DF2Net: Differential Feature Fusion Network for Hyperspectral Image Classification

Recently, hybrid networks, combining graph convolutional networks (GCNs) and convolutional neural networks into a unified framework, have garnered significant attention in hyperspectral image (HSI) classification. However, existing hybrid networks have the following limitations. 1) Existing methods...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 10660 - 10673
Main Authors Wang, Qingwang, Huang, Jiangbo, Meng, Yuanqin, Shen, Tao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, hybrid networks, combining graph convolutional networks (GCNs) and convolutional neural networks into a unified framework, have garnered significant attention in hyperspectral image (HSI) classification. However, existing hybrid networks have the following limitations. 1) Existing methods primarily utilize simple fusion strategies such as concatenation or direct addition, resulting in the ineffective utilization of advantageous features. 2) Traditional GCNs only consider the relationship between pairs of vertices, limiting their ability to capture complex high-order and long-range correlations. In this work, a novel differential feature fusion network (DF2Net) is proposed for HSI classification. Specifically, DF2Net utilizes two subnetworks to learn features at different abstraction levels: 1) the spectral-spatial hypergraph convolutional network for capturing complex high-order and long-range correlations, and the spectral-spatial convolution network for pixel-level local information extraction. Subsequently, we introduce an advantageous feature differential enhancement fusion module, in which mutual enhancement of advantageous features from different network structures is performed, thereby improving the classification robustness of different regions in HSI. The experiments on four HSI benchmark datasets demonstrate that our DF2Net exhibits superior advantages over state-of-the-art models, particularly when the training samples are limited.
AbstractList Recently, hybrid networks, combining graph convolutional networks (GCNs) and convolutional neural networks into a unified framework, have garnered significant attention in hyperspectral image (HSI) classification. However, existing hybrid networks have the following limitations. 1) Existing methods primarily utilize simple fusion strategies such as concatenation or direct addition, resulting in the ineffective utilization of advantageous features. 2) Traditional GCNs only consider the relationship between pairs of vertices, limiting their ability to capture complex high-order and long-range correlations. In this work, a novel differential feature fusion network (DF2Net) is proposed for HSI classification. Specifically, DF2Net utilizes two subnetworks to learn features at different abstraction levels: 1) the spectral–spatial hypergraph convolutional network for capturing complex high-order and long-range correlations, and the spectral–spatial convolution network for pixel-level local information extraction. Subsequently, we introduce an advantageous feature differential enhancement fusion module, in which mutual enhancement of advantageous features from different network structures is performed, thereby improving the classification robustness of different regions in HSI. The experiments on four HSI benchmark datasets demonstrate that our DF2Net exhibits superior advantages over state-of-the-art models, particularly when the training samples are limited.
Author Shen, Tao
Wang, Qingwang
Meng, Yuanqin
Huang, Jiangbo
Author_xml – sequence: 1
  givenname: Qingwang
  orcidid: 0000-0001-5820-5357
  surname: Wang
  fullname: Wang, Qingwang
  email: wangqingwang@kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 2
  givenname: Jiangbo
  orcidid: 0000-0002-6103-7769
  surname: Huang
  fullname: Huang, Jiangbo
  email: jiangbohuang@stu.kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 3
  givenname: Yuanqin
  orcidid: 0009-0007-3920-814X
  surname: Meng
  fullname: Meng, Yuanqin
  email: mengyuanqin@stu.kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 4
  givenname: Tao
  orcidid: 0000-0003-1273-7950
  surname: Shen
  fullname: Shen, Tao
  email: shentao@kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
BookMark eNpNkc1KAzEYRYMoWH-eQBcDrqcm-TI_cVdaayuiUHUdMumXklonNZkivr2pI-ImgXDuzYVzQg5b3yIhF4wOGaPy-v75ZbR4HnLKxRAEhbqEAzLgrGA5K6A4JAMmQeZMUHFMTmJcU1rySsKALCZT_ojdTTZx1mLAtnN6k01Rd7uA2XQXnW-zBHz68JZZH7LZ1xZD3KLpQgLn73qF2XijY3TWGd0l_IwcWb2JeP57n5LX6e3LeJY_PN3Nx6OH3EAhu9xaoJWoq6ZstGTSVhx0BWkYskYveSNRUwYowTCdMFqDRlsLy2wJZkkBTsm87116vVbb4N51-FJeO_Xz4MNK6dA5s0FVNFLIpWUAaATyUpbSWGOLupayrESZuq76rm3wHzuMnVr7XWjTfJVWcuDplImCnjLBxxjQ_v3KqNqLUL0ItRehfkWk1GWfcoj4L5HEVKyGb6rmhZY
CODEN IJSTHZ
Cites_doi 10.1109/LGRS.2019.2918719
10.1109/TIM.2021.3056750
10.1007/s11431-021-1989-9
10.1109/TGRS.2004.842481
10.1109/TGRS.2024.3362471
10.1109/TGRS.2016.2584107
10.1109/TGRS.2016.2530807
10.1109/CVPR42600.2020.00297
10.1109/LGRS.2010.2047711
10.1109/JSTARS.2021.3123371
10.1155/2015/258619
10.1109/JSTARS.2021.3074469
10.3390/rs12162659
10.1109/TGRS.2016.2636241
10.1109/LGRS.2024.3379232
10.1016/j.isprsjprs.2022.07.001
10.1109/IGARSS.2015.7326945
10.1109/JSTARS.2022.3223423
10.1109/LGRS.2018.2869563
10.1109/TGRS.2020.3037361
10.1109/TGRS.2021.3123423
10.1109/TGRS.2019.2907932
10.1007/978-3-030-58523-5_46
10.1109/TIP.2022.3144017
10.1109/TPAMI.2022.3182052
10.1109/TGRS.2020.3031928
10.1109/LGRS.2021.3108883
10.1109/JSTARS.2022.3177235
10.1109/TIP.2021.3098246
10.1109/TGRS.2019.2949180
10.1109/JSTARS.2019.2892975
10.1109/JSTARS.2021.3112158
10.1609/aaai.v33i01.33013558
10.1109/TGRS.2008.2005729
10.1109/TGRS.2023.3268944
10.1109/TGRS.2023.3265879
10.1109/LGRS.2019.2915315
10.1109/TGRS.2014.2360672
10.1109/ICIP.2017.8297014
10.1109/JSTARS.2023.3328389
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3403863
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 10673
ExternalDocumentID oai_doaj_org_article_5b949df133ec4e26969cfcf588996746
10_1109_JSTARS_2024_3403863
10535718
Genre orig-research
GrantInformation_xml – fundername: Major Science and Technology Projects in Yunnan Province
  grantid: 202202AD080013; 202302AG050009
  funderid: 10.13039/501100018531
– fundername: Xingdian Talent Support Plan of Yunnan Province
  grantid: KKRD202203068
– fundername: Yunnan Fundamental Research
  grantid: 202101BE070001-008; 202401AW070019; 202301AV070003
– fundername: National Natural Science Foundation of China
  grantid: 62201237
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
AGSQL
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-ff307487b6ba919f723a73006e1bad2b9ea013e93c1a487083aef84f1f63cd033
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Tue Oct 22 14:49:03 EDT 2024
Thu Oct 10 15:24:20 EDT 2024
Fri Dec 06 09:50:04 EST 2024
Wed Jul 03 05:40:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ff307487b6ba919f723a73006e1bad2b9ea013e93c1a487083aef84f1f63cd033
ORCID 0009-0007-3920-814X
0000-0002-6103-7769
0000-0003-1273-7950
0000-0001-5820-5357
OpenAccessLink https://doaj.org/article/5b949df133ec4e26969cfcf588996746
PQID 3072323079
PQPubID 75722
PageCount 14
ParticipantIDs proquest_journals_3072323079
ieee_primary_10535718
doaj_primary_oai_doaj_org_article_5b949df133ec4e26969cfcf588996746
crossref_primary_10_1109_JSTARS_2024_3403863
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Kipf (ref24) 2017
Liu (ref38) 2020; 48
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref22
  doi: 10.1109/LGRS.2019.2918719
– ident: ref23
  doi: 10.1109/TIM.2021.3056750
– ident: ref3
  doi: 10.1007/s11431-021-1989-9
– ident: ref11
  doi: 10.1109/TGRS.2004.842481
– ident: ref31
  doi: 10.1109/TGRS.2024.3362471
– ident: ref40
  doi: 10.1109/TGRS.2016.2584107
– ident: ref8
  doi: 10.1109/TGRS.2016.2530807
– ident: ref37
  doi: 10.1109/CVPR42600.2020.00297
– ident: ref9
  doi: 10.1109/LGRS.2010.2047711
– ident: ref14
  doi: 10.1109/JSTARS.2021.3123371
– ident: ref13
  doi: 10.1155/2015/258619
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  year: 2017
  ident: ref24
  article-title: Semi-supervised classification with graph convolutional networks
  contributor:
    fullname: Kipf
– ident: ref16
  doi: 10.1109/JSTARS.2021.3074469
– ident: ref2
  doi: 10.3390/rs12162659
– ident: ref18
  doi: 10.1109/TGRS.2016.2636241
– ident: ref36
  doi: 10.1109/LGRS.2024.3379232
– ident: ref34
  doi: 10.1016/j.isprsjprs.2022.07.001
– ident: ref19
  doi: 10.1109/IGARSS.2015.7326945
– ident: ref21
  doi: 10.1109/JSTARS.2022.3223423
– ident: ref25
  doi: 10.1109/LGRS.2018.2869563
– ident: ref27
  doi: 10.1109/TGRS.2020.3037361
– ident: ref35
  doi: 10.1109/TGRS.2021.3123423
– ident: ref12
  doi: 10.1109/TGRS.2019.2907932
– ident: ref39
  doi: 10.1007/978-3-030-58523-5_46
– ident: ref28
  doi: 10.1109/TIP.2022.3144017
– ident: ref33
  doi: 10.1109/TPAMI.2022.3182052
– ident: ref10
  doi: 10.1109/TGRS.2020.3031928
– ident: ref17
  doi: 10.1109/LGRS.2021.3108883
– ident: ref30
  doi: 10.1109/JSTARS.2022.3177235
– volume: 48
  start-page: 751
  issue: 4
  year: 2020
  ident: ref38
  article-title: SSCDenseNet: A spectral-spatial convolutional dense network for hyperspectral image classification
  publication-title: Acta Electronica Sinica
  contributor:
    fullname: Liu
– ident: ref41
  doi: 10.1109/TIP.2021.3098246
– ident: ref26
  doi: 10.1109/TGRS.2019.2949180
– ident: ref42
  doi: 10.1109/JSTARS.2019.2892975
– ident: ref1
  doi: 10.1109/JSTARS.2021.3112158
– ident: ref32
  doi: 10.1609/aaai.v33i01.33013558
– ident: ref6
  doi: 10.1109/TGRS.2008.2005729
– ident: ref4
  doi: 10.1109/TGRS.2023.3268944
– ident: ref29
  doi: 10.1109/TGRS.2023.3265879
– ident: ref5
  doi: 10.1109/LGRS.2019.2915315
– ident: ref7
  doi: 10.1109/TGRS.2014.2360672
– ident: ref20
  doi: 10.1109/ICIP.2017.8297014
– ident: ref15
  doi: 10.1109/JSTARS.2023.3328389
SSID ssj0062793
Score 2.4280183
Snippet Recently, hybrid networks, combining graph convolutional networks (GCNs) and convolutional neural networks into a unified framework, have garnered significant...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 10660
SubjectTerms Advantageous feature differential enhancement fusion (AFDEF)
Apexes
Artificial neural networks
Classification
Convolution
Convolutional neural networks
convolutional neural networks (CNNs)
Correlation
Data mining
Feature extraction
hypergraph convolutional network
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Information retrieval
Neural networks
Training
Transformers
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RSkhcKI8itrTIB45kSfzKmltpWRYOeyhU6s2ynfEF2KJtcqC_nvFjEQ8hcYmiyFESf57xzGTmG4AXA-ndYeFdo5WUjUT0jeOhbzqytckjcoMPOdtirVeX8sOVuqrF6rkWBhFz8hnO02n-lz9chymFykjClVCkTPdgrze6FGvt1K7mfWbYJYPENIkzplIMda15RWv89OIjOYNczoVsxUKL37ahzNZf26v8pZPzRrM8gPXuFUt-yef5NPp5uP2DvfG_v-EB3K8mJzsta-Qh3MHNI7j7Lrf0_f4YLs6XfI3ja3Zee6WQzH9hyTSctsiWUwqnsXXJFmdk4rIVua6lQnNLA99_JY3Ecm_NlHWUgT6Ey-XbT2erpnZaaIJQZmxiJFEn18Vr70xnYs-FS0T2GjvvBu4NuhQuNSJ0joaR2eYwLmTsohZhaIV4Avub6w0-BRb7aAK5cS22KFU7eCmV7yJ3LfaeiziDl7uJt98KoYbNjkhrbMHJJpxsxWkGbxI4P4cmNux8gSbVVuGyyhtphkjuNgaJXBttQgxRLciZ1L3UMzhMQPzyvILBDI53WNsqujeWZoKsTDqao3_c9gzupVcsgZhj2B-3E56QaTL653lJ_gBnct7r
  priority: 102
  providerName: IEEE
Title DF2Net: Differential Feature Fusion Network for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/10535718
https://www.proquest.com/docview/3072323079
https://doaj.org/article/5b949df133ec4e26969cfcf588996746
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4ikKpfLASKjjV2q28iiFoQNQic2yHXuCgko68O852ykqYmBhyRBZcnLnO3-fdf4OodMa8m49sKaQgvOCe28LQ11VlIC1gRGZ2rpUbTGR4ym_fxbPK62-Yk1YlgfOhusLq7iqA1Ap77inUknlggtiAERBVjyLbRO6JFM5B0taJbldQCeqiAIyrd5QSVQfFvzw4RGYIeXnjBM2kOzHnpSk-9teK78SdNp1Rttoq4WLeJg_cwet-dku2rhN7Xg_99DD9YhOfHOBr9s-JxCvLzjCusXc49EiHoXhSa70xgBP8RhoZ75dOYeBd6-QTXDqixkrhpKT9tF0dPN0NS7aLgmFY0I1RQgQpkA7rLRGlSpUlJkoQi99aU1NrfImHnUq5koDwwByGR8GPJRBMlcTxg7Q-uxt5g8RDlVQDigY8cRzQWrLubBloIb4ylIWOuhsaSf9nsUwdCIRROlsVh3NqluzdtBltOX30KhknV6Af3XrX_2XfztoP3piZT7BBGyoHdRduka3YfehwRKAEOGpjv5j7mO0Gf8nn7h00XozX_gTwCCN7aXl1kvXBb8Aqq7VjA
link.rule.ids 314,780,784,796,864,2102,4024,27923,27924,27925,54758
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEaIXnkVdKOADR7IkfmXNrVCWLZQcSiv1ZtnO-AJs0ZIc4NczdryIh5C4RFHkKInHM_6-yTwAnvZkd_uFd5VWUlYS0VeOh7ZqCGsTI3K9DznaotOrc_n2Ql2UZPWcC4OIOfgM5-k0_8vvL8OYXGWk4UooMqZX4ZqSBHSndK2t4dW8zTV2CZKYKlWNKUWGmto8p1V-ePqB6CCXcyFrsdDit40o1-svDVb-ssp5q1negm77klOEycf5OPh5-P5H_cb__orbcLOATnY4rZI7cAXXd-H6m9zU99s9OD1a8g6HF-yodEshrf_EEjgcN8iWY3KosW6KF2cEctmKyOuUo7mhgcefySax3F0zxR1lUe_B-fL12atVVXotVEEoM1QxkrITefHaO9OY2HLhUil7jY13PfcGXXKYGhEaR8MIuDmMCxmbqEXoayHuw876co37wGIbTSAiV2ONUtW9l1L5JnJXY-u5iDN4tp14-2UqqWEzFamNneRkk5xskdMMXibh_Bya6mHnCzSptqiXVd5I00ci3Bgkcm20CTFEtSA6qVupZ7CXBPHL8yYZzOBgK2tblPerpZkgnElH8-Aftz2BG6uz9yf25Lh79xB20-tObpkD2Bk2Iz4ioDL4x3l5_gBNiuI-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DF2Net%3A+Differential+Feature+Fusion+Network+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Qingwang&rft.au=Huang%2C+Jiangbo&rft.au=Meng%2C+Yuanqin&rft.au=Shen%2C+Tao&rft.date=2024&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=10660&rft.epage=10673&rft_id=info:doi/10.1109%2FJSTARS.2024.3403863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2024_3403863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon