Macroscopic MXene ribbon with oriented sheet stacking for high‐performance flexible supercapacitors

Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of next‐generation portable electronics, the development of which, however, is very challenging. Two‐dimensional sheets are known to be excellent units for...

Full description

Saved in:
Bibliographic Details
Published inCarbon energy Vol. 3; no. 1; pp. 142 - 152
Main Authors Zhu, Chao, Geng, Fengxia
Format Journal Article
LanguageEnglish
Published Wiley 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of next‐generation portable electronics, the development of which, however, is very challenging. Two‐dimensional sheets are known to be excellent units for assembling fiber entities, particularly when sheets are oriented in a stacking manner, which helps integrate their intrinsic in‐plane advantages, especially those related with mechanical and electronic performances. In this study, we developed a flexible macroscopic and continuous fiber in an unusual ribbon shape composed solely of Ti3C2 sheets, a typical member of the MXene family. The ribbon morphology was realized through highly ordered stacking of Ti3C2, which imparts fibers with favorable mechanical characteristics. Based on the intrinsic metallic conductivity of Ti3C2 sheets and the oriented stacking structure, the developed macroscopic ribbon exhibited excellent conductivity for both electrons (up to 2458 S/cm) and ions. A fiber‐shaped asymmetric supercapacitor using the developed macroscopic ribbon as a cathode coupled with reduced graphene oxide fibers as an anode delivered a competitive maximum volumetric energy density of 58.4 mWh/cm3 (20.0 Wh/kg) while maintaining a power level of 1679.0 mW/cm3 (581.0 W/kg) and excellent cycling stability (92.4% retention after 10 000 cycles at 10 A/g). This study highlights the excellent potential of MXene as a platform for macroscopic assembly and definitely broadens the applications of MXene materials in wearable electronics. Macroscopic ribbon‐shaped fiber composed of regular stacking of Ti3C2 sheets was achieved by wet‐spinning aqueous Ti3C2 colloid even without a complete transition into a nematic liquid crystalline phase. This rare success was realized via wisely selecting coagulation bath and carefully optimizing spinning dope and parameters. Based on this unusual regularly stacking structure, the designed ribbon‐shaped fibers exhibit rapid transportation for both ions and electrons, excellent electrochemical performance, and mechanical behavior sufficient for device use.
AbstractList Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of next‐generation portable electronics, the development of which, however, is very challenging. Two‐dimensional sheets are known to be excellent units for assembling fiber entities, particularly when sheets are oriented in a stacking manner, which helps integrate their intrinsic in‐plane advantages, especially those related with mechanical and electronic performances. In this study, we developed a flexible macroscopic and continuous fiber in an unusual ribbon shape composed solely of Ti3C2 sheets, a typical member of the MXene family. The ribbon morphology was realized through highly ordered stacking of Ti3C2, which imparts fibers with favorable mechanical characteristics. Based on the intrinsic metallic conductivity of Ti3C2 sheets and the oriented stacking structure, the developed macroscopic ribbon exhibited excellent conductivity for both electrons (up to 2458 S/cm) and ions. A fiber‐shaped asymmetric supercapacitor using the developed macroscopic ribbon as a cathode coupled with reduced graphene oxide fibers as an anode delivered a competitive maximum volumetric energy density of 58.4 mWh/cm3 (20.0 Wh/kg) while maintaining a power level of 1679.0 mW/cm3 (581.0 W/kg) and excellent cycling stability (92.4% retention after 10 000 cycles at 10 A/g). This study highlights the excellent potential of MXene as a platform for macroscopic assembly and definitely broadens the applications of MXene materials in wearable electronics. Macroscopic ribbon‐shaped fiber composed of regular stacking of Ti3C2 sheets was achieved by wet‐spinning aqueous Ti3C2 colloid even without a complete transition into a nematic liquid crystalline phase. This rare success was realized via wisely selecting coagulation bath and carefully optimizing spinning dope and parameters. Based on this unusual regularly stacking structure, the designed ribbon‐shaped fibers exhibit rapid transportation for both ions and electrons, excellent electrochemical performance, and mechanical behavior sufficient for device use.
Abstract Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of next‐generation portable electronics, the development of which, however, is very challenging. Two‐dimensional sheets are known to be excellent units for assembling fiber entities, particularly when sheets are oriented in a stacking manner, which helps integrate their intrinsic in‐plane advantages, especially those related with mechanical and electronic performances. In this study, we developed a flexible macroscopic and continuous fiber in an unusual ribbon shape composed solely of Ti3C2 sheets, a typical member of the MXene family. The ribbon morphology was realized through highly ordered stacking of Ti3C2, which imparts fibers with favorable mechanical characteristics. Based on the intrinsic metallic conductivity of Ti3C2 sheets and the oriented stacking structure, the developed macroscopic ribbon exhibited excellent conductivity for both electrons (up to 2458 S/cm) and ions. A fiber‐shaped asymmetric supercapacitor using the developed macroscopic ribbon as a cathode coupled with reduced graphene oxide fibers as an anode delivered a competitive maximum volumetric energy density of 58.4 mWh/cm3 (20.0 Wh/kg) while maintaining a power level of 1679.0 mW/cm3 (581.0 W/kg) and excellent cycling stability (92.4% retention after 10 000 cycles at 10 A/g). This study highlights the excellent potential of MXene as a platform for macroscopic assembly and definitely broadens the applications of MXene materials in wearable electronics.
Abstract Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of next‐generation portable electronics, the development of which, however, is very challenging. Two‐dimensional sheets are known to be excellent units for assembling fiber entities, particularly when sheets are oriented in a stacking manner, which helps integrate their intrinsic in‐plane advantages, especially those related with mechanical and electronic performances. In this study, we developed a flexible macroscopic and continuous fiber in an unusual ribbon shape composed solely of Ti 3 C 2 sheets, a typical member of the MXene family. The ribbon morphology was realized through highly ordered stacking of Ti 3 C 2 , which imparts fibers with favorable mechanical characteristics. Based on the intrinsic metallic conductivity of Ti 3 C 2 sheets and the oriented stacking structure, the developed macroscopic ribbon exhibited excellent conductivity for both electrons (up to 2458 S/cm) and ions. A fiber‐shaped asymmetric supercapacitor using the developed macroscopic ribbon as a cathode coupled with reduced graphene oxide fibers as an anode delivered a competitive maximum volumetric energy density of 58.4 mWh/cm 3 (20.0 Wh/kg) while maintaining a power level of 1679.0 mW/cm 3 (581.0 W/kg) and excellent cycling stability (92.4% retention after 10 000 cycles at 10 A/g). This study highlights the excellent potential of MXene as a platform for macroscopic assembly and definitely broadens the applications of MXene materials in wearable electronics.
Author Zhu, Chao
Geng, Fengxia
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-7311-9895
  surname: Zhu
  fullname: Zhu, Chao
  organization: Soochow University
– sequence: 2
  givenname: Fengxia
  surname: Geng
  fullname: Geng, Fengxia
  email: gengfx@suda.edu.cn
  organization: Soochow University
BookMark eNp1kM9KAzEQh4NUsNbiK-TmQarZZJPdPUrxT8HiRUFPYZpM2tR1U5KV2puP4DP6JG6tiBdPM_Pj42P4HZJeExok5DhjZxlj_Nzghp8puUf6XIliVAlV9v7sB2SY0pJ1ZFZkjFd9glMwMSQTVt7Q6SM2SKOfzUJD175d0BA9Ni1amhaILU0tmGffzKkLkS78fPH5_rHC2F0v0BikrsY3P6uRptcuNrAC49sQ0xHZd1AnHP7MAXm4urwf34xu764n44vbkRGKyZHgToCtSllmlShkXiqUGZocuRDKMnCuexyKApllTDDrHKgS8zyHCkAqKwZksvPaAEu9iv4F4kYH8Po7CHGuIbbe1KgrWUGVC4NMsU4wA84sR8tyrqwUhepcJzvXtp8U0f36Mqa3Zett2VrJjjzdkWtf4-Y_TI8vn3hHfwFuc4NF
CitedBy_id crossref_primary_10_1002_smtd_202300518
crossref_primary_10_1016_j_carbon_2022_08_045
crossref_primary_10_1039_D2SE00385F
crossref_primary_10_1007_s40843_022_2186_0
crossref_primary_10_1016_j_mtchem_2024_102088
crossref_primary_10_1021_acsnano_1c02271
crossref_primary_10_1088_1742_6596_2566_1_012005
crossref_primary_10_1016_j_cej_2023_144913
crossref_primary_10_1021_acsaelm_3c00238
crossref_primary_10_1002_cey2_530
crossref_primary_10_1016_j_pmatsci_2023_101227
crossref_primary_10_1007_s12598_022_02182_z
crossref_primary_10_1002_adfm_202312654
crossref_primary_10_1021_acsaem_2c00760
crossref_primary_10_2139_ssrn_4165272
crossref_primary_10_1016_j_jallcom_2024_174230
crossref_primary_10_1016_j_compositesb_2021_109246
crossref_primary_10_1016_j_mtsust_2024_100896
crossref_primary_10_1063_5_0187310
crossref_primary_10_1016_j_est_2022_105211
crossref_primary_10_1039_D3MA00365E
crossref_primary_10_1016_j_jmat_2023_08_011
crossref_primary_10_1016_j_matchemphys_2022_126419
crossref_primary_10_3390_nano12101674
crossref_primary_10_1021_acs_accounts_0c00483
crossref_primary_10_1039_D2TA02584A
crossref_primary_10_1016_j_jechem_2021_08_049
crossref_primary_10_1016_j_ccr_2022_214518
crossref_primary_10_1016_j_flatc_2024_100609
crossref_primary_10_1088_2053_1583_ac8c51
crossref_primary_10_1002_cey2_501
crossref_primary_10_1002_slct_202203288
crossref_primary_10_1002_cey2_504
crossref_primary_10_1002_adma_202307186
crossref_primary_10_1021_acsanm_1c03001
Cites_doi 10.1021/acs.nanolett.7b03507
10.1039/C8TA09822K
10.1002/anie.201606643
10.1002/adma.201304138
10.1002/smll.201800414
10.1039/C3MH00050H
10.1002/adma.201304736
10.1002/adma.201403061
10.1002/aenm.201602725
10.1002/cey2.34
10.1038/s41565-018-0330-9
10.1002/cey2.51
10.1002/smll.201802225
10.1002/adfm.201902953
10.1038/ncomms1583
10.1039/C7TA07999K
10.1038/natrevmats.2017.23
10.1126/science.aaa6502
10.1002/adma.201501934
10.1002/adma.201503891
10.1038/ncomms2641
10.1021/acs.nanolett.7b00623
10.1111/j.1749-6632.1949.tb27296.x
10.1002/adma.201902664
10.1021/nn3021772
10.1002/adma.201102306
10.1021/acscentsci.9b01217
10.1021/jacs.5b09138
10.1002/adma.201902151
10.1021/jacs.6b11100
10.1002/smll.201804732
10.1021/acsnano.6b06597
10.1016/j.chempr.2017.05.004
10.1021/acsnano.6b05240
10.1126/science.1239089
10.1038/s41586-018-0109-z
10.1002/adfm.201902772
10.1039/C7TA08355F
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Wenzhou University.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Wenzhou University.
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1002/cey2.65
DatabaseName Wiley Online Library
Wiley Free Archive
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2637-9368
EndPage 152
ExternalDocumentID oai_doaj_org_article_959a943ce06044aba20d2ed0426d5376
10_1002_cey2_65
CEY265
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51772201
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
ATCPS
AVUZU
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IEP
M7P
OK1
PATMY
PIMPY
PYCSY
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3605-32f3ad985819375486e51ec4e2336d0aff021a77e0d0030dffa68e444a9aa56d3
IEDL.DBID 24P
ISSN 2637-9368
IngestDate Tue Oct 22 15:12:40 EDT 2024
Thu Sep 26 16:06:39 EDT 2024
Sat Aug 24 01:04:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3605-32f3ad985819375486e51ec4e2336d0aff021a77e0d0030dffa68e444a9aa56d3
ORCID 0000-0001-7311-9895
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.65
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_959a943ce06044aba20d2ed0426d5376
crossref_primary_10_1002_cey2_65
wiley_primary_10_1002_cey2_65_CEY265
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Carbon energy
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 5
2019; 7
2017; 7
2017; 2
2013; 4
2011; 2
2017; 3
2019; 15
2019; 14
2016; 10
2014; 26
2015; 349
2013; 341
2020; 32
1949; 51
2017; 139
2016; 55
2014; 1
2020; 6
2015; 27
2020; 2
2015; 137
2018; 557
2017; 17
2019; 29
2011; 23
2012; 6
2016; 28
2018; 14
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 14
  issue: 37
  year: 2018
  article-title: High‐performance biscrolled MXene/carbon nanotube yarn supercapacitors
  publication-title: Small
– volume: 2
  issue: 6
  year: 2017
  article-title: Energy harvesting and storage in 1D devices
  publication-title: Nat Rev Mater
– volume: 26
  start-page: 6790
  issue: 39
  year: 2014
  end-page: 6797
  article-title: Controlled functionalization of carbonaceous fibers for asymmetric solid‐state micro‐supercapacitors with high volumetric energy density
  publication-title: Adv Mater
– volume: 10
  start-page: 11344
  issue: 12
  year: 2016
  end-page: 11350
  article-title: High‐capacitance mechanism for Ti C T MXene by in situ electrochemical Raman spectroscopy investigation
  publication-title: ACS Nano
– volume: 10
  start-page: 9193
  issue: 10
  year: 2016
  end-page: 9200
  article-title: Atomic defects in monolayer titanium carbide (Ti C T ) MXene
  publication-title: ACS Nano
– volume: 27
  start-page: 4830
  issue: 33
  year: 2015
  end-page: 4836
  article-title: A flexible fiber‐based supercapacitor‐triboelectric‐nanogenerator power system for wearable electronics
  publication-title: Adv Mater
– volume: 6
  start-page: 254
  issue: 2
  year: 2020
  end-page: 265
  article-title: Additive‐free MXene liquid crystals and fibers
  publication-title: ACS Cent Sci
– volume: 51
  start-page: 627
  issue: 4
  year: 1949
  end-page: 659
  article-title: The effects of shape on the interaction of colloidal particles
  publication-title: Ann New York Acad Sci
– volume: 557
  start-page: 409
  issue: 7705
  year: 2018
  end-page: 412
  article-title: Thickness‐independent capacitance of vertically aligned liquid‐crystalline MXenes
  publication-title: Nature
– volume: 5
  start-page: 24076
  issue: 46
  year: 2017
  end-page: 24082
  article-title: Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets
  publication-title: J Mater Chem A
– volume: 349
  start-page: 1083
  issue: 6252
  year: 2015
  end-page: 1087
  article-title: Highly thermally conductive and mechanically strong graphene fibers
  publication-title: Science
– volume: 29
  issue: 44
  year: 2019
  article-title: A highly conductive cationic wood membrane
  publication-title: Adv Funct Mater
– volume: 14
  start-page: 168
  year: 2019
  end-page: 175
  article-title: Microfluidics‐enabled orientation and microstructure control of macroscopic graphene fibres
  publication-title: Nat Nanotechnol
– volume: 32
  issue: 5
  year: 2020
  article-title: An overview of fiber‐shaped batteries with a focus on multifunctionality, scalability, and technical difficulties
  publication-title: Adv Mater
– volume: 341
  start-page: 534
  issue: 6145
  year: 2013
  end-page: 537
  article-title: Liquid‐mediated dense integration of graphene materials for compact capacitive energy storage
  publication-title: Science
– volume: 6
  start-page: 7103
  issue: 8
  year: 2012
  end-page: 7113
  article-title: Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores
  publication-title: ACS Nano
– volume: 55
  start-page: 14569
  issue: 47
  year: 2016
  end-page: 14574
  article-title: Organic‐base‐driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance
  publication-title: Angew Chem Int Ed
– volume: 139
  start-page: 6314
  issue: 18
  year: 2017
  end-page: 6320
  article-title: High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers
  publication-title: J Am Chem Soc
– volume: 23
  start-page: 4248
  issue: 37
  year: 2011
  end-page: 4253
  article-title: Two‐dimensional nanocrystals produced by exfoliation of Ti AlC
  publication-title: Adv Mater
– volume: 137
  start-page: 13200
  issue: 40
  year: 2015
  end-page: 13208
  article-title: Macroscopic and strong ribbons of functionality‐rich metal oxides from highly ordered assembly of unilamellar sheets
  publication-title: J Am Chem Soc
– volume: 2
  start-page: 624
  issue: 4
  year: 2020
  end-page: 634
  article-title: Facile synthesis of colloidal nitrogen‐doped titanium carbide sheets with enhanced electrochemical performance
  publication-title: Carbon Energy.
– volume: 32
  issue: 5
  year: 2020
  article-title: A review on graphene fibers: expectations, advances, and prospects
  publication-title: Adv Mater
– volume: 1
  start-page: 87
  issue: 1
  year: 2014
  end-page: 91
  article-title: Formation and processability of liquid crystalline dispersions of graphene oxide
  publication-title: Mater Horiz
– volume: 26
  start-page: 992
  issue: 7
  year: 2014
  end-page: 1005
  article-title: 25th anniversary article: MXenes: a new family of two‐dimensional materials
  publication-title: Adv Mater
– volume: 29
  issue: 29
  year: 2019
  article-title: Revealing the pseudo‐intercalation charge storage mechanism of MXenes in acidic electrolyte
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 348
  issue: 2
  year: 2017
  end-page: 362
  article-title: Multi‐functional flexible aqueous sodium‐ion batteries with high safety
  publication-title: Chem
– volume: 15
  issue: 8
  year: 2019
  article-title: Highly conductive Ti C T MXene hybrid fibers for flexible and elastic fiber‐shaped supercapacitors
  publication-title: Small
– volume: 7
  issue: 15
  year: 2017
  article-title: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification
  publication-title: Adv Energy Mater
– volume: 17
  start-page: 3543
  issue: 6
  year: 2017
  end-page: 3549
  article-title: Flexible lithium‐ion fiber battery by the regular stacking of two‐dimensional titanium oxide nanosheets hybridized with reduced graphene oxide
  publication-title: Nano Lett
– volume: 5
  start-page: 22113
  issue: 42
  year: 2017
  end-page: 22119
  article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors
  publication-title: J Mater Chem A
– volume: 28
  start-page: 4524
  issue: 22
  year: 2016
  end-page: 4531
  article-title: Advances in wearable fiber‐shaped lithium‐ion batteries
  publication-title: Adv Mater
– volume: 4
  issue: 1
  year: 2013
  article-title: Unusually stable ~100‐fold reversible and instantaneous swelling of inorganic layered materials
  publication-title: Nat Commun
– volume: 7
  start-page: 520
  issue: 2
  year: 2019
  end-page: 530
  article-title: Flexible all‐solid‐state fiber‐shaped Ni–Fe batteries with high electrochemical performance
  publication-title: J Mater Chem A
– volume: 2
  start-page: 54
  issue: 1
  year: 2020
  end-page: 71
  article-title: Two‐dimensional materials of group‐IVA boosting the development of energy storage and conversion
  publication-title: Carbon Energy
– volume: 14
  issue: 22
  year: 2018
  article-title: Ultrahigh‐energy density lithium‐ion cable battery based on the carbon‐nanotube woven macrofilms
  publication-title: Small
– volume: 17
  start-page: 7552
  issue: 12
  year: 2017
  end-page: 7560
  article-title: Constructing ultrahigh‐capacity zinc‐nickel‐cobalt oxide@Ni(OH) core‐shell nanowire arrays for high‐performance coaxial fiber‐shaped asymmetric supercapacitors
  publication-title: Nano Lett
– volume: 2
  issue: 1
  year: 2011
  article-title: Graphene chiral liquid crystals and macroscopic assembled fibres
  publication-title: Nat Commun
– volume: 26
  start-page: 2059
  issue: 13
  year: 2014
  end-page: 2065
  article-title: Flexible supercapacitor made of carbon nanotube yarn with internal pores
  publication-title: Adv Mater
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.nanolett.7b03507
– ident: e_1_2_6_36_1
  doi: 10.1039/C8TA09822K
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201606643
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_6_35_1
  doi: 10.1002/smll.201800414
– ident: e_1_2_6_29_1
  doi: 10.1039/C3MH00050H
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201304736
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.201403061
– ident: e_1_2_6_21_1
  doi: 10.1002/aenm.201602725
– ident: e_1_2_6_7_1
  doi: 10.1002/cey2.34
– ident: e_1_2_6_8_1
  doi: 10.1038/s41565-018-0330-9
– ident: e_1_2_6_15_1
  doi: 10.1002/cey2.51
– ident: e_1_2_6_38_1
  doi: 10.1002/smll.201802225
– ident: e_1_2_6_34_1
  doi: 10.1002/adfm.201902953
– ident: e_1_2_6_6_1
  doi: 10.1038/ncomms1583
– ident: e_1_2_6_22_1
  doi: 10.1039/C7TA07999K
– ident: e_1_2_6_3_1
  doi: 10.1038/natrevmats.2017.23
– ident: e_1_2_6_9_1
  doi: 10.1126/science.aaa6502
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.201501934
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201503891
– ident: e_1_2_6_26_1
  doi: 10.1038/ncomms2641
– ident: e_1_2_6_14_1
  doi: 10.1021/acs.nanolett.7b00623
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1749-6632.1949.tb27296.x
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.201902664
– ident: e_1_2_6_28_1
  doi: 10.1021/nn3021772
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_6_25_1
  doi: 10.1021/acscentsci.9b01217
– ident: e_1_2_6_13_1
  doi: 10.1021/jacs.5b09138
– ident: e_1_2_6_4_1
  doi: 10.1002/adma.201902151
– ident: e_1_2_6_33_1
  doi: 10.1021/jacs.6b11100
– ident: e_1_2_6_24_1
  doi: 10.1002/smll.201804732
– ident: e_1_2_6_20_1
  doi: 10.1021/acsnano.6b06597
– ident: e_1_2_6_37_1
  doi: 10.1016/j.chempr.2017.05.004
– ident: e_1_2_6_18_1
  doi: 10.1021/acsnano.6b05240
– ident: e_1_2_6_31_1
  doi: 10.1126/science.1239089
– ident: e_1_2_6_30_1
  doi: 10.1038/s41586-018-0109-z
– ident: e_1_2_6_32_1
  doi: 10.1002/adfm.201902772
– ident: e_1_2_6_23_1
  doi: 10.1039/C7TA08355F
SSID ssj0002171029
Score 2.3845975
Snippet Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of...
Abstract Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of...
Abstract Flexible and wearable fiber electrodes with high conductivity and acceptable electrochemical behavior are crucial for extending the application of...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 142
SubjectTerms flexible supercapacitor
ribbon fiber
Ti3C2 sheets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct1AkGxFOUlzx0DU0d27VHqIoqpDJRqUyRH2dRCSVVHwMbH4HPyCfBlxQIA2JhyeBIcXSX3P3jnH9HSMf5VCurZMJ7JsSDdIkyzCUxuXkWUkCGOlZb3MvRhN9NxbTR6gtrwmo8cG24rhbaaJ45QMoLN9aw1DPwKP09okiq6NsTjY8pjMFRaMfMqetdskgZ7Tp4YVeYQhrpp6L0_1SlVVq53SO7Gz1Ir-v72CdbUByQnQYl8JDA2ODFXDmfOTqexuBEFzNry4LiIiotkVQcdSNdPgGsaFR7Dpe_aVSjFGHE769v8-_dATQgAdM-A12u47CLudLNsOPOEZncDh8Go2TTHSFxmcTf1yxkxmslYk7HPrZKguiB48CyTPrUhBCtYPp9SD2-yT4EIxXwaENtjJA-OyatoizghNBUKieYs5nUnDumbOgjRIeBDt4ErdqEfhotn9cQjLzGHbMc7ZpL0SY3aMyv00itrgaiL_ONL_O_fNkmncoVv02SD4aPTIrT_5jrjGwzLE-pysnOSWu1WMNF1Bcre1k9Sh-ExM8P
  priority: 102
  providerName: Directory of Open Access Journals
Title Macroscopic MXene ribbon with oriented sheet stacking for high‐performance flexible supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.65
https://doaj.org/article/959a943ce06044aba20d2ed0426d5376
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMctKAsMiKcoj8oDayD1q_YIqBVCAjGAVKbIjzNUQk3Vx8DGR-Az8knwJaWUAYklgxMn0tnn-_ti_0zIqQ-50U6rTLRtTBflM22Zz1JwCyzmgAx1XG1xp64fxU1f9peO-qr5EIuEG3pGNV6jg1s3Of-Bhnp4Y2dKrpK1JGo0dmgm7hfplaS0U-hE8csU72SGK11vmcXa5_O6v2JRhez_LVGrGNPbIptzcUgv6tbcJisw3CEbS8jAXQK3Fl_my9HA09t-GqnoeOBcOaSYUaUlYouTiKSTF4ApTdLPYy6cJmlKkUz8-f4x-tkqQCPiMN0r0MksFfsUOP0Aj9_ZI4-97sPVdTY_KiHzXOG_bBa5DUbLFODxUFutQLbBC2Ccq5DbGJNFbKcDeUC3DjFapUEIYY21UgW-TxrDcggHhOZKe8m848oI4Zl2sYNEHQYmBhuNbhL6bbRiVBMxipp9zAq0a6Fkk1yiMRe3EWFdFZTj52LuEYWRxhrBPSC-R1hnWR4YBJzTBWTMNMlp1RR_faS46j4xJQ__99gRWWe4GqVaPXZMGtPxDE6SnJi6VtVxWtVk_AuLI8kO
link.rule.ids 315,786,790,870,2115,11589,27955,27956,46085,46509,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMctKAMwIJ6iPD2wBoJftUdAReVRxABSmSLHPkMl1FRtGdj4CHxGPgm-JBQYkFgyOHEinXO-fy7nnwk5cD41OtcqEcc2xINyibbMJTG4eRZSQIY6VlvcqM69uOzJXl1ViWthKj7ENOGGnlHO1-jgmJA--qaGOnhlh0rOkjmBGDikOovbaX4lSu0YO1H9MsVbieFKV2tmsfdR3fdXMCqZ_b81ahlkzpfJUq0O6Uk1nCtkBgarZPEHM3CNQNfizVwx7Dva7cWpio76eV4MKKZUaYHc4qgi6fgJYEKj9nOYDKdRm1JEE3-8vQ-_1wrQgDzM_Bno-CU2uxg5XR_331kn9-ftu7NOUu-VkDiu8Gc2C9x6o2WM8LirrVYgj8EJYJwrn9oQokVsqwWpR7_2IVilQQhhjbVSeb5BGoNiAJuEpko7yVzOlRHCMZ2HFiJ1GJjgbTC6SeiX0bJhhcTIKvgxy9CumZJNcorGnJ5GhnXZUIwes9olMiONNYI7QH6PsLllqWfg8aPOI2SmSQ7KofjrIdlZ-4EpufW_y_bJfOeue51dX9xcbZMFhqUpZSnZDmlMRi-wG7XFJN8rX6JPppjLgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIYtFgnBAbGKsvrANRC81T5CoWIXByqVU-TYY6iEmqrLgRuPwDPyJHiSUsoBiUsOTpxI44znz8T-hpBD51Ojc60ScWJDPCiXaMtcEoObZyEFZKjjaot7ddkS123Znir1VfEhJgk39IxyvkYH7_lw_AMNdfDGjpScJfNCRd2AUGfxMEmvRKUdQyeKX6Z4PTFc6WrLLPY-Hvf9FYtKZP9viVrGmOYKWR6LQ3pajeYqmYHuGlmaQgauE7izeDNX9DqO3rXjTEX7nTwvuhQzqrRAbHEUkXTwAjCkUfo5zIXTKE0pkok_3z96P1sFaEAcZv4KdDCKzS4GTtfB8jsbpNW8eGxcJuNSCYnjCv9ls8CtN1rGAI9FbbUCeQJOAONc-dSGEC1i63VIPbq1D8EqDUIIa6yVyvNNMtcturBFaKq0k8zlXBkhHNN5qCNRh4EJ3gaja4R-Gy3rVUSMrGIfswztmilZI2dozMlpRFiXDUX_ORt7RGaksUZwB4jvETa3LPUMPH7TeWTM1MhhORR_PSRrXDwxJbf_d9kBWXg4b2a3V_c3O2SR4cKUciHZLpkb9kewF5XFMN8v36Evk0fKqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroscopic+MXene+ribbon+with+oriented+sheet+stacking+for+high%E2%80%90performance+flexible+supercapacitors&rft.jtitle=Carbon+energy&rft.au=Zhu%2C+Chao&rft.au=Geng%2C+Fengxia&rft.date=2021-03-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=3&rft.issue=1&rft.spage=142&rft.epage=152&rft_id=info:doi/10.1002%2Fcey2.65&rft.externalDBID=10.1002%252Fcey2.65&rft.externalDocID=CEY265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon