LS-SIFT: Enhancing the Robustness of SIFT During Pose-Invariant Face Recognition by Learning Facial Landmark Specific Mappings
The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recogni...
Saved in:
Published in | IEEE access Vol. 12; pp. 76648 - 76662 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems' outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of <inline-formula> <tex-math notation="LaTeX">\pm 90^{o} </tex-math></inline-formula>. |
---|---|
AbstractList | The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems' outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of <tex-math notation="LaTeX">$\pm 90^{o}$ </tex-math>. The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems’ outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of [Formula Omitted]. The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems' outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of <inline-formula> <tex-math notation="LaTeX">\pm 90^{o} </tex-math></inline-formula>. |
Author | Linares Otoya, Paulo E. Lin, Shinfeng D. |
Author_xml | – sequence: 1 givenname: Shinfeng D. orcidid: 0000-0002-7015-7797 surname: Lin fullname: Lin, Shinfeng D. email: david@gms.ndhu.edu.tw organization: Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan – sequence: 2 givenname: Paulo E. orcidid: 0000-0001-6856-5786 surname: Linares Otoya fullname: Linares Otoya, Paulo E. organization: Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan |
BookMark | eNpNkUtv1DAUhS3USpTSXwALS6wzteNHEnbVMAMjpWpFytryc-phsIOdQeqG347TVKjeXOve7557pPMOnIUYLAAfMFphjLrrm_V6MwyrGtV0RSjiHcZvwEWNeVcRRvjZq_9bcJXzAZXXlhZrLsDffqiG3fbhM9yERxm0D3s4PVr4PapTnoLNGUYHZwJ-OaV5eh-zrXbhj0xehglupS601XEf_ORjgOoJ9lamMLNl6OUR9jKYXzL9hMNotXdew1s5jgXI78G5k8dsr17qJfix3Tysv1X93dfd-qavNGHdVDmHnG0tqhVWSjpqTE1qxoy1qnENorzFijuuOcE1Qhph5DSnqOUMG8QYI5dgt-iaKA9iTL7YeRJRevHciGkvZJq8PlrBTWdqw4pu01CsWoUY6RhV5XAxoJui9WnRGlP8fbJ5Eod4SqHYFwRx2mCK6UyRhdIp5pys-38VIzHnJpbcxJybeMmtbH1ctry19tUGo4i1jPwD5baUwg |
CODEN | IAECCG |
Cites_doi | 10.1109/TIP.2015.2390959 10.1007/s11042-015-3058-7 10.1109/CRV.2012.61 10.1109/ICIP.2019.8803686 10.1111/j.2517-6161.1996.tb02080.x 10.1109/CVPR.2015.7298682 10.1109/ICIP.2017.8297015 10.1109/CVIDLICCEA56201.2022.9825237 10.1109/TIP.2016.2551362 10.1109/Cybermatics_2018.2018.00142 10.1007/s11277-020-07063-1 10.1109/ICKII55100.2022.9983525 10.1016/j.dsp.2020.102809 10.1109/TIP.2011.2160957 10.1109/TPAMI.2015.2462338 10.1109/ACCESS.2019.2917451 10.1109/ACCESS.2019.2894162 10.1109/ACCESS.2023.3271997 10.1109/TPAMI.2021.3087709 10.1016/j.patcog.2018.01.003 10.1109/TIFS.2015.2393553 10.1109/CVPR.1997.609311 10.1109/MCAS.2006.1688199 10.1002/9781118914564 10.1109/ICCV.2017.116 10.1023/b:visi.0000029664.99615.94 10.1007/3-540-48219-9_24 10.1109/ICIP46576.2022.9898076 10.1109/TPAMI.2003.1251154 10.1109/CVPR.2018.00552 10.1109/AFGR.2008.4813399 10.1016/j.patcog.2015.05.017 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3406911 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 76662 |
ExternalDocumentID | oai_doaj_org_article_6d9d2d57f77741b8b053954bbbae02c7 10_1109_ACCESS_2024_3406911 10540585 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-ff0fe8e02b1bbaf4dd23255deeb7f704681b6f6c631200c010fc6408651d05553 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:10 EDT 2025 Sun Jun 29 13:52:15 EDT 2025 Tue Jul 01 04:14:38 EDT 2025 Wed Aug 27 02:03:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-ff0fe8e02b1bbaf4dd23255deeb7f704681b6f6c631200c010fc6408651d05553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6856-5786 0000-0002-7015-7797 |
OpenAccessLink | https://doaj.org/article/6d9d2d57f77741b8b053954bbbae02c7 |
PQID | 3064714147 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d9d2d57f77741b8b053954bbbae02c7 proquest_journals_3064714147 crossref_primary_10_1109_ACCESS_2024_3406911 ieee_primary_10540585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref16 ref19 Lu (ref24) 2021 (ref17) 2023 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref8 ref7 (ref20) 2023 Cheng (ref29) 2018 ref9 ref4 ref3 ref6 (ref18) 2023 ref5 |
References_xml | – ident: ref4 doi: 10.1109/TIP.2015.2390959 – ident: ref25 doi: 10.1007/s11042-015-3058-7 – ident: ref37 doi: 10.1109/CRV.2012.61 – ident: ref12 doi: 10.1109/ICIP.2019.8803686 – ident: ref19 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref5 doi: 10.1109/CVPR.2015.7298682 – ident: ref9 doi: 10.1109/ICIP.2017.8297015 – ident: ref33 doi: 10.1109/CVIDLICCEA56201.2022.9825237 – ident: ref34 doi: 10.1109/TIP.2016.2551362 – ident: ref36 doi: 10.1109/Cybermatics_2018.2018.00142 – ident: ref2 doi: 10.1007/s11277-020-07063-1 – ident: ref13 doi: 10.1109/ICKII55100.2022.9983525 – year: 2021 ident: ref24 article-title: A survey on Bayesian inference for Gaussian mixture model publication-title: arXiv:2108.11753 – ident: ref1 doi: 10.1016/j.dsp.2020.102809 – ident: ref35 doi: 10.1109/TIP.2011.2160957 – volume-title: TensorFlow API Documentation year: 2023 ident: ref17 – ident: ref3 doi: 10.1109/TPAMI.2015.2462338 – ident: ref8 doi: 10.1109/ACCESS.2019.2917451 – ident: ref10 doi: 10.1109/ACCESS.2019.2894162 – ident: ref14 doi: 10.1109/ACCESS.2023.3271997 – ident: ref7 doi: 10.1109/TPAMI.2021.3087709 – ident: ref32 doi: 10.1016/j.patcog.2018.01.003 – volume-title: Keras API Documentation year: 2023 ident: ref18 – ident: ref30 doi: 10.1109/TIFS.2015.2393553 – ident: ref28 doi: 10.1109/CVPR.1997.609311 – ident: ref21 doi: 10.1109/MCAS.2006.1688199 – ident: ref22 doi: 10.1002/9781118914564 – ident: ref15 doi: 10.1109/ICCV.2017.116 – ident: ref16 doi: 10.1023/b:visi.0000029664.99615.94 – year: 2018 ident: ref29 article-title: Surveillance face recognition challenge publication-title: arXiv:1804.09691 – ident: ref23 doi: 10.1007/3-540-48219-9_24 – ident: ref11 doi: 10.1109/ICIP46576.2022.9898076 – ident: ref26 doi: 10.1109/TPAMI.2003.1251154 – ident: ref6 doi: 10.1109/CVPR.2018.00552 – ident: ref27 doi: 10.1109/AFGR.2008.4813399 – ident: ref31 doi: 10.1016/j.patcog.2015.05.017 – volume-title: Open Source Computer Vision (OpenCV) year: 2023 ident: ref20 |
SSID | ssj0000816957 |
Score | 2.2999172 |
Snippet | The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 76648 |
SubjectTerms | Ensemble learning Face recognition Facial features Facial landmarks Facial recognition technology Feature extraction head pose description Invariants local feature extraction Pose estimation Robustness Shape Surveillance Training |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnuDAZxELBfnAES_rxHYSbmXpqkWlQrSVerPiry2qSFA3iwQHfjszjrcqICRuUeIoY70Ze57jeQZ4qXGSV0h-eItgc6mLlts2Cu50WVV1QA9q026LY31wJt-fq_NcrJ5qYUIIafNZmNJl-pfve7empTKMcMovarUFW8jcxmKt6wUVOkGiUVVWFhKz5vXefI6dQA5YyGlJFZ5C_Db7JJH-fKrKX0Nxml8W9-B4Y9m4reRyuh7s1P34Q7Txv02_D3dzpsn2Rtd4ALdC9xDu3NAffAQ_j074yeHi9A3b7y5IeKNbMkwI2aferlcDDYKsj4xasHepnJF97FeBH3bfkGEjJGzROmy92YPUd8x-Z1mxdUkP0bnZUdv5L-3VJUtH3cfPjn1oSRRiudqBs8X-6fyA5wMZuCtVM_AYZzHUYVZYYRFR6T3mY0r5EGwVK2TamAPrqBFngcHnkOpFpyWSJiU8CYuVj2G767vwBFjdyBqZpceMI5LIvQ0ylGWsnReFC0JP4NUGKPN11N0wia_MGjPiaghXk3GdwFsC87opiWanGwiCyTFotG984RWaijmvsLXFAahR0mJfsE-umsAOAXfjeyNmE9jd-IbJEb4yxNwqIYWsnv7jtWdwm0wc12t2YXu4WofnmMEM9kXy3F8ZqOvM priority: 102 providerName: IEEE |
Title | LS-SIFT: Enhancing the Robustness of SIFT During Pose-Invariant Face Recognition by Learning Facial Landmark Specific Mappings |
URI | https://ieeexplore.ieee.org/document/10540585 https://www.proquest.com/docview/3064714147 https://doaj.org/article/6d9d2d57f77741b8b053954bbbae02c7 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWDEtE5sJ2ErhaogQIiHxGb5WRAiQbRFYuG3c3ZSVMTAwppYcnx39n1f5PsOoX0BSZ4D-SEKnE2YSBTRylNiRJpluYMIUvG2xZUY3LPzB_4w0-or3Amr5YFrw7WFLWxieeYzACpU5xqipuBMa61cJzGxjhxy3gyZimdwTkXBs0ZmiHaKdrfXgxUBIUzYYRrKPSn9kYqiYn_TYuXXuRyTTX8ZLTUoEXfrr1tBc65cRYsz2oFr6PPiltye9e-O8Gn5GEQzyiEGMIdvKj0ZjcMBhiuPwwh8EksR8XU1cuSsfAd2DObEfWVg9PT-UFVi_YEbtdVheAmBiS9UaV_U2zOOber9k8GXKgg6DEfr6L5_etcbkKaZAjEpL8bE-453OZhMUzCdZ9YCluLcOqfBtsCSAb8KL8BHFDaOAZrmjWBAeDi1QRQs3UDzZVW6TYTzguXACi2gBR8E6rVjLk19bixNjKOihQ6mdpWvtWaGjFyjU8jaDTK4QTZuaKHjYPvvoUHwOj6AMJBNGMi_wqCF1oPnZuYLUDTnLbQzdaVsdudIBtaVUUZZtvUfc2-jhbCe-sfMDpofv03cLkCVsd6LUbkXqwq_AIPg4uk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHIADPzdRGOADR1zqxHYSbqOsaqGrEOuk3az4V0HTkmlNkeDA3857jjsNEBK3KHEUW997fu9z_D4T8kpBkJdAflgNYDOhspqZOnBmVV4UpQcLquNui4WanogPp_I0FavHWhjvfdx85od4Gf_lu9ZucKkMPBzzi1LeJLcg8MusL9e6WlLBMyQqWSRtIT6q3hyMxzAMYIGZGOZY48n5b_EnyvSnc1X-moxjhJncJ4tt3_qNJWfDTWeG9scfso3_3fkH5F7KNelBbxwPyQ3fPCJ3rykQPiY_58fseDZZvqWHzReU3mhWFFJC-rk1m3WH0yBtA8UW9H0saKSf2rVns-YbcGwAhU5qC623u5DahprvNGm2rvAhmDed1407ry_PaDzsPny19KhGWYjVepecTA6X4ylLRzIwm8uqYyGMgi_9KDPcAKbCOcjIpHTemyIUwLUhC1ZBAdIc3M8C2QtWCaBNkjuUFsv3yE7TNv4JoWUlSuCWDnKOgDL3xguf56G0jmfWczUgr7dA6YteeUNHxjKqdI-rRlx1wnVA3iGYV01RNjveABB08kKtXOUyJ6GrkPVyUxqYgiopDIwFxmSLAdlF4K59r8dsQPa3tqGTj681creCCy6Kp_947SW5PV0ezfV8tvj4jNzB7varN_tkp7vc-OeQz3TmRbTiX44d7xY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LS-SIFT%3A+Enhancing+the+Robustness+of+SIFT+During+Pose-Invariant+Face+Recognition+by+Learning+Facial+Landmark+Specific+Mappings&rft.jtitle=IEEE+access&rft.au=Lin%2C+Shinfeng+D.&rft.au=Linares+Otoya%2C+Paulo+E.&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=76648&rft.epage=76662&rft_id=info:doi/10.1109%2FACCESS.2024.3406911&rft.externalDocID=10540585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |