Bioactive impact of manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model

Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. C...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 111; no. 10; pp. 1763 - 1774
Main Authors Robertson, E. M., Hixon, K. R., McBride‐Gagyi, S. H., Sell, S. A.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well‐studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential.
AbstractList Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well‐studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential.
Abstract Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current gold standard for treatment but are limited by available bone and supplementary surgical sites that broaden complications and comorbidities. Cryogels are an ideal scaffold in bone regeneration due to their mechanical integrity and marcoporous structure that elicits angiogenesis and subsequently new bone tissue formation. To aid in bioactivity and osteoinductivity, manuka honey (MH) and bone char (BC) were added to gelatin and chitosan cryogels (CG). Manuka honey has powerful antimicrobial properties to aid against graft infection, and bone char is composed of 90% hydroxyapatite, a well‐studied bioactive material. These additives are natural, abundant, easy to use, and cost effective. CG cryogels incorporated with either BC or MH, and plain CG cryogels were implanted into rat calvarial fracture models for cortical bone regeneration analysis. We found indication of bioactivity with both bone char and manuka honey through the presence of woven bone structure in histology stains and micro computed tomography (microCT) data. Overall, plain CG cryogels supported greater bone regeneration capabilities than the BC or MH incorporated cryogels due to a lack of advanced organized tissue formation and collagen deposition after 8 weeks of implantation; however, future work should explore varying additive concentrations and delivery methods to further assess additive potential.
Author McBride‐Gagyi, S. H.
Sell, S. A.
Hixon, K. R.
Robertson, E. M.
Author_xml – sequence: 1
  givenname: E. M.
  surname: Robertson
  fullname: Robertson, E. M.
  organization: Saint Louis University
– sequence: 2
  givenname: K. R.
  surname: Hixon
  fullname: Hixon, K. R.
  organization: Saint Louis University
– sequence: 3
  givenname: S. H.
  surname: McBride‐Gagyi
  fullname: McBride‐Gagyi, S. H.
  organization: Saint Louis University
– sequence: 4
  givenname: S. A.
  surname: Sell
  fullname: Sell, S. A.
  email: scott.sell@slu.edu
  organization: Saint Louis University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37243397$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv3CAUhVGVqHm0q-4jpG4iRTMFLjb2sjNqXkrUTbtGGOMMUxumYKeaXX56bjJpFllkxUHn07lwzxHZCzE4Qr5wNueMiW_rZpg3cyhEBR_IIS8KMZN1xfdetYIDcpTzGuGSFfCRHIASEqBWh-Rh4aOxo7931A8bVDR2dDBh-mPoCudsqQktbVBRuzKJ-mBj2sRkRtfiZYz0zvVm9OGZsys_xmwCtWkb0cj0yaBIU2v6e5O86WmXcMyUHB1i6_pPZL8zfXafX85j8vv8x6_l5ezm58XV8vvNzELJYKakKhppZdtZAN52HWugqYrO1PglITkDUaoWSi6kAFAtExUTDk1VgilZCcfkdJe7SfHv5PKoB5-t63sTXJyyFpXA_chackS_vkHXcUoBX4eUlEzhSmukznaUTTHn5Dq9SX4waas500_FaCxGN_q5GKRPXjKnZnDtK_u_CQTEDvjne7d9L0tfL24Xu9RHLUiZ2g
CitedBy_id crossref_primary_10_1038_s41405_024_00197_5
crossref_primary_10_1080_08927014_2024_2358913
Cites_doi 10.1016/j.actbio.2017.08.033
10.1039/C6RA26124H
10.3109/21691401.2016.1146731
10.1016/j.biomaterials.2020.120572
10.1038/s41598-020-67886-7
10.1002/jbm.a.36777
10.3390/gels5020021
10.1038/nprot.2012.113
10.1016/j.biomaterials.2018.10.004
10.1155/2018/8173983
10.1155/2017/4843065
10.1016/j.ijbiomac.2017.03.148
10.1007/s11538-016-0242-5
10.3390/cells2020244
10.3390/polym2040522
10.3389/fphar.2020.00757
10.1016/j.biomaterials.2014.10.012
10.1371/journal.pone.0099896
10.1007/s00402-010-1155-7
10.1097/BOT.0000000000000460
10.1016/j.biomaterials.2005.05.036
10.1186/1749-799X-9-18
10.1155/2019/6132581
10.1007/s10856-016-5766-6
10.3390/polym12040905
10.1088/2057-1976/2/3/035014
10.1089/ten.2006.0271
10.4103/JPBS.JPBS_257_18
10.1016/j.oooo.2012.02.030
10.1089/ten.tec.2013.0624
10.1016/j.biomaterials.2009.10.020
10.1088/1748-605X/aa5d76
10.1089/ten.teb.2015.0357
10.1016/j.bone.2009.08.005
10.1097/SCS.0000000000005840
10.1002/jbm.b.34002
10.3390/foods3030420
10.1097/BOT.0000000000000978
10.1189/jlb.1106683
10.1080/00914037.2018.1522504
10.1016/j.bjoms.2017.09.007
10.3390/app9030553
10.1016/j.actbio.2008.07.009
10.1089/ten.tea.2010.0571
10.1007/s10856-017-5933-4
10.1016/j.stem.2009.06.016
10.1016/j.biomaterials.2008.12.055
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.b.35283
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4981
EndPage 1774
ExternalDocumentID 10_1002_jbm_b_35283
37243397
JBMB35283
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Saint Louis University
GroupedDBID -~X
.GA
.Y3
05W
0R~
10A
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
702
7PT
8-1
8-4
8-5
8UM
930
AAESR
AAEVG
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BY8
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
NNB
O66
P2W
P4D
PQQKQ
QB0
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W99
WBKPD
WFSAM
WIH
WJL
WOHZO
WRC
WYISQ
XG1
XV2
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3603-7475b4c4dfc331dff0b3b85fa960524103267d361242337d02802e960763a6063
IEDL.DBID DR2
ISSN 1552-4973
IngestDate Fri Oct 25 02:01:29 EDT 2024
Thu Oct 10 15:14:49 EDT 2024
Fri Aug 23 04:55:52 EDT 2024
Wed Oct 16 00:39:10 EDT 2024
Sat Aug 24 00:45:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords osteoinductivity
tissue engineering
cryogel
bone regeneration
rat fracture model
bone char
manuka honey
Language English
License 2023 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3603-7475b4c4dfc331dff0b3b85fa960524103267d361242337d02802e960763a6063
Notes E. M. Robertson and K. R. Hixon contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37243397
PQID 2844074979
PQPubID 2034571
PageCount 12
ParticipantIDs proquest_miscellaneous_2820024941
proquest_journals_2844074979
crossref_primary_10_1002_jbm_b_35283
pubmed_primary_37243397
wiley_primary_10_1002_jbm_b_35283_JBMB35283
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part B, Applied biomaterials
PublicationTitleAlternate J Biomed Mater Res B Appl Biomater
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 62
2009; 45
2015; 37
2017; 7
2019; 9
2010; 31
2019; 2019
2019; 4
2019; 5
2013; 2
2017; 2017
2018; 106
2017; 28
2019; 11
2021; 268
2017; 45
2020; 12
2020; 11
2019; 107
2020; 10
2011; 17
2005; 26
2007; 13
2019; 188
2014; 20
2011; 131
2017; 31
2018; 2018
2009; 30
2014; 3
2016; 2
2015; 29
2020; 31
2017; 55
2019; 68
2017; 79
2017; 12
2007; 82
2009; 5
2012; 114
2014; 9
2010; 2
2012; 7
2017; 101
2016; 27
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Minden‐Birkenmaier BA (e_1_2_8_29_1) 2019; 4
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 9
  start-page: 553
  issue: 3
  year: 2019
  article-title: Biomedical applications of polymeric cryogels
  publication-title: Appl Sci
– volume: 7
  start-page: 7442
  issue: 13
  year: 2017
  end-page: 7458
  article-title: Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review
  publication-title: RSC Adv
– volume: 12
  start-page: 905
  issue: 4
  year: 2020
  article-title: Natural and synthetic polymers for bone scaffolds optimization
  publication-title: Polymers
– volume: 2
  start-page: 244
  issue: 2
  year: 2013
  end-page: 265
  article-title: A preliminary evaluation of lyophilized gelatin sponges, enhanced with platelet‐rich plasma, hydroxyapatite and chitin whiskers for bone regeneration
  publication-title: Cell
– volume: 27
  start-page: 155
  issue: 10
  year: 2016
  article-title: Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study
  publication-title: J Mater Sci Mater Med
– volume: 31
  start-page: 15
  issue: 1
  year: 2020
  end-page: 27
  article-title: Tissue engineering and regenerative medicine in craniofacial reconstruction and facial aesthetics
  publication-title: J Craniofac Surg
– volume: 55
  start-page: 875
  issue: 9
  year: 2017
  end-page: 891
  article-title: Three‐dimensional macroporous materials for tissue engineering of craniofacial bone
  publication-title: Br J Oral Maxillofac Surg
– volume: 37
  start-page: 230
  year: 2015
  end-page: 241
  article-title: Ornamenting 3D printed scaffolds with cell‐laid extracellular matrix for bone tissue regeneration
  publication-title: Biomaterials
– volume: 82
  start-page: 1147
  issue: 5
  year: 2007
  end-page: 1155
  article-title: A 5.8‐kDa component of manuka honey stimulates immune cells via TLR4
  publication-title: J Leukoc Biol
– volume: 101
  start-page: 630
  year: 2017
  end-page: 637
  article-title: Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta‐tricalcium phosphate in healing of a radial bone defect model in rat
  publication-title: Int J Biol Macromol
– volume: 9
  issue: 6
  year: 2014
  article-title: Nanoimaging of focal adhesion dynamics in 3D
  publication-title: PLOS One
– volume: 45
  start-page: 185
  issue: 2
  year: 2017
  end-page: 192
  article-title: Biodegradable and biocompatible polymers for tissue engineering application: a review
  publication-title: Artif Cells Nanomed Biotechnol
– volume: 17
  start-page: 2133
  issue: 17–18
  year: 2011
  end-page: 2141
  article-title: An agent‐based model for the investigation of neovascularization within porous scaffolds
  publication-title: Tissue Eng Part A
– volume: 107
  start-page: 2736
  issue: 12
  year: 2019
  end-page: 2755
  article-title: Three‐dimensional cryogels for biomedical applications
  publication-title: J Biomed Mater Res A
– volume: 28
  start-page: 119
  issue: 8
  year: 2017
  article-title: Electrospun 3D composite scaffolds for craniofacial critical size defects
  publication-title: J Mater Sci Mater Med
– volume: 5
  start-page: 17
  issue: 1
  year: 2009
  end-page: 26
  article-title: Control of stem cell fate by physical interactions with the extracellular matrix
  publication-title: Cell Stem Cell
– volume: 11
  start-page: 757
  year: 2020
  article-title: The bone extracellular matrix in bone formation and regeneration
  publication-title: Front Pharmacol
– volume: 7
  start-page: 1918
  issue: 10
  year: 2012
  end-page: 1929
  article-title: Evaluation of bone regeneration using the rat critical size calvarial defect
  publication-title: Nat Protoc
– volume: 5
  start-page: 21
  issue: 2
  year: 2019
  article-title: Investigating Manuka honey antibacterial properties when incorporated into cryogel, hydrogel, and electrospun tissue engineering scaffolds
  publication-title: Gels
– volume: 131
  start-page: 121
  issue: 1
  year: 2011
  end-page: 129
  article-title: A 5‐mm femoral defect in female but not in male rats leads to a reproducible atrophic non‐union
  publication-title: Arch Orthop Trauma Surg
– volume: 29
  start-page: S10
  year: 2015
  end-page: S14
  article-title: Bone grafting: sourcing, timing, strategies, and alternatives
  publication-title: J Orthop Trauma
– volume: 30
  start-page: 2479
  issue: 13
  year: 2009
  end-page: 2488
  article-title: The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP‐2
  publication-title: Biomaterials
– volume: 5
  start-page: 406
  issue: 1
  year: 2009
  end-page: 418
  article-title: Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering
  publication-title: Acta Biomater
– volume: 26
  start-page: 7616
  issue: 36
  year: 2005
  end-page: 7627
  article-title: In vitro characterization of chitosan–gelatin scaffolds for tissue engineering
  publication-title: Biomaterials
– volume: 4
  issue: 2
  year: 2019
  article-title: The effect of manuka honey on dHL‐60 cytokine, chemokine, and matrix‐degrading enzyme release under inflammatory conditions
  publication-title: Med One
– volume: 12
  issue: 2
  year: 2017
  article-title: The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration
  publication-title: Biomed Mater
– volume: 268
  year: 2021
  article-title: Steering cell behavior through mechanobiology in 3D: a regenerative medicine perspective
  publication-title: Biomaterials
– volume: 68
  start-page: 901
  issue: 15
  year: 2019
  end-page: 914
  article-title: Mineralization and antibacterial potential of bioactive cryogel scaffolds in vitro
  publication-title: Int J Polym Mater Polym Biomater
– volume: 11
  start-page: 116
  issue: 2
  year: 2019
  end-page: 126
  article-title: Comparative evaluation of wound healing potential of Manuka and acacia honey in diabetic and nondiabetic rats
  publication-title: J Pharm Bioallied Sci
– volume: 3
  start-page: 420
  issue: 3
  year: 2014
  end-page: 432
  article-title: The composition and biological activity of honey: a focus on manuka honey
  publication-title: Foods (Basel, Switzerland)
– volume: 31
  start-page: 1104
  issue: 6
  year: 2010
  end-page: 1113
  article-title: Small intestine submucosa sponge for in vivo support of tissue‐engineered bone formation in the presence of rat bone marrow stem cells
  publication-title: Biomaterials
– volume: 114
  start-page: e1
  issue: 3
  year: 2012
  end-page: e9
  article-title: Craniofacial bone tissue engineering
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
– volume: 10
  issue: 1
  year: 2020
  article-title: In vitro and in vivo investigation of osteogenic properties of self‐contained phosphate‐releasing injectable purine‐crosslinked chitosan‐hydroxyapatite constructs
  publication-title: Sci Rep
– volume: 2019
  year: 2019
  article-title: Manuka honey modulates the inflammatory behavior of a dHL‐60 neutrophil model under the cytotoxic limit
  publication-title: Int J Biomater
– volume: 22
  start-page: 284
  issue: 4
  year: 2016
  end-page: 297
  article-title: A review of the clinical side effects of bone morphogenetic protein‐2
  publication-title: Tissue Eng Part B Rev
– volume: 2017
  year: 2017
  article-title: A comparison of tissue engineering scaffolds incorporated with Manuka honey of varying UMF
  publication-title: Biomed Res Int
– volume: 9
  start-page: 18
  issue: 1
  year: 2014
  article-title: Bone regenerative medicine: classic options, novel strategies, and future directions
  publication-title: J Orthop Surg Res
– volume: 106
  start-page: 1918
  issue: 5
  year: 2018
  end-page: 1933
  article-title: A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 13
  start-page: 947
  issue: 5
  year: 2007
  end-page: 955
  article-title: Stem cells associated with macroporous bioceramics for long bone repair: 6‐ to 7‐year outcome of a pilot clinical study
  publication-title: Tissue Eng
– volume: 62
  start-page: 29
  year: 2017
  end-page: 41
  article-title: A comprehensive review of cryogels and their roles in tissue engineering applications
  publication-title: Acta Biomater
– volume: 2
  issue: 3
  year: 2016
  article-title: A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration
  publication-title: Biomed Phys Eng Express
– volume: 2
  start-page: 522
  issue: 4
  year: 2010
  end-page: 553
  article-title: The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues
  publication-title: Polymers
– volume: 79
  start-page: 498
  issue: 3
  year: 2017
  end-page: 524
  article-title: Mechanical cell‐cell communication in fibrous networks: the importance of network geometry
  publication-title: Bull Math Biol
– volume: 45
  start-page: 1065
  issue: 6
  year: 2009
  end-page: 1072
  article-title: Sex‐specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity
  publication-title: Bone
– volume: 2018
  year: 2018
  article-title: Neutrophils in tissue trauma of the skin, bone, and lung: two sides of the same coin
  publication-title: J Immunol Res
– volume: 188
  start-page: 38
  year: 2019
  end-page: 49
  article-title: Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery
  publication-title: Biomaterials
– volume: 31
  start-page: S20
  year: 2017
  end-page: S22
  article-title: Size matters: defining critical in bone defect size!
  publication-title: J Orthop Trauma
– volume: 20
  start-page: 714
  issue: 9
  year: 2014
  end-page: 723
  article-title: Peracetic acid: a practical agent for sterilizing heat‐labile polymeric tissue‐engineering scaffolds
  publication-title: Tissue Eng Part C Methods
– ident: e_1_2_8_9_1
  doi: 10.1016/j.actbio.2017.08.033
– ident: e_1_2_8_31_1
  doi: 10.1039/C6RA26124H
– ident: e_1_2_8_18_1
  doi: 10.3109/21691401.2016.1146731
– ident: e_1_2_8_16_1
  doi: 10.1016/j.biomaterials.2020.120572
– ident: e_1_2_8_43_1
  doi: 10.1038/s41598-020-67886-7
– ident: e_1_2_8_17_1
  doi: 10.1002/jbm.a.36777
– ident: e_1_2_8_26_1
  doi: 10.3390/gels5020021
– ident: e_1_2_8_36_1
  doi: 10.1038/nprot.2012.113
– ident: e_1_2_8_44_1
  doi: 10.1016/j.biomaterials.2018.10.004
– ident: e_1_2_8_46_1
  doi: 10.1155/2018/8173983
– ident: e_1_2_8_33_1
  doi: 10.1155/2017/4843065
– volume: 4
  issue: 2
  year: 2019
  ident: e_1_2_8_29_1
  article-title: The effect of manuka honey on dHL‐60 cytokine, chemokine, and matrix‐degrading enzyme release under inflammatory conditions
  publication-title: Med One
  contributor:
    fullname: Minden‐Birkenmaier BA
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ijbiomac.2017.03.148
– ident: e_1_2_8_12_1
  doi: 10.1007/s11538-016-0242-5
– ident: e_1_2_8_40_1
  doi: 10.3390/cells2020244
– ident: e_1_2_8_19_1
  doi: 10.3390/polym2040522
– ident: e_1_2_8_10_1
  doi: 10.3389/fphar.2020.00757
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biomaterials.2014.10.012
– ident: e_1_2_8_11_1
  doi: 10.1371/journal.pone.0099896
– ident: e_1_2_8_38_1
  doi: 10.1007/s00402-010-1155-7
– ident: e_1_2_8_7_1
  doi: 10.1097/BOT.0000000000000460
– ident: e_1_2_8_24_1
  doi: 10.1016/j.biomaterials.2005.05.036
– ident: e_1_2_8_25_1
  doi: 10.1186/1749-799X-9-18
– ident: e_1_2_8_45_1
  doi: 10.1155/2019/6132581
– ident: e_1_2_8_42_1
  doi: 10.1007/s10856-016-5766-6
– ident: e_1_2_8_21_1
  doi: 10.3390/polym12040905
– ident: e_1_2_8_32_1
  doi: 10.1088/2057-1976/2/3/035014
– ident: e_1_2_8_41_1
  doi: 10.1089/ten.2006.0271
– ident: e_1_2_8_30_1
  doi: 10.4103/JPBS.JPBS_257_18
– ident: e_1_2_8_2_1
  doi: 10.1016/j.oooo.2012.02.030
– ident: e_1_2_8_22_1
  doi: 10.1089/ten.tec.2013.0624
– ident: e_1_2_8_39_1
  doi: 10.1016/j.biomaterials.2009.10.020
– ident: e_1_2_8_15_1
  doi: 10.1088/1748-605X/aa5d76
– ident: e_1_2_8_49_1
  doi: 10.1089/ten.teb.2015.0357
– ident: e_1_2_8_37_1
  doi: 10.1016/j.bone.2009.08.005
– ident: e_1_2_8_5_1
  doi: 10.1097/SCS.0000000000005840
– ident: e_1_2_8_35_1
  doi: 10.1002/jbm.b.34002
– ident: e_1_2_8_28_1
  doi: 10.3390/foods3030420
– ident: e_1_2_8_4_1
  doi: 10.1097/BOT.0000000000000978
– ident: e_1_2_8_27_1
  doi: 10.1189/jlb.1106683
– ident: e_1_2_8_34_1
  doi: 10.1080/00914037.2018.1522504
– ident: e_1_2_8_6_1
  doi: 10.1016/j.bjoms.2017.09.007
– ident: e_1_2_8_20_1
  doi: 10.3390/app9030553
– ident: e_1_2_8_23_1
  doi: 10.1016/j.actbio.2008.07.009
– ident: e_1_2_8_14_1
  doi: 10.1089/ten.tea.2010.0571
– ident: e_1_2_8_3_1
  doi: 10.1007/s10856-017-5933-4
– ident: e_1_2_8_13_1
  doi: 10.1016/j.stem.2009.06.016
– ident: e_1_2_8_48_1
  doi: 10.1016/j.biomaterials.2008.12.055
SSID ssj0026053
Score 2.438344
Snippet Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the current...
Abstract Bone tissue engineered scaffolds are designed to mimic the natural environment for regeneration when typical healing is inhibited. Autografts are the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1763
SubjectTerms Additives
Angiogenesis
Animal models
Animals
Autografts
Biocompatibility
Biological activity
Biomedical materials
Bone and Bones
bone char
Bone charcoal
Bone grafts
Bone growth
bone regeneration
Bones
Chitosan
Chitosan - chemistry
Chitosan - pharmacology
Comorbidity
Complications
Computed tomography
Cortical bone
cryogel
Cryogels - chemistry
Cryogels - pharmacology
Fractures
Gelatin
Gelatin - chemistry
Gelatin - pharmacology
Histology
Honey
Hydroxyapatite
manuka honey
Materials research
Materials science
Natural environment
osteoinductivity
rat fracture model
Rats
Regeneration
Regeneration (physiology)
Scaffolds
Surgical equipment
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
X-Ray Microtomography
Title Bioactive impact of manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.b.35283
https://www.ncbi.nlm.nih.gov/pubmed/37243397
https://www.proquest.com/docview/2844074979
https://search.proquest.com/docview/2820024941
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG7Ekx52fay70VFa8LZkzKQ6D4-OD0TQw7KCt9Cv-MJEJhNBT_50q7oz4wsEvSVUh3S6q7q_Sld9xdgW6gCkpRXhIMtMKDKZhEqqPMyFBpOihUWOp_vkND06E8fnyXkXm0O5MJ4fYvrDjSzDrddk4FI12y-kodfqtq_6jpwEV-ABZBTQtf9vSh5FQN2F1ydJTHXUoMvOQ8n2q2ff7kcfQOZbzOo2ncOfvrJq47gKKdbkpt-OVV8_vmNy_Pb3LLAfHRzlu15_FtmMrZbY_CuSwmX2NLyqpVsVuU-p5HXJb2XV3kh-WVf2gcvKcIVXnFK4ONE9eHZka_BmXPMLF3BXuXZ0bFE3suJ69FCjoOEk4Niao7bcS7IHXlLqVjuy3NXp-cXODg_-7x2FXd2GUEMaQYgeSqKEFqbUAANTlpEClSelRG8pQcQQIWTMDCC2QiwHmaHT3diiENc6iQ4VrLDZCnv9hwKvdhCxKZGCzgWUgK68NUbnWmpjdR4FbGsye8Wdp-coPBFzXOCAFqpwAxqw3mRmi85GmwI3ZvRmUTN2ArY5FaN10ZGJrGzdUpvYkSqKQcB-e42YvgeyWADCuYD9dfP6WQeK4-HJ0F2tfqn1Gpuj-vY-erDHZsej1q4jChqrDafsz-1zAUE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOQAH3o9AASP1hrLNZpxHjyxQLaXbA2ql3iy_UqBqgnY3SOXET2fGzi4tSEhwSzSO4sQz9jf2zDcAW6QDWDZepuOqcqmsdJEabeq0lhZdSRaWBZ7u2UE5PZJ7x8XxsOHGuTCRH2K94caWEeZrNnDekN7-xRr6xZyNzCiwk1yFa2TwyKUb3n5c00cxVA8B9kWRcyU1HPLzSLJ94eHLK9IfMPMyag3Lzu5tUKsOx2iT01G_NCP7_Tcux___ojtwa0Ck4nVUobtwxbf34OYFnsL78GPyudNhYhQxq1J0jTjTbX-qxaeu9edCt04YuhKcxSWY8SESJHtHN8tOnISYuza045OLbqFbYefnHQkWggWCWgtSmG-aTUI0nL3Vz70IpXoewNHuu8M303Qo3ZBaLDNMyUkpjLTSNRZx7JomM2jqotHkMBUEGjJCjZVDglcE57ByfMCbexLSdKfJp8KHsNFSrx9z7NUOgTYjS7S1xAbJm_fO2dpq67ytswS2VsOnvkaGDhW5mHNFP1QZFX5oApuroVWDmS4Urc3k0JJq7CTwci0mA-NTE936ruc2eeBVlOMEHkWVWL8Hq1wiIboEXoWB_VsH1N5kNglXT_6p9Qu4Pj2c7av99wcfnsINLncfgwk3YWM57_0zAkVL8zxo_k_wZQVZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKr2UOiDNjxaV-JWZcnGzoMj27KitKCqKhI3y88-EAna3VSiJ346M3bYQpEqtbdE4yiOPWN_E898A7CFOsBL70Q6rCqbikoVqVa6TmthuC3RwrLA0314VO4fi4OT4qSPzaFcmMgPMf_hRpYR1msy8HPrt3-Thv7QZwM9COQk92BJlIh9CRN9nrNHEVIP8fVFkVMhNd6n56Fk-8bDtzekOyjzNmgNu854OZZWnQayQgo2OR10Mz0wv_6gcvzvD1qBRz0eZbtRgR7DgmuewMMbLIVP4XL0vVVhWWQxp5K1np2ppjtV7FvbuAumGss0XjHK4WLE9xDpkZ3Fm1nLvoaIuya0o3OLdqoaZiYXLQqmjAQMWzNUl5-KDIJ5yt3qJo6FQj3P4Hi89-XtftoXbkgNLzOeootSaGGE9YbzofU-01zXhVfoLhUIGTLEjJXlCK4QzPHK0vFu7lCIi51Cj4qvwmKDvX5BkVc7CNk0Tq-pBfccfXlnramNMtaZOktg63r25Hnk55CRiTmXOKBSyzCgCWxcz6zsjXQqcWdGdxY1YyeB13MxmhedmajGtR21yQOrohgm8DxqxPw9vMoFRzyXwJswr3_rgDwYHY7C1do_tX4F9z-9G8uP748-rMMDqnUfIwk3YHE26dwmIqKZfhn0_grepgQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioactive+impact+of+manuka+honey+and+bone+char+incorporated+into+gelatin+and+chitosan+cryogels+in+a+rat+calvarial+fracture+model&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=Robertson%2C+E.+M.&rft.au=Hixon%2C+K.+R.&rft.au=McBride%E2%80%90Gagyi%2C+S.+H.&rft.au=Sell%2C+S.+A.&rft.date=2023-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1552-4973&rft.eissn=1552-4981&rft.volume=111&rft.issue=10&rft.spage=1763&rft.epage=1774&rft_id=info:doi/10.1002%2Fjbm.b.35283&rft.externalDBID=10.1002%252Fjbm.b.35283&rft.externalDocID=JBMB35283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon