Tendon biomechanical properties are altered by storage duration but not freeze‐thaw temperatures or cycles
Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze‐thaw conditions. Kangaroo tendons, a potential xenograft source,...
Saved in:
Published in | Journal of orthopaedic research Vol. 42; no. 6; pp. 1180 - 1189 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze‐thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer‐storage temperatures (−20°C vs. −80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze‐thaw cycles (1, 2, 3, 4, 5, or 10), or freeze‐thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (−20°C vs. −80°C) or the number of freeze‐thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze‐thaw cycles and multiple freeze‐thaw cycles across a range of freeze and thaw temperatures. Common freeze‐thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations. |
---|---|
AbstractList | Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze‐thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer‐storage temperatures (−20°C vs. −80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze‐thaw cycles (1, 2, 3, 4, 5, or 10), or freeze‐thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (−20°C vs. −80°C) or the number of freeze‐thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze‐thaw cycles and multiple freeze‐thaw cycles across a range of freeze and thaw temperatures. Common freeze‐thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations. Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze-thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer-storage temperatures (-20°C vs. -80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze-thaw cycles (1, 2, 3, 4, 5, or 10), or freeze-thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (-20°C vs. -80°C) or the number of freeze-thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze-thaw cycles and multiple freeze-thaw cycles across a range of freeze and thaw temperatures. Common freeze-thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations. Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze-thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer-storage temperatures (-20°C vs. -80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze-thaw cycles (1, 2, 3, 4, 5, or 10), or freeze-thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (-20°C vs. -80°C) or the number of freeze-thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze-thaw cycles and multiple freeze-thaw cycles across a range of freeze and thaw temperatures. Common freeze-thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations. |
Author | Hartnell, Nicholas Clarke, Elizabeth C. Blaker, Carina L. Ashton, Dylan M. Little, Christopher B. |
Author_xml | – sequence: 1 givenname: Carina L. orcidid: 0000-0003-2264-6702 surname: Blaker fullname: Blaker, Carina L. organization: The University of Sydney – sequence: 2 givenname: Dylan M. orcidid: 0000-0002-8573-3216 surname: Ashton fullname: Ashton, Dylan M. organization: The University of Sydney – sequence: 3 givenname: Nicholas surname: Hartnell fullname: Hartnell, Nicholas organization: Bone Ligament Tendon Pty. Ltd – sequence: 4 givenname: Christopher B. orcidid: 0000-0002-0353-7634 surname: Little fullname: Little, Christopher B. organization: The University of Sydney and the Northern Sydney Local Health District – sequence: 5 givenname: Elizabeth C. orcidid: 0000-0003-2500-5222 surname: Clarke fullname: Clarke, Elizabeth C. email: elizabeth.clarke@sydney.edu.au organization: The University of Sydney |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38245841$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1KxDAURoMozviz8AUkS11Ub9I2bZci_jIwICO4K0l6qx3aZkxShrryEXxGn8SOVXeu7ubcA9_ZI9utaZGQIwZnDICfL40943GShltkyuI4CmKePG2TKSShCIALMSF7zi0BIGE83SWTMOVRnEZsSuoFtoVpqapMg_pFtpWWNV1Zs0LrK3RUWqSy9mixoKqnzhsrn5EWnZW-2jx2nrbG09IivuHn-4d_kWvqsRkE0nd2UBhLda9rdAdkp5S1w8Ofu08er68Wl7fBbH5zd3kxC3QoIAwUJIVSqBnDJBWyZJHICsUEMK2FjDkyjkKCZilAGGlVpqwsQZcyylTGpAr3ycnoHXa8duh83lROY13LFk3ncp7xDAadSAf0dES1Nc5ZLPOVrRpp-5xBvombD3Hz77gDe_yj7VSDxR_5W3MAzkdgXdXY_2_K7-cPo_ILKF6JGg |
CitedBy_id | crossref_primary_10_1177_03635465241260054 |
Cites_doi | 10.1089/ten.tec.2012.0760 10.1016/j.jmbbm.2015.04.009 10.1016/j.jbiomech.2005.02.012 10.1016/j.jbiomech.2021.110697 10.1142/S0219519403000818 10.1111/nyas.13460 10.1007/s00167-019-05440-3 10.1016/j.clinbiomech.2010.12.006 10.1097/00003086-199507000-00034 10.3758/BRM.41.4.1149 10.1016/S0142-9612(98)90187-9 10.1038/s41598-019-44306-z 10.1002/bip.360221208 10.2106/00004623-197658080-00006 10.1007/s00167-012-1954-1 10.1016/j.jmbbm.2021.104582 10.1243/095441105X63309 10.1080/089419300750059352 10.1098/rsif.2012.0362 10.1016/j.jbiomech.2018.09.012 10.1016/j.actbio.2017.04.011 10.1089/ten.tea.2016.0114 10.1016/j.msec.2021.112435 10.1007/s00276-001-0259-8 10.1007/s10561-010-9234-0 10.1016/j.jbiomech.2016.06.006 10.1080/03008207.2018.1504929 10.1177/0363546507308936 10.1007/s00167-010-1278-y 10.1016/j.jbiomech.2019.109321 10.1016/0021-9290(86)90016-3 10.1016/j.jhsa.2007.12.011 10.1002/jor.21373 10.1007/s10561-008-9109-9 10.1071/WR9820009 10.1038/ncomms6942 |
ContentType | Journal Article |
Copyright | 2024 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
Copyright_xml | – notice: 2024 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. – notice: 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/jor.25783 |
DatabaseName | Wiley Open Access Wiley-Blackwell Open Access Backfiles Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 1189 |
ExternalDocumentID | 10_1002_jor_25783 38245841 JOR25783 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Industry, Science, Energy and Resources (Innovative Manufacturing Cooperative Research Center); Bone Ligament Tendon Pty. Ltd. |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 24P 29L 31~ 33P 3SF 3V. 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWI RWL RWR RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WRC WXI WXSBR WYB WYISQ X7M XG1 XV2 YCJ YQT ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ ADNMO CITATION 7X8 |
ID | FETCH-LOGICAL-c3603-b07dbbec11e786af1469db1601cc6a52e12e6a0c180034cbf81ff0cfa49b91ab3 |
IEDL.DBID | 24P |
ISSN | 0736-0266 |
IngestDate | Fri Dec 06 00:01:40 EST 2024 Fri Dec 06 00:52:05 EST 2024 Sat Nov 02 12:13:24 EDT 2024 Sat Aug 24 00:51:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | tissue engineering musculoskeletal fresh‐frozen graft mechanical testing |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3603-b07dbbec11e786af1469db1601cc6a52e12e6a0c180034cbf81ff0cfa49b91ab3 |
Notes | Carina L. Blaker and Dylan M. Ashton are co‐first authors and have contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8573-3216 0000-0002-0353-7634 0000-0003-2264-6702 0000-0003-2500-5222 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25783 |
PMID | 38245841 |
PQID | 2929060168 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2929060168 crossref_primary_10_1002_jor_25783 pubmed_primary_38245841 wiley_primary_10_1002_jor_25783_JOR25783 |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-Jun 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J Orthop Res |
PublicationYear | 2024 |
References | 2019; 9 2009; 41 2015; 6 2019; 95 2013; 21 2006; 39 2021; 127 2015; 52 2017; 23 1995; 316 2018; 81 2017; 1409 2005; 219 2007 1986; 19 2006 2021; 120 1999; 20 2008; 33 2001; 23 2012; 13 2011; 19 2007; 35 2014; 20 1976; 58 2009; 10 2013; 79 2000; 13 2017; 57 1982; 9 2019; 27 2003; 3 2021; 130 2011; 26 2013 2016; 49 2011; 29 2018; 59 1983; 22 2012; 9 e_1_2_8_29_1 e_1_2_8_24_1 (e_1_2_8_28_1) 2007 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee (e_1_2_8_14_1) 2013 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Arnout N (e_1_2_8_31_1) 2013; 79 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 American Association of Tissue Banks Standards Committee (e_1_2_8_13_1) 2006 e_1_2_8_30_1 |
References_xml | – volume: 127 year: 2021 article-title: The effect of sterilization and storage on the viscoelastic properties of human tendon allografts publication-title: J Biomech – volume: 41 start-page: 1149 year: 2009 end-page: 1160 article-title: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses publication-title: Behav Res Methods – volume: 20 start-page: 276 year: 2014 end-page: 284 article-title: Freeze‐thaw cycles enhance decellularization of large tendons publication-title: Tissue Eng Part C Methods – volume: 21 start-page: 1218 year: 2013 end-page: 1225 article-title: Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts publication-title: Knee Surg Sports Traumatol Arthrosc – year: 2007 – volume: 33 start-page: 353 year: 2008 end-page: 358 article-title: The effects of freezing on the tensile properties of repaired porcine flexor tendon publication-title: J Hand Surg Am – volume: 49 start-page: 2694 year: 2016 end-page: 2701 article-title: Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury publication-title: J Biomech – volume: 23 start-page: 259 year: 2001 end-page: 262 article-title: Effects of freezing/thawing on the biomechanical properties of human tendons publication-title: Surg Radiol Anat – volume: 219 start-page: 387 year: 2005 end-page: 392 article-title: The changes in the tensile properties of tendons after freeze storage in saline solution publication-title: Proc Inst Mech Eng H – volume: 19 start-page: 399 year: 1986 end-page: 404 article-title: Effects of postmortem storage by freezing on ligament tensile behavior publication-title: J Biomech – volume: 6 start-page: 5942 year: 2015 article-title: Osmotic pressure induced tensile forces in tendon collagen publication-title: Nat Commun – volume: 10 start-page: 11 year: 2009 end-page: 18 article-title: The effect of cryopreservation or heating on the mechanical properties and histomorphology of rat bone‐patellar tendon‐bone publication-title: Cell Tissue Bank – volume: 29 start-page: 1193 year: 2011 end-page: 1198 article-title: The effects of multiple freeze–thaw cycles on the biomechanical properties of the human bone‐patellar tendon‐bone allograft publication-title: J Orthop Res – volume: 9 start-page: 7887 year: 2019 article-title: Water‐content related alterations in macro and micro scale tendon biomechanics publication-title: Sci Rep – volume: 9 start-page: 3108 year: 2012 end-page: 3117 article-title: Specialization of tendon mechanical properties results from interfascicular differences publication-title: J R Soc Interface – volume: 95 year: 2019 article-title: Functionally distinct tendons have different biomechanical, biochemical and histological responses to in vitro unloading publication-title: J Biomech – volume: 79 start-page: 435 year: 2013 end-page: 443 article-title: The influence of freezing on the tensile strength of tendon grafts: a biomechanical study publication-title: Acta Orthop Belg – volume: 39 start-page: 1153 year: 2006 end-page: 1157 article-title: The effects of refreezing on the viscoelastic and tensile properties of ligaments publication-title: J Biomech – volume: 35 start-page: 2148 year: 2007 end-page: 2158 article-title: Allograft update: the current status of tissue regulation, procurement, processing, and sterilization publication-title: Am J Sports Med – volume: 57 start-page: 363 year: 2017 end-page: 372 article-title: Investigating mechanisms of tendon damage by measuring multi‐scale recovery following tensile loading publication-title: Acta Biomater – volume: 9 start-page: 9 year: 1982 end-page: 20 article-title: Growth of grey kangaroos and the reliability of age determination from body meausrements I. The eastern grey kangaroo, publication-title: Wildlife Research – volume: 316 start-page: 244 year: 1995 end-page: 253 article-title: Freezing influences the healing of rabbit medial collateral ligament autografts publication-title: Clin Orthop Relat Res – volume: 120 year: 2021 article-title: The effect of multiple freeze‐thaw cycles on the viscoelastic properties and microstructure of bovine superficial digital flexor tendon publication-title: J Mech Behav Biomed Mater – volume: 26 start-page: 419 year: 2011 end-page: 423 article-title: Effects of repetitive multiple freeze‐thaw cycles on the biomechanical properties of human flexor digitorum superficialis and flexor pollicis longus tendons publication-title: Clin Biomech – year: 2006 – volume: 13 start-page: 71 year: 2012 end-page: 80 article-title: Repeated freeze‐thaw cycles reduce the survival rate of osteocytes in bone‐tendon constructs without affecting the mechanical properties of tendons publication-title: Cell Tissue Bank – volume: 1409 start-page: 85 year: 2017 end-page: 94 article-title: Freezing does not alter multiscale tendon mechanics and damage mechanisms in tension publication-title: Ann NY Acad Sci – volume: 22 start-page: 2539 year: 1983 end-page: 2547 article-title: X‐ray diffraction studies on the structure of hydrated collagen publication-title: Biopolymers – volume: 20 start-page: 1003 year: 1999 end-page: 1015 article-title: Nitrous acid pretreatment of tendon xenografts cross‐linked with glutaraldehyde and sterilized with gamma irradiation publication-title: Biomaterials – volume: 19 start-page: 1028 year: 2011 end-page: 1034 article-title: Effect of repeated freezing–thawing on the Achilles tendon of rabbits publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 81 start-page: 52 year: 2018 end-page: 57 article-title: Effects of freeze‐thaw on the biomechanical and structural properties of the rat Achilles tendon publication-title: J Biomech – volume: 3 start-page: 299 year: 2003 end-page: 308 article-title: The effect of freeze storage on the tensile properties of tendons publication-title: J Mech Med Biol – volume: 59 start-page: 483 year: 2018 end-page: 494 article-title: Cellular, matrix, and mechano‐biological differences in load‐bearing versus positional tendons throughout development and aging: a narrative review publication-title: Connect Tissue Res – volume: 23 start-page: 124 year: 2017 end-page: 134 article-title: Decellularization and characterization of porcine superflexor tendon: a potential anterior cruciate ligament replacement publication-title: Tissue Eng Part A – volume: 13 start-page: 313 year: 2000 end-page: 318 article-title: A new clamping technique for biomechanical testing of tendons in small animals publication-title: J Invest Surg – volume: 58 start-page: 1074 year: 1976 end-page: 1082 article-title: The strength of the anterior cruciate ligament in humans and Rhesus monkeys publication-title: J Bone Joint Surg Am – volume: 130 year: 2021 article-title: The dispersion of viscoelastic properties of fascicle bundles within the tendon results from the presence of interfascicular matrix and flow of body fluids publication-title: Mater Sci Eng C Mater Biol Appl – volume: 52 start-page: 85 year: 2015 end-page: 94 article-title: The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons publication-title: J Mech Behav Biomed Mater – volume: 27 start-page: 1754 year: 2019 end-page: 1770 article-title: The use of allograft tendons in primary ACL reconstruction publication-title: Knee Surg Sports Traumatol Arthrosc – year: 2013 – ident: e_1_2_8_8_1 doi: 10.1089/ten.tec.2012.0760 – ident: e_1_2_8_41_1 doi: 10.1016/j.jmbbm.2015.04.009 – ident: e_1_2_8_2_1 doi: 10.1016/j.jbiomech.2005.02.012 – ident: e_1_2_8_15_1 doi: 10.1016/j.jbiomech.2021.110697 – ident: e_1_2_8_18_1 doi: 10.1142/S0219519403000818 – ident: e_1_2_8_32_1 doi: 10.1111/nyas.13460 – ident: e_1_2_8_7_1 doi: 10.1007/s00167-019-05440-3 – ident: e_1_2_8_12_1 doi: 10.1016/j.clinbiomech.2010.12.006 – ident: e_1_2_8_4_1 doi: 10.1097/00003086-199507000-00034 – ident: e_1_2_8_27_1 doi: 10.3758/BRM.41.4.1149 – volume-title: Guidelines for the Blood Transfusion Services in the United Kingdom year: 2013 ident: e_1_2_8_14_1 contributor: fullname: Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee – ident: e_1_2_8_23_1 doi: 10.1016/S0142-9612(98)90187-9 – ident: e_1_2_8_29_1 doi: 10.1038/s41598-019-44306-z – ident: e_1_2_8_37_1 doi: 10.1002/bip.360221208 – ident: e_1_2_8_10_1 doi: 10.2106/00004623-197658080-00006 – ident: e_1_2_8_17_1 doi: 10.1007/s00167-012-1954-1 – ident: e_1_2_8_9_1 doi: 10.1016/j.jmbbm.2021.104582 – volume-title: Standards for Tissue Banking year: 2007 ident: e_1_2_8_28_1 – ident: e_1_2_8_19_1 doi: 10.1243/095441105X63309 – ident: e_1_2_8_26_1 doi: 10.1080/089419300750059352 – ident: e_1_2_8_36_1 doi: 10.1098/rsif.2012.0362 – ident: e_1_2_8_16_1 doi: 10.1016/j.jbiomech.2018.09.012 – volume-title: Standards for Tissue Banking year: 2006 ident: e_1_2_8_13_1 contributor: fullname: American Association of Tissue Banks Standards Committee – ident: e_1_2_8_40_1 doi: 10.1016/j.actbio.2017.04.011 – ident: e_1_2_8_22_1 doi: 10.1089/ten.tea.2016.0114 – volume: 79 start-page: 435 year: 2013 ident: e_1_2_8_31_1 article-title: The influence of freezing on the tensile strength of tendon grafts: a biomechanical study publication-title: Acta Orthop Belg contributor: fullname: Arnout N – ident: e_1_2_8_38_1 doi: 10.1016/j.msec.2021.112435 – ident: e_1_2_8_11_1 doi: 10.1007/s00276-001-0259-8 – ident: e_1_2_8_21_1 doi: 10.1007/s10561-010-9234-0 – ident: e_1_2_8_25_1 doi: 10.1016/j.jbiomech.2016.06.006 – ident: e_1_2_8_34_1 doi: 10.1080/03008207.2018.1504929 – ident: e_1_2_8_20_1 doi: 10.1177/0363546507308936 – ident: e_1_2_8_33_1 doi: 10.1007/s00167-010-1278-y – ident: e_1_2_8_35_1 doi: 10.1016/j.jbiomech.2019.109321 – ident: e_1_2_8_3_1 doi: 10.1016/0021-9290(86)90016-3 – ident: e_1_2_8_5_1 doi: 10.1016/j.jhsa.2007.12.011 – ident: e_1_2_8_6_1 doi: 10.1002/jor.21373 – ident: e_1_2_8_39_1 doi: 10.1007/s10561-008-9109-9 – ident: e_1_2_8_24_1 doi: 10.1071/WR9820009 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms6942 |
SSID | ssj0007128 |
Score | 2.4928868 |
Snippet | Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1180 |
SubjectTerms | Animals Biomechanical Phenomena Cryopreservation Elastic Modulus Freezing fresh‐frozen graft Macropodidae - physiology mechanical testing musculoskeletal Tendons - physiology Tensile Strength tissue engineering |
Title | Tendon biomechanical properties are altered by storage duration but not freeze‐thaw temperatures or cycles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25783 https://www.ncbi.nlm.nih.gov/pubmed/38245841 https://search.proquest.com/docview/2929060168 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7revEiiq_1RRQPXqpN2k1bPIkPZMEH4sLeStJOEJFWul1ET_4Ef6O_xJl0d2URwUspNM1hZjLzJZn5hrGDXGmloyjwIqusF2rcoMS4sDydQ5jLxNoMqDj5-kZd9cPeoDtosZNJLUzDDzE9cKOV4fw1LXBthsc_pKFPZXVE9hbMsXmENYraF8jwbuqGI-Eaq6IJU5atUhNaIV8eT3-dDUa_EOYsYHUR53KJLY6hIj9tdLvMWlCssOcHoP4b3JXNU9UuCZm_0JF6RdyoXFfA3RU45Ny8cUp-RJfB81Gjam5GNS_KmtsK4B2-Pj7rR_3KiaFqTK885GXFszfKlltl_cuLh7Mrb9wxwcsC5Qee8aPcoFaEgChW2qIbTHIjcNOVZUp3JQgJSvuZiImXJjM2Ftb6mdVhYhKhTbDG2kVZwAbjgHE_BB3H-AmdadcoiWoDhFcY5fPI77D9iejSl4YYI20okGWK8k2dfDtsbyLUFM2W7iJ0AeVomMqEeOYRb8Ydtt5IezpNEEu6vRUddujE__f8ae_23r1s_n_oFluQCEyadK9t1q6rEewgsKjNrjMgfJ7fy29Wzs0N |
link.rule.ids | 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALD_FangZx4JJt7GSdROoFAdVS2iJVW6kXFNnOWKhFSZUmQu2Jn8Bv5Jd0xtlsVRAS4hYpiZX4m7E_j2c-A7yutNEmy5Io89pHqaEFSk6OFZkK00oV3jvk4uTdPT0_SLcPZ4drsDnWwgz6EKuAG3tGGK_ZwTkgvXGpGnrUtFM2uOQaXCd3l5zQ9X7_Ujwqk-FkVbJhTrPVetQVitXG6tWrs9EfFPMqYw1TztZt-DJ-7JBpcjztOzt157_pOP7v39yBW0suKt4OxnMX1rC-B98WyAd8iFCXz2XBjKI44Zh9y-KrwrQowh47VsKeCc6upDFJVP1gS8L2naibTvgW8Rx__fjZfTXfBUtgLfWbT0XTCnfG6Xj34WDrw-LdPFoeyRC5RMdJZOOssgS7lJjl2ngaZ4vKSlrVOafNTKFUqE3sZM7CN876XHofO2_SwhbS2OQBrNdNjY9AIBGLFE2e0y2Cb2a1IrtA4m9EI6osnsCrEZryZFDeKAeNZVVSZ5WhsybwcgStJL_gzQ5TY9OflqpgIXsitPkEHg5orppJcsXbw3ICbwImf2-_3P68Hy4e__ujL-DGfLG7U-583Pv0BG4qYkFDbtlTWO_aHp8Ri-ns82CsF10s8GA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qBfHFKt6O11V88CWn2U3OJsEnsR5q1SqlhT4IYS-zSCvJIU0o7ZM_wd_oL3EmOTmliiC-BZIsyc5lv92Z-QbghddGmyxLoizoEKWGNig5GVZkPKZeFSE45OLkj7t6-yDdOZwdrsGrsRZm4IdYHbixZfT-mg184cPmBWnoUd1MWd-SK3A11apg4vytvQvuqEz2jVVJhTnLVuuRVihWm6tXLy9GfyDMy4C1X3HmG_Bl_NYh0eR42rV26s5_o3H8z5-5CTeWSFS8HlTnFqxhdRu-7SO39xB9VT4XBbMMxYJP7BumXhWmQdFH2NELeyY4t5I8kvDdoEnCdq2o6laEBvEcf37_0X41p4IJsJbszSeiboQ742S8O3Awf7v_ZjtaNmSIXKLjJLJx5i0JXUrMcm0CednCW0l7Oue0mSmUCrWJncyZ9sbZkMsQYhdMWthCGpvchfWqrvA-CCRYkaLJc7pFvnpmtSKtQEJvBCJ8Fk_g-SiZcjHwbpQDw7IqabLKfrIm8GyUWUlWwaEOU2HdnZSqYBp7grP5BO4NwlwNk-SKg8NyAi97kfx9_HLn015_8eDfH30K1z5vzcsP73bfP4TriiDQkFj2CNbbpsPHBGFa-6RX1V-o6e8P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tendon+biomechanical+properties+are+altered+by+storage+duration+but+not+freeze%E2%80%90thaw+temperatures+or+cycles&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Blaker%2C+Carina+L.&rft.au=Ashton%2C+Dylan+M.&rft.au=Hartnell%2C+Nicholas&rft.au=Little%2C+Christopher+B.&rft.date=2024-06-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=42&rft.issue=6&rft.spage=1180&rft.epage=1189&rft_id=info:doi/10.1002%2Fjor.25783&rft.externalDBID=10.1002%252Fjor.25783&rft.externalDocID=JOR25783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |