability&rft.jtitle=Advanced+functional+materials&rft.au=Shi%2C+Zhi%E2%80%90cheng&rft.au=Fan%2C+Run%E2%80%90hua&rft.au=Yan%2C+Ke%E2%80%90lan&rft.au=Sun%2C+Kai&rft.date=2013-09-06&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=23&rft.issue=33&rft.spage=4123&rft.epage=4132&rft_id=info:doi/10.1002%2Fadfm.201202895&rft.externalDBID=10.1002%252Fadfm.201202895&rft.externalDocID=ADFM201202895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |