LS-SIFT: Enhancing the Robustness of SIFT During Pose-Invariant Face Recognition by Learning Facial Landmark Specific Mappings

The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recogni...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 76648 - 76662
Main Authors Lin, Shinfeng D., Linares Otoya, Paulo E.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems' outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of <inline-formula> <tex-math notation="LaTeX">\pm 90^{o} </tex-math></inline-formula>.
AbstractList The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems' outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of <tex-math notation="LaTeX">$\pm 90^{o}$ </tex-math>.
The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems’ outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of [Formula Omitted].
The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition (PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for further processing. Then, local descriptors are extracted from the selected landmarks within a face image. We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT against large viewpoint variability during face recognition. Second, the extracted descriptors are used to train the base learners comprising an ensemble system for each subject in a face database (one ensemble per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble systems' outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT are employed individually for local feature extraction, whereas GMM and MS are used to build the ensemble systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE, Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with pose angles in the range of <inline-formula> <tex-math notation="LaTeX">\pm 90^{o} </tex-math></inline-formula>.
Author Linares Otoya, Paulo E.
Lin, Shinfeng D.
Author_xml – sequence: 1
  givenname: Shinfeng D.
  orcidid: 0000-0002-7015-7797
  surname: Lin
  fullname: Lin, Shinfeng D.
  email: david@gms.ndhu.edu.tw
  organization: Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan
– sequence: 2
  givenname: Paulo E.
  orcidid: 0000-0001-6856-5786
  surname: Linares Otoya
  fullname: Linares Otoya, Paulo E.
  organization: Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan
BookMark eNpNkUtv1DAUhS3USpTSXwALS6wzteNHEnbVMAMjpWpFytryc-phsIOdQeqG347TVKjeXOve7557pPMOnIUYLAAfMFphjLrrm_V6MwyrGtV0RSjiHcZvwEWNeVcRRvjZq_9bcJXzAZXXlhZrLsDffqiG3fbhM9yERxm0D3s4PVr4PapTnoLNGUYHZwJ-OaV5eh-zrXbhj0xehglupS601XEf_ORjgOoJ9lamMLNl6OUR9jKYXzL9hMNotXdew1s5jgXI78G5k8dsr17qJfix3Tysv1X93dfd-qavNGHdVDmHnG0tqhVWSjpqTE1qxoy1qnENorzFijuuOcE1Qhph5DSnqOUMG8QYI5dgt-iaKA9iTL7YeRJRevHciGkvZJq8PlrBTWdqw4pu01CsWoUY6RhV5XAxoJui9WnRGlP8fbJ5Eod4SqHYFwRx2mCK6UyRhdIp5pys-38VIzHnJpbcxJybeMmtbH1ctry19tUGo4i1jPwD5baUwg
CODEN IAECCG
Cites_doi 10.1109/TIP.2015.2390959
10.1007/s11042-015-3058-7
10.1109/CRV.2012.61
10.1109/ICIP.2019.8803686
10.1111/j.2517-6161.1996.tb02080.x
10.1109/CVPR.2015.7298682
10.1109/ICIP.2017.8297015
10.1109/CVIDLICCEA56201.2022.9825237
10.1109/TIP.2016.2551362
10.1109/Cybermatics_2018.2018.00142
10.1007/s11277-020-07063-1
10.1109/ICKII55100.2022.9983525
10.1016/j.dsp.2020.102809
10.1109/TIP.2011.2160957
10.1109/TPAMI.2015.2462338
10.1109/ACCESS.2019.2917451
10.1109/ACCESS.2019.2894162
10.1109/ACCESS.2023.3271997
10.1109/TPAMI.2021.3087709
10.1016/j.patcog.2018.01.003
10.1109/TIFS.2015.2393553
10.1109/CVPR.1997.609311
10.1109/MCAS.2006.1688199
10.1002/9781118914564
10.1109/ICCV.2017.116
10.1023/b:visi.0000029664.99615.94
10.1007/3-540-48219-9_24
10.1109/ICIP46576.2022.9898076
10.1109/TPAMI.2003.1251154
10.1109/CVPR.2018.00552
10.1109/AFGR.2008.4813399
10.1016/j.patcog.2015.05.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3406911
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 76662
ExternalDocumentID oai_doaj_org_article_6d9d2d57f77741b8b053954bbbae02c7
10_1109_ACCESS_2024_3406911
10540585
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-ff0fe8e02b1bbaf4dd23255deeb7f704681b6f6c631200c010fc6408651d05553
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:10 EDT 2025
Sun Jun 29 13:52:15 EDT 2025
Tue Jul 01 04:14:38 EDT 2025
Wed Aug 27 02:03:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ff0fe8e02b1bbaf4dd23255deeb7f704681b6f6c631200c010fc6408651d05553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6856-5786
0000-0002-7015-7797
OpenAccessLink https://doaj.org/article/6d9d2d57f77741b8b053954bbbae02c7
PQID 3064714147
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_6d9d2d57f77741b8b053954bbbae02c7
proquest_journals_3064714147
crossref_primary_10_1109_ACCESS_2024_3406911
ieee_primary_10540585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref16
ref19
Lu (ref24) 2021
(ref17) 2023
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref8
ref7
(ref20) 2023
Cheng (ref29) 2018
ref9
ref4
ref3
ref6
(ref18) 2023
ref5
References_xml – ident: ref4
  doi: 10.1109/TIP.2015.2390959
– ident: ref25
  doi: 10.1007/s11042-015-3058-7
– ident: ref37
  doi: 10.1109/CRV.2012.61
– ident: ref12
  doi: 10.1109/ICIP.2019.8803686
– ident: ref19
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref5
  doi: 10.1109/CVPR.2015.7298682
– ident: ref9
  doi: 10.1109/ICIP.2017.8297015
– ident: ref33
  doi: 10.1109/CVIDLICCEA56201.2022.9825237
– ident: ref34
  doi: 10.1109/TIP.2016.2551362
– ident: ref36
  doi: 10.1109/Cybermatics_2018.2018.00142
– ident: ref2
  doi: 10.1007/s11277-020-07063-1
– ident: ref13
  doi: 10.1109/ICKII55100.2022.9983525
– year: 2021
  ident: ref24
  article-title: A survey on Bayesian inference for Gaussian mixture model
  publication-title: arXiv:2108.11753
– ident: ref1
  doi: 10.1016/j.dsp.2020.102809
– ident: ref35
  doi: 10.1109/TIP.2011.2160957
– volume-title: TensorFlow API Documentation
  year: 2023
  ident: ref17
– ident: ref3
  doi: 10.1109/TPAMI.2015.2462338
– ident: ref8
  doi: 10.1109/ACCESS.2019.2917451
– ident: ref10
  doi: 10.1109/ACCESS.2019.2894162
– ident: ref14
  doi: 10.1109/ACCESS.2023.3271997
– ident: ref7
  doi: 10.1109/TPAMI.2021.3087709
– ident: ref32
  doi: 10.1016/j.patcog.2018.01.003
– volume-title: Keras API Documentation
  year: 2023
  ident: ref18
– ident: ref30
  doi: 10.1109/TIFS.2015.2393553
– ident: ref28
  doi: 10.1109/CVPR.1997.609311
– ident: ref21
  doi: 10.1109/MCAS.2006.1688199
– ident: ref22
  doi: 10.1002/9781118914564
– ident: ref15
  doi: 10.1109/ICCV.2017.116
– ident: ref16
  doi: 10.1023/b:visi.0000029664.99615.94
– year: 2018
  ident: ref29
  article-title: Surveillance face recognition challenge
  publication-title: arXiv:1804.09691
– ident: ref23
  doi: 10.1007/3-540-48219-9_24
– ident: ref11
  doi: 10.1109/ICIP46576.2022.9898076
– ident: ref26
  doi: 10.1109/TPAMI.2003.1251154
– ident: ref6
  doi: 10.1109/CVPR.2018.00552
– ident: ref27
  doi: 10.1109/AFGR.2008.4813399
– ident: ref31
  doi: 10.1016/j.patcog.2015.05.017
– volume-title: Open Source Computer Vision (OpenCV)
  year: 2023
  ident: ref20
SSID ssj0000816957
Score 2.2999172
Snippet The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 76648
SubjectTerms Ensemble learning
Face recognition
Facial features
Facial landmarks
Facial recognition technology
Feature extraction
head pose description
Invariants
local feature extraction
Pose estimation
Robustness
Shape
Surveillance
Training
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnuDAZxELBfnAES_rxHYSbmXpqkWlQrSVerPiry2qSFA3iwQHfjszjrcqICRuUeIoY70Ze57jeQZ4qXGSV0h-eItgc6mLlts2Cu50WVV1QA9q026LY31wJt-fq_NcrJ5qYUIIafNZmNJl-pfve7empTKMcMovarUFW8jcxmKt6wUVOkGiUVVWFhKz5vXefI6dQA5YyGlJFZ5C_Db7JJH-fKrKX0Nxml8W9-B4Y9m4reRyuh7s1P34Q7Txv02_D3dzpsn2Rtd4ALdC9xDu3NAffAQ_j074yeHi9A3b7y5IeKNbMkwI2aferlcDDYKsj4xasHepnJF97FeBH3bfkGEjJGzROmy92YPUd8x-Z1mxdUkP0bnZUdv5L-3VJUtH3cfPjn1oSRRiudqBs8X-6fyA5wMZuCtVM_AYZzHUYVZYYRFR6T3mY0r5EGwVK2TamAPrqBFngcHnkOpFpyWSJiU8CYuVj2G767vwBFjdyBqZpceMI5LIvQ0ylGWsnReFC0JP4NUGKPN11N0wia_MGjPiaghXk3GdwFsC87opiWanGwiCyTFotG984RWaijmvsLXFAahR0mJfsE-umsAOAXfjeyNmE9jd-IbJEb4yxNwqIYWsnv7jtWdwm0wc12t2YXu4WofnmMEM9kXy3F8ZqOvM
  priority: 102
  providerName: IEEE
Title LS-SIFT: Enhancing the Robustness of SIFT During Pose-Invariant Face Recognition by Learning Facial Landmark Specific Mappings
URI https://ieeexplore.ieee.org/document/10540585
https://www.proquest.com/docview/3064714147
https://doaj.org/article/6d9d2d57f77741b8b053954bbbae02c7
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWDEtE5sJ2ErhaogQIiHxGb5WRAiQbRFYuG3c3ZSVMTAwppYcnx39n1f5PsOoX0BSZ4D-SEKnE2YSBTRylNiRJpluYMIUvG2xZUY3LPzB_4w0-or3Amr5YFrw7WFLWxieeYzACpU5xqipuBMa61cJzGxjhxy3gyZimdwTkXBs0ZmiHaKdrfXgxUBIUzYYRrKPSn9kYqiYn_TYuXXuRyTTX8ZLTUoEXfrr1tBc65cRYsz2oFr6PPiltye9e-O8Gn5GEQzyiEGMIdvKj0ZjcMBhiuPwwh8EksR8XU1cuSsfAd2DObEfWVg9PT-UFVi_YEbtdVheAmBiS9UaV_U2zOOber9k8GXKgg6DEfr6L5_etcbkKaZAjEpL8bE-453OZhMUzCdZ9YCluLcOqfBtsCSAb8KL8BHFDaOAZrmjWBAeDi1QRQs3UDzZVW6TYTzguXACi2gBR8E6rVjLk19bixNjKOihQ6mdpWvtWaGjFyjU8jaDTK4QTZuaKHjYPvvoUHwOj6AMJBNGMi_wqCF1oPnZuYLUDTnLbQzdaVsdudIBtaVUUZZtvUfc2-jhbCe-sfMDpofv03cLkCVsd6LUbkXqwq_AIPg4uk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHIADPzdRGOADR1zqxHYSbqOsaqGrEOuk3az4V0HTkmlNkeDA3857jjsNEBK3KHEUW997fu9z_D4T8kpBkJdAflgNYDOhspqZOnBmVV4UpQcLquNui4WanogPp_I0FavHWhjvfdx85od4Gf_lu9ZucKkMPBzzi1LeJLcg8MusL9e6WlLBMyQqWSRtIT6q3hyMxzAMYIGZGOZY48n5b_EnyvSnc1X-moxjhJncJ4tt3_qNJWfDTWeG9scfso3_3fkH5F7KNelBbxwPyQ3fPCJ3rykQPiY_58fseDZZvqWHzReU3mhWFFJC-rk1m3WH0yBtA8UW9H0saKSf2rVns-YbcGwAhU5qC623u5DahprvNGm2rvAhmDed1407ry_PaDzsPny19KhGWYjVepecTA6X4ylLRzIwm8uqYyGMgi_9KDPcAKbCOcjIpHTemyIUwLUhC1ZBAdIc3M8C2QtWCaBNkjuUFsv3yE7TNv4JoWUlSuCWDnKOgDL3xguf56G0jmfWczUgr7dA6YteeUNHxjKqdI-rRlx1wnVA3iGYV01RNjveABB08kKtXOUyJ6GrkPVyUxqYgiopDIwFxmSLAdlF4K59r8dsQPa3tqGTj681creCCy6Kp_947SW5PV0ezfV8tvj4jNzB7varN_tkp7vc-OeQz3TmRbTiX44d7xY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LS-SIFT%3A+Enhancing+the+Robustness+of+SIFT+During+Pose-Invariant+Face+Recognition+by+Learning+Facial+Landmark+Specific+Mappings&rft.jtitle=IEEE+access&rft.au=Lin%2C+Shinfeng+D.&rft.au=Linares+Otoya%2C+Paulo+E.&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=76648&rft.epage=76662&rft_id=info:doi/10.1109%2FACCESS.2024.3406911&rft.externalDocID=10540585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon