Bioactive impact of manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model
Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. C...
Saved in:
Published in | Journal of biomedical materials research. Part B, Applied biomaterials Vol. 111; no. 10; pp. 1763 - 1774 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well‐studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential. |
---|---|
AbstractList | Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well‐studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential. Abstract Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well‐studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential. |
Author | McBride‐Gagyi, S. H. Sell, S. A. Hixon, K. R. Robertson, E. M. |
Author_xml | – sequence: 1 givenname: E. M. surname: Robertson fullname: Robertson, E. M. organization: Saint Louis University – sequence: 2 givenname: K. R. surname: Hixon fullname: Hixon, K. R. organization: Saint Louis University – sequence: 3 givenname: S. H. surname: McBride‐Gagyi fullname: McBride‐Gagyi, S. H. organization: Saint Louis University – sequence: 4 givenname: S. A. surname: Sell fullname: Sell, S. A. email: scott.sell@slu.edu organization: Saint Louis University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37243397$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv3CAUhVGVqHm0q-4jpG4iRTMFLjb2sjNqXkrUTbtGGOMMUxumYKeaXX56bjJpFllkxUHn07lwzxHZCzE4Qr5wNueMiW_rZpg3cyhEBR_IIS8KMZN1xfdetYIDcpTzGuGSFfCRHIASEqBWh-Rh4aOxo7931A8bVDR2dDBh-mPoCudsqQktbVBRuzKJ-mBj2sRkRtfiZYz0zvVm9OGZsys_xmwCtWkb0cj0yaBIU2v6e5O86WmXcMyUHB1i6_pPZL8zfXafX85j8vv8x6_l5ezm58XV8vvNzELJYKakKhppZdtZAN52HWugqYrO1PglITkDUaoWSi6kAFAtExUTDk1VgilZCcfkdJe7SfHv5PKoB5-t63sTXJyyFpXA_chackS_vkHXcUoBX4eUlEzhSmukznaUTTHn5Dq9SX4waas500_FaCxGN_q5GKRPXjKnZnDtK_u_CQTEDvjne7d9L0tfL24Xu9RHLUiZ2g |
CitedBy_id | crossref_primary_10_1038_s41405_024_00197_5 crossref_primary_10_1080_08927014_2024_2358913 |
Cites_doi | 10.1016/j.actbio.2017.08.033 10.1039/C6RA26124H 10.3109/21691401.2016.1146731 10.1016/j.biomaterials.2020.120572 10.1038/s41598-020-67886-7 10.1002/jbm.a.36777 10.3390/gels5020021 10.1038/nprot.2012.113 10.1016/j.biomaterials.2018.10.004 10.1155/2018/8173983 10.1155/2017/4843065 10.1016/j.ijbiomac.2017.03.148 10.1007/s11538-016-0242-5 10.3390/cells2020244 10.3390/polym2040522 10.3389/fphar.2020.00757 10.1016/j.biomaterials.2014.10.012 10.1371/journal.pone.0099896 10.1007/s00402-010-1155-7 10.1097/BOT.0000000000000460 10.1016/j.biomaterials.2005.05.036 10.1186/1749-799X-9-18 10.1155/2019/6132581 10.1007/s10856-016-5766-6 10.3390/polym12040905 10.1088/2057-1976/2/3/035014 10.1089/ten.2006.0271 10.4103/JPBS.JPBS_257_18 10.1016/j.oooo.2012.02.030 10.1089/ten.tec.2013.0624 10.1016/j.biomaterials.2009.10.020 10.1088/1748-605X/aa5d76 10.1089/ten.teb.2015.0357 10.1016/j.bone.2009.08.005 10.1097/SCS.0000000000005840 10.1002/jbm.b.34002 10.3390/foods3030420 10.1097/BOT.0000000000000978 10.1189/jlb.1106683 10.1080/00914037.2018.1522504 10.1016/j.bjoms.2017.09.007 10.3390/app9030553 10.1016/j.actbio.2008.07.009 10.1089/ten.tea.2010.0571 10.1007/s10856-017-5933-4 10.1016/j.stem.2009.06.016 10.1016/j.biomaterials.2008.12.055 |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.b.35283 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4981 |
EndPage | 1774 |
ExternalDocumentID | 10_1002_jbm_b_35283 37243397 JBMB35283 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Saint Louis University |
GroupedDBID | -~X .GA .Y3 05W 0R~ 10A 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 702 7PT 8-1 8-4 8-5 8UM 930 AAESR AAEVG AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI BY8 CO8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF IX1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM NF~ NNB O66 P2W P4D PQQKQ QB0 RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W99 WBKPD WFSAM WIH WJL WOHZO WRC WYISQ XG1 XV2 ZZTAW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3603-7475b4c4dfc331dff0b3b85fa960524103267d361242337d02802e960763a6063 |
IEDL.DBID | DR2 |
ISSN | 1552-4973 |
IngestDate | Fri Oct 25 02:01:29 EDT 2024 Thu Oct 10 15:14:49 EDT 2024 Fri Aug 23 04:55:52 EDT 2024 Wed Oct 16 00:39:10 EDT 2024 Sat Aug 24 00:45:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | osteoinductivity tissue engineering cryogel bone regeneration rat fracture model bone char manuka honey |
Language | English |
License | 2023 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3603-7475b4c4dfc331dff0b3b85fa960524103267d361242337d02802e960763a6063 |
Notes | E. M. Robertson and K. R. Hixon contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37243397 |
PQID | 2844074979 |
PQPubID | 2034571 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2820024941 proquest_journals_2844074979 crossref_primary_10_1002_jbm_b_35283 pubmed_primary_37243397 wiley_primary_10_1002_jbm_b_35283_JBMB35283 |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part B, Applied biomaterials |
PublicationTitleAlternate | J Biomed Mater Res B Appl Biomater |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 62 2009; 45 2015; 37 2017; 7 2019; 9 2010; 31 2019; 2019 2019; 4 2019; 5 2013; 2 2017; 2017 2018; 106 2017; 28 2019; 11 2021; 268 2017; 45 2020; 12 2020; 11 2019; 107 2020; 10 2011; 17 2005; 26 2007; 13 2019; 188 2014; 20 2011; 131 2017; 31 2018; 2018 2009; 30 2014; 3 2016; 2 2015; 29 2020; 31 2017; 55 2019; 68 2017; 79 2017; 12 2007; 82 2009; 5 2012; 114 2014; 9 2010; 2 2012; 7 2017; 101 2016; 27 2016; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Minden‐Birkenmaier BA (e_1_2_8_29_1) 2019; 4 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 9 start-page: 553 issue: 3 year: 2019 article-title: Biomedical applications of polymeric cryogels publication-title: Appl Sci – volume: 7 start-page: 7442 issue: 13 year: 2017 end-page: 7458 article-title: Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review publication-title: RSC Adv – volume: 12 start-page: 905 issue: 4 year: 2020 article-title: Natural and synthetic polymers for bone scaffolds optimization publication-title: Polymers – volume: 2 start-page: 244 issue: 2 year: 2013 end-page: 265 article-title: A preliminary evaluation of lyophilized gelatin sponges, enhanced with platelet‐rich plasma, hydroxyapatite and chitin whiskers for bone regeneration publication-title: Cell – volume: 27 start-page: 155 issue: 10 year: 2016 article-title: Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study publication-title: J Mater Sci Mater Med – volume: 31 start-page: 15 issue: 1 year: 2020 end-page: 27 article-title: Tissue engineering and regenerative medicine in craniofacial reconstruction and facial aesthetics publication-title: J Craniofac Surg – volume: 55 start-page: 875 issue: 9 year: 2017 end-page: 891 article-title: Three‐dimensional macroporous materials for tissue engineering of craniofacial bone publication-title: Br J Oral Maxillofac Surg – volume: 37 start-page: 230 year: 2015 end-page: 241 article-title: Ornamenting 3D printed scaffolds with cell‐laid extracellular matrix for bone tissue regeneration publication-title: Biomaterials – volume: 82 start-page: 1147 issue: 5 year: 2007 end-page: 1155 article-title: A 5.8‐kDa component of manuka honey stimulates immune cells via TLR4 publication-title: J Leukoc Biol – volume: 101 start-page: 630 year: 2017 end-page: 637 article-title: Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta‐tricalcium phosphate in healing of a radial bone defect model in rat publication-title: Int J Biol Macromol – volume: 9 issue: 6 year: 2014 article-title: Nanoimaging of focal adhesion dynamics in 3D publication-title: PLOS One – volume: 45 start-page: 185 issue: 2 year: 2017 end-page: 192 article-title: Biodegradable and biocompatible polymers for tissue engineering application: a review publication-title: Artif Cells Nanomed Biotechnol – volume: 17 start-page: 2133 issue: 17–18 year: 2011 end-page: 2141 article-title: An agent‐based model for the investigation of neovascularization within porous scaffolds publication-title: Tissue Eng Part A – volume: 107 start-page: 2736 issue: 12 year: 2019 end-page: 2755 article-title: Three‐dimensional cryogels for biomedical applications publication-title: J Biomed Mater Res A – volume: 28 start-page: 119 issue: 8 year: 2017 article-title: Electrospun 3D composite scaffolds for craniofacial critical size defects publication-title: J Mater Sci Mater Med – volume: 5 start-page: 17 issue: 1 year: 2009 end-page: 26 article-title: Control of stem cell fate by physical interactions with the extracellular matrix publication-title: Cell Stem Cell – volume: 11 start-page: 757 year: 2020 article-title: The bone extracellular matrix in bone formation and regeneration publication-title: Front Pharmacol – volume: 7 start-page: 1918 issue: 10 year: 2012 end-page: 1929 article-title: Evaluation of bone regeneration using the rat critical size calvarial defect publication-title: Nat Protoc – volume: 5 start-page: 21 issue: 2 year: 2019 article-title: Investigating Manuka honey antibacterial properties when incorporated into cryogel, hydrogel, and electrospun tissue engineering scaffolds publication-title: Gels – volume: 131 start-page: 121 issue: 1 year: 2011 end-page: 129 article-title: A 5‐mm femoral defect in female but not in male rats leads to a reproducible atrophic non‐union publication-title: Arch Orthop Trauma Surg – volume: 29 start-page: S10 year: 2015 end-page: S14 article-title: Bone grafting: sourcing, timing, strategies, and alternatives publication-title: J Orthop Trauma – volume: 30 start-page: 2479 issue: 13 year: 2009 end-page: 2488 article-title: The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP‐2 publication-title: Biomaterials – volume: 5 start-page: 406 issue: 1 year: 2009 end-page: 418 article-title: Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering publication-title: Acta Biomater – volume: 26 start-page: 7616 issue: 36 year: 2005 end-page: 7627 article-title: In vitro characterization of chitosan–gelatin scaffolds for tissue engineering publication-title: Biomaterials – volume: 4 issue: 2 year: 2019 article-title: The effect of manuka honey on dHL‐60 cytokine, chemokine, and matrix‐degrading enzyme release under inflammatory conditions publication-title: Med One – volume: 12 issue: 2 year: 2017 article-title: The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration publication-title: Biomed Mater – volume: 268 year: 2021 article-title: Steering cell behavior through mechanobiology in 3D: a regenerative medicine perspective publication-title: Biomaterials – volume: 68 start-page: 901 issue: 15 year: 2019 end-page: 914 article-title: Mineralization and antibacterial potential of bioactive cryogel scaffolds in vitro publication-title: Int J Polym Mater Polym Biomater – volume: 11 start-page: 116 issue: 2 year: 2019 end-page: 126 article-title: Comparative evaluation of wound healing potential of Manuka and acacia honey in diabetic and nondiabetic rats publication-title: J Pharm Bioallied Sci – volume: 3 start-page: 420 issue: 3 year: 2014 end-page: 432 article-title: The composition and biological activity of honey: a focus on manuka honey publication-title: Foods (Basel, Switzerland) – volume: 31 start-page: 1104 issue: 6 year: 2010 end-page: 1113 article-title: Small intestine submucosa sponge for in vivo support of tissue‐engineered bone formation in the presence of rat bone marrow stem cells publication-title: Biomaterials – volume: 114 start-page: e1 issue: 3 year: 2012 end-page: e9 article-title: Craniofacial bone tissue engineering publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol – volume: 10 issue: 1 year: 2020 article-title: In vitro and in vivo investigation of osteogenic properties of self‐contained phosphate‐releasing injectable purine‐crosslinked chitosan‐hydroxyapatite constructs publication-title: Sci Rep – volume: 2019 year: 2019 article-title: Manuka honey modulates the inflammatory behavior of a dHL‐60 neutrophil model under the cytotoxic limit publication-title: Int J Biomater – volume: 22 start-page: 284 issue: 4 year: 2016 end-page: 297 article-title: A review of the clinical side effects of bone morphogenetic protein‐2 publication-title: Tissue Eng Part B Rev – volume: 2017 year: 2017 article-title: A comparison of tissue engineering scaffolds incorporated with Manuka honey of varying UMF publication-title: Biomed Res Int – volume: 9 start-page: 18 issue: 1 year: 2014 article-title: Bone regenerative medicine: classic options, novel strategies, and future directions publication-title: J Orthop Surg Res – volume: 106 start-page: 1918 issue: 5 year: 2018 end-page: 1933 article-title: A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections publication-title: J Biomed Mater Res B Appl Biomater – volume: 13 start-page: 947 issue: 5 year: 2007 end-page: 955 article-title: Stem cells associated with macroporous bioceramics for long bone repair: 6‐ to 7‐year outcome of a pilot clinical study publication-title: Tissue Eng – volume: 62 start-page: 29 year: 2017 end-page: 41 article-title: A comprehensive review of cryogels and their roles in tissue engineering applications publication-title: Acta Biomater – volume: 2 issue: 3 year: 2016 article-title: A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration publication-title: Biomed Phys Eng Express – volume: 2 start-page: 522 issue: 4 year: 2010 end-page: 553 article-title: The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues publication-title: Polymers – volume: 79 start-page: 498 issue: 3 year: 2017 end-page: 524 article-title: Mechanical cell‐cell communication in fibrous networks: the importance of network geometry publication-title: Bull Math Biol – volume: 45 start-page: 1065 issue: 6 year: 2009 end-page: 1072 article-title: Sex‐specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity publication-title: Bone – volume: 2018 year: 2018 article-title: Neutrophils in tissue trauma of the skin, bone, and lung: two sides of the same coin publication-title: J Immunol Res – volume: 188 start-page: 38 year: 2019 end-page: 49 article-title: Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery publication-title: Biomaterials – volume: 31 start-page: S20 year: 2017 end-page: S22 article-title: Size matters: defining critical in bone defect size! publication-title: J Orthop Trauma – volume: 20 start-page: 714 issue: 9 year: 2014 end-page: 723 article-title: Peracetic acid: a practical agent for sterilizing heat‐labile polymeric tissue‐engineering scaffolds publication-title: Tissue Eng Part C Methods – ident: e_1_2_8_9_1 doi: 10.1016/j.actbio.2017.08.033 – ident: e_1_2_8_31_1 doi: 10.1039/C6RA26124H – ident: e_1_2_8_18_1 doi: 10.3109/21691401.2016.1146731 – ident: e_1_2_8_16_1 doi: 10.1016/j.biomaterials.2020.120572 – ident: e_1_2_8_43_1 doi: 10.1038/s41598-020-67886-7 – ident: e_1_2_8_17_1 doi: 10.1002/jbm.a.36777 – ident: e_1_2_8_26_1 doi: 10.3390/gels5020021 – ident: e_1_2_8_36_1 doi: 10.1038/nprot.2012.113 – ident: e_1_2_8_44_1 doi: 10.1016/j.biomaterials.2018.10.004 – ident: e_1_2_8_46_1 doi: 10.1155/2018/8173983 – ident: e_1_2_8_33_1 doi: 10.1155/2017/4843065 – volume: 4 issue: 2 year: 2019 ident: e_1_2_8_29_1 article-title: The effect of manuka honey on dHL‐60 cytokine, chemokine, and matrix‐degrading enzyme release under inflammatory conditions publication-title: Med One contributor: fullname: Minden‐Birkenmaier BA – ident: e_1_2_8_47_1 doi: 10.1016/j.ijbiomac.2017.03.148 – ident: e_1_2_8_12_1 doi: 10.1007/s11538-016-0242-5 – ident: e_1_2_8_40_1 doi: 10.3390/cells2020244 – ident: e_1_2_8_19_1 doi: 10.3390/polym2040522 – ident: e_1_2_8_10_1 doi: 10.3389/fphar.2020.00757 – ident: e_1_2_8_8_1 doi: 10.1016/j.biomaterials.2014.10.012 – ident: e_1_2_8_11_1 doi: 10.1371/journal.pone.0099896 – ident: e_1_2_8_38_1 doi: 10.1007/s00402-010-1155-7 – ident: e_1_2_8_7_1 doi: 10.1097/BOT.0000000000000460 – ident: e_1_2_8_24_1 doi: 10.1016/j.biomaterials.2005.05.036 – ident: e_1_2_8_25_1 doi: 10.1186/1749-799X-9-18 – ident: e_1_2_8_45_1 doi: 10.1155/2019/6132581 – ident: e_1_2_8_42_1 doi: 10.1007/s10856-016-5766-6 – ident: e_1_2_8_21_1 doi: 10.3390/polym12040905 – ident: e_1_2_8_32_1 doi: 10.1088/2057-1976/2/3/035014 – ident: e_1_2_8_41_1 doi: 10.1089/ten.2006.0271 – ident: e_1_2_8_30_1 doi: 10.4103/JPBS.JPBS_257_18 – ident: e_1_2_8_2_1 doi: 10.1016/j.oooo.2012.02.030 – ident: e_1_2_8_22_1 doi: 10.1089/ten.tec.2013.0624 – ident: e_1_2_8_39_1 doi: 10.1016/j.biomaterials.2009.10.020 – ident: e_1_2_8_15_1 doi: 10.1088/1748-605X/aa5d76 – ident: e_1_2_8_49_1 doi: 10.1089/ten.teb.2015.0357 – ident: e_1_2_8_37_1 doi: 10.1016/j.bone.2009.08.005 – ident: e_1_2_8_5_1 doi: 10.1097/SCS.0000000000005840 – ident: e_1_2_8_35_1 doi: 10.1002/jbm.b.34002 – ident: e_1_2_8_28_1 doi: 10.3390/foods3030420 – ident: e_1_2_8_4_1 doi: 10.1097/BOT.0000000000000978 – ident: e_1_2_8_27_1 doi: 10.1189/jlb.1106683 – ident: e_1_2_8_34_1 doi: 10.1080/00914037.2018.1522504 – ident: e_1_2_8_6_1 doi: 10.1016/j.bjoms.2017.09.007 – ident: e_1_2_8_20_1 doi: 10.3390/app9030553 – ident: e_1_2_8_23_1 doi: 10.1016/j.actbio.2008.07.009 – ident: e_1_2_8_14_1 doi: 10.1089/ten.tea.2010.0571 – ident: e_1_2_8_3_1 doi: 10.1007/s10856-017-5933-4 – ident: e_1_2_8_13_1 doi: 10.1016/j.stem.2009.06.016 – ident: e_1_2_8_48_1 doi: 10.1016/j.biomaterials.2008.12.055 |
SSID | ssj0026053 |
Score | 2.438344 |
Snippet | Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current... Abstract Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1763 |
SubjectTerms | Additives Angiogenesis Animal models Animals Autografts Biocompatibility Biological activity Biomedical materials Bone and Bones bone char Bone charcoal Bone grafts Bone growth bone regeneration Bones Chitosan Chitosan - chemistry Chitosan - pharmacology Comorbidity Complications Computed tomography Cortical bone cryogel Cryogels - chemistry Cryogels - pharmacology Fractures Gelatin Gelatin - chemistry Gelatin - pharmacology Histology Honey Hydroxyapatite manuka honey Materials research Materials science Natural environment osteoinductivity rat fracture model Rats Regeneration Regeneration (physiology) Scaffolds Surgical equipment Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry X-Ray Microtomography |
Title | Bioactive impact of manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.b.35283 https://www.ncbi.nlm.nih.gov/pubmed/37243397 https://www.proquest.com/docview/2844074979 https://search.proquest.com/docview/2820024941 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG7Ekx52fay70VFa8LZkzKQ6D4-OD0TQw7KCt9Cv-MJEJhNBT_50q7oz4wsEvSVUh3S6q7q_Sld9xdgW6gCkpRXhIMtMKDKZhEqqPMyFBpOihUWOp_vkND06E8fnyXkXm0O5MJ4fYvrDjSzDrddk4FI12y-kodfqtq_6jpwEV-ABZBTQtf9vSh5FQN2F1ydJTHXUoMvOQ8n2q2ff7kcfQOZbzOo2ncOfvrJq47gKKdbkpt-OVV8_vmNy_Pb3LLAfHRzlu15_FtmMrZbY_CuSwmX2NLyqpVsVuU-p5HXJb2XV3kh-WVf2gcvKcIVXnFK4ONE9eHZka_BmXPMLF3BXuXZ0bFE3suJ69FCjoOEk4Niao7bcS7IHXlLqVjuy3NXp-cXODg_-7x2FXd2GUEMaQYgeSqKEFqbUAANTlpEClSelRG8pQcQQIWTMDCC2QiwHmaHT3diiENc6iQ4VrLDZCnv9hwKvdhCxKZGCzgWUgK68NUbnWmpjdR4FbGsye8Wdp-coPBFzXOCAFqpwAxqw3mRmi85GmwI3ZvRmUTN2ArY5FaN10ZGJrGzdUpvYkSqKQcB-e42YvgeyWADCuYD9dfP6WQeK4-HJ0F2tfqn1Gpuj-vY-erDHZsej1q4jChqrDafsz-1zAUE |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOQAH3o9AASP1hrLNZpxHjyxQLaXbA2ql3iy_UqBqgnY3SOXET2fGzi4tSEhwSzSO4sQz9jf2zDcAW6QDWDZepuOqcqmsdJEabeq0lhZdSRaWBZ7u2UE5PZJ7x8XxsOHGuTCRH2K94caWEeZrNnDekN7-xRr6xZyNzCiwk1yFa2TwyKUb3n5c00cxVA8B9kWRcyU1HPLzSLJ94eHLK9IfMPMyag3Lzu5tUKsOx2iT01G_NCP7_Tcux___ojtwa0Ck4nVUobtwxbf34OYFnsL78GPyudNhYhQxq1J0jTjTbX-qxaeu9edCt04YuhKcxSWY8SESJHtHN8tOnISYuza045OLbqFbYefnHQkWggWCWgtSmG-aTUI0nL3Vz70IpXoewNHuu8M303Qo3ZBaLDNMyUkpjLTSNRZx7JomM2jqotHkMBUEGjJCjZVDglcE57ByfMCbexLSdKfJp8KHsNFSrx9z7NUOgTYjS7S1xAbJm_fO2dpq67ytswS2VsOnvkaGDhW5mHNFP1QZFX5oApuroVWDmS4Urc3k0JJq7CTwci0mA-NTE936ruc2eeBVlOMEHkWVWL8Hq1wiIboEXoWB_VsH1N5kNglXT_6p9Qu4Pj2c7av99wcfnsINLncfgwk3YWM57_0zAkVL8zxo_k_wZQVZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKr2UOiDNjxaV-JWZcnGzoMj27KitKCqKhI3y88-EAna3VSiJ346M3bYQpEqtbdE4yiOPWN_E898A7CFOsBL70Q6rCqbikoVqVa6TmthuC3RwrLA0314VO4fi4OT4qSPzaFcmMgPMf_hRpYR1msy8HPrt3-Thv7QZwM9COQk92BJlIh9CRN9nrNHEVIP8fVFkVMhNd6n56Fk-8bDtzekOyjzNmgNu854OZZWnQayQgo2OR10Mz0wv_6gcvzvD1qBRz0eZbtRgR7DgmuewMMbLIVP4XL0vVVhWWQxp5K1np2ppjtV7FvbuAumGss0XjHK4WLE9xDpkZ3Fm1nLvoaIuya0o3OLdqoaZiYXLQqmjAQMWzNUl5-KDIJ5yt3qJo6FQj3P4Hi89-XtftoXbkgNLzOeootSaGGE9YbzofU-01zXhVfoLhUIGTLEjJXlCK4QzPHK0vFu7lCIi51Cj4qvwmKDvX5BkVc7CNk0Tq-pBfccfXlnramNMtaZOktg63r25Hnk55CRiTmXOKBSyzCgCWxcz6zsjXQqcWdGdxY1YyeB13MxmhedmajGtR21yQOrohgm8DxqxPw9vMoFRzyXwJswr3_rgDwYHY7C1do_tX4F9z-9G8uP748-rMMDqnUfIwk3YHE26dwmIqKZfhn0_grepgQI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioactive+impact+of+manuka+honey+and+bone+char+incorporated+into+gelatin+and+chitosan+cryogels+in+a+rat+calvarial+fracture+model&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=Robertson%2C+E.+M.&rft.au=Hixon%2C+K.+R.&rft.au=McBride%E2%80%90Gagyi%2C+S.+H.&rft.au=Sell%2C+S.+A.&rft.date=2023-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1552-4973&rft.eissn=1552-4981&rft.volume=111&rft.issue=10&rft.spage=1763&rft.epage=1774&rft_id=info:doi/10.1002%2Fjbm.b.35283&rft.externalDBID=10.1002%252Fjbm.b.35283&rft.externalDocID=JBMB35283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon |