A Pre-Activation Residual Convolutional Network With Attention Modules for High-Resolution Segmented EEG Emotion Recognition
Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential applications have been proposed such as enhancing human-computer interaction, improving mental health diagnosis, and fine-tuning the customer e...
Saved in:
Published in | IEEE access Vol. 13; pp. 16303 - 16313 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2025.3530567 |
Cover
Loading…
Abstract | Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential applications have been proposed such as enhancing human-computer interaction, improving mental health diagnosis, and fine-tuning the customer experience at the marketing level. This paper introduces a novel model, called Pre-Activation Residual Convolutional Network with Attention Modules (PRCN-AM), designed to enhance the accuracy and robustness of emotion recognition based on EEG signals. PRCN-AM combines residual convolutional layers with pre-activation and attention modules to effectively capture and analyze the complex spatial-temporal patterns inherent in EEG signals. Two experimental procedures, namely, subject-dependent and subject-independent, were conducted and different time segmentations on the preprocessing stage were tested. The suggested exploitation of the temporal dynamics of the EEG signals in emotion recognition turns out to be useful, as classification accuracies of up to 99.51% and 97.51% on SEED and SEED-IV datasets have been achieved, respectively, thus, outperforming the current state-of-the-art models. |
---|---|
AbstractList | Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential applications have been proposed such as enhancing human-computer interaction, improving mental health diagnosis, and fine-tuning the customer experience at the marketing level. This paper introduces a novel model, called Pre-Activation Residual Convolutional Network with Attention Modules (PRCN-AM), designed to enhance the accuracy and robustness of emotion recognition based on EEG signals. PRCN-AM combines residual convolutional layers with pre-activation and attention modules to effectively capture and analyze the complex spatial-temporal patterns inherent in EEG signals. Two experimental procedures, namely, subject-dependent and subject-independent, were conducted and different time segmentations on the preprocessing stage were tested. The suggested exploitation of the temporal dynamics of the EEG signals in emotion recognition turns out to be useful, as classification accuracies of up to 99.51% and 97.51% on SEED and SEED-IV datasets have been achieved, respectively, thus, outperforming the current state-of-the-art models. |
Author | Charalampous, Ioannis Mavrokefalidis, Christos Berberidis, Kostas |
Author_xml | – sequence: 1 givenname: Ioannis orcidid: 0009-0003-5020-030X surname: Charalampous fullname: Charalampous, Ioannis organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece – sequence: 2 givenname: Christos orcidid: 0000-0002-0131-9633 surname: Mavrokefalidis fullname: Mavrokefalidis, Christos organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece – sequence: 3 givenname: Kostas orcidid: 0000-0003-2175-9043 surname: Berberidis fullname: Berberidis, Kostas email: berberid@ceid.upatras.gr organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece |
BookMark | eNpNUU1v1DAQtVCRKKW_AA6WOGfxV5zNMYpCW6l8iAVxtLz2eOslGxfbaYXEj8fbrFDnMjNP772R5r1GZ1OYAKG3lKwoJe2Hru-HzWbFCKtXvOakls0LdM6obKuyyrNn8yt0mdKelFoXqG7O0d8Of41QdSb7B519mPA3SN7OesR9mB7COB_Bsn2G_BjiL_zT5zvc5QzTE_tTsPMICbsQ8bXf3VVFfhLhDewOhQYWD8MVHg7h5G_CbvLH-Q166fSY4PLUL9CPj8P3_rq6_XJ103e3leF1mytna8ac4KzVRlInoW0IZc61jm01ECK5JWCllI0ztZVrKRgzvCFScrYFyvgFull8bdB7dR_9Qcc_KmivnoAQd0rH7M0IytVMaymME4QL2663QrjaATeu3BOWFq_3i9d9DL9nSFntwxzLh5LiVFLeMEaawuILy8SQUgT3_yol6piaWlJTx9TUKbWiereoPAA8U6wFly3n_wBzEZZC |
CODEN | IAECCG |
Cites_doi | 10.14569/IJACSA.2017.081046 10.1007/978-3-030-30581-9 10.1051/itmconf/20224702041 10.1109/ACCESS.2019.2957163 10.1088/1741-2560/12/3/031001 10.1109/TNSRE.2023.3304660 10.3390/brainsci13040685 10.1109/BIBM.2016.7822545 10.1007/s13246-023-01225-8 10.3390/app7121239 10.1016/j.neucli.2016.07.002 10.3390/s23187853 10.1007/978-3-030-49062-1 10.1109/taffc.2014.2339834 10.3389/fnhum.2023.1169949 10.1109/TAMD.2015.2431497 10.1109/JBHI.2021.3083525 10.1109/TCYB.2018.2797176 10.1109/TCDS.2020.2999337 10.1109/TAFFC.2020.2994159 10.1109/tbme.2010.2048568 10.1007/s11571-021-09751-5 10.1109/TAFFC.2018.2817622 10.1109/TAFFC.2019.2922912 10.1109/IAEAC54830.2022.9929699 10.1007/s11571-023-10004-w 10.1109/JSEN.2022.3144317 10.1155/2013/573734 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3530567 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 16313 |
ExternalDocumentID | oai_doaj_org_article_f52aa64cf4034d98b44f5fe3cfff94d1 10_1109_ACCESS_2025_3530567 10843693 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research Council of the University of Patras funderid: 10.13039/100009043 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-fd522f4329ac61f6e97012ff9f2bae0063d0ed6667fc5d686422c3706632be123 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:47 EDT 2025 Mon Jun 30 13:00:25 EDT 2025 Tue Jul 01 03:03:05 EDT 2025 Wed Aug 27 01:53:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-fd522f4329ac61f6e97012ff9f2bae0063d0ed6667fc5d686422c3706632be123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-5020-030X 0000-0002-0131-9633 0000-0003-2175-9043 |
OpenAccessLink | https://doaj.org/article/f52aa64cf4034d98b44f5fe3cfff94d1 |
PQID | 3161372207 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10843693 doaj_primary_oai_doaj_org_article_f52aa64cf4034d98b44f5fe3cfff94d1 proquest_journals_3161372207 crossref_primary_10_1109_ACCESS_2025_3530567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 Li (ref18) 2022 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref8 doi: 10.14569/IJACSA.2017.081046 – ident: ref3 doi: 10.1007/978-3-030-30581-9 – ident: ref11 doi: 10.1051/itmconf/20224702041 – ident: ref23 doi: 10.1109/ACCESS.2019.2957163 – ident: ref25 doi: 10.1088/1741-2560/12/3/031001 – ident: ref29 doi: 10.1109/TNSRE.2023.3304660 – ident: ref14 doi: 10.3390/brainsci13040685 – ident: ref7 doi: 10.1109/BIBM.2016.7822545 – ident: ref22 doi: 10.1007/s13246-023-01225-8 – ident: ref6 doi: 10.3390/app7121239 – ident: ref26 doi: 10.1016/j.neucli.2016.07.002 – year: 2022 ident: ref18 article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: arXiv:2205.01030 – ident: ref15 doi: 10.3390/s23187853 – ident: ref1 doi: 10.1007/978-3-030-49062-1 – ident: ref4 doi: 10.1109/taffc.2014.2339834 – ident: ref17 doi: 10.3389/fnhum.2023.1169949 – ident: ref27 doi: 10.1109/TAMD.2015.2431497 – ident: ref12 doi: 10.1109/JBHI.2021.3083525 – ident: ref28 doi: 10.1109/TCYB.2018.2797176 – ident: ref10 doi: 10.1109/TCDS.2020.2999337 – ident: ref16 doi: 10.1109/TAFFC.2020.2994159 – ident: ref2 doi: 10.1109/tbme.2010.2048568 – ident: ref13 doi: 10.1007/s11571-021-09751-5 – ident: ref20 doi: 10.1109/TAFFC.2018.2817622 – ident: ref9 doi: 10.1109/TAFFC.2019.2922912 – ident: ref19 doi: 10.1109/IAEAC54830.2022.9929699 – ident: ref24 doi: 10.1007/s11571-023-10004-w – ident: ref21 doi: 10.1109/JSEN.2022.3144317 – ident: ref5 doi: 10.1155/2013/573734 |
SSID | ssj0000816957 |
Score | 2.3339393 |
Snippet | Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 16303 |
SubjectTerms | Accuracy attention modules Brain modeling Convolution Convolutional neural networks Data models EEG Electroencephalography Emotion recognition Emotions Feature extraction human-computer interaction mental health diagnosis Modules pre-activation residual convolutional network SEED SEED-IV segmentation Solid modeling subject-dependent subject-independent Three-dimensional displays Transformers |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgPIrYtiAfODZLNrbj9TGstlRIrKpCRW-WY4-hapVU3WwPFT-e8SNVASFxS6JYsTUzme-z50HIuxY5A6IGUSB7kAVXweaUcIUBMB5pM5QmRlus6uMz_ulcnOdk9ZgLAwAx-Aym4TKe5bvebsJWGVr4nLNasS2yhcwtJWvdb6iEDhJKyFxZaFaq981igYtADliJKRMBK8vfvE8s0p-7qvz1K47-5WiHrMaZpbCSy-lmaKf27o-ijf899WfkaUaatEmq8Zw8gu4FefKg_uBL8rOhJzdQNHbscUZPYR2zs-ii726zVuLdKgWL028Xww_aDEOKkaSfe7e5gjVF4EtDwEgRDgPSIPoFvsd6n44ulx_pMnULoqdjvFLf7ZKzo-XXxXGR2zEUlgk1FN4hVvOcVcrYeuZrUBK9m_fKV62BgHVcCQ7pkPRWuHqOzKayTAZMU7WAHvIV2e76Dl4Tin8NZEIGTC0MnwNX3ISG91Iqh-7R8wk5HMWkr1PVDR3ZSql0kqoOUtVZqhPyIYjy_tVQMjs-QBHobIHai8qYmlvPS8admrece-GBWY9L4G42IbtBbA--lyQ2IQejZuhs32vNECgzWVWl3PvHsH3yOEwx7dYckO3hZgNvEL8M7duot78Amy7tOQ priority: 102 providerName: IEEE |
Title | A Pre-Activation Residual Convolutional Network With Attention Modules for High-Resolution Segmented EEG Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10843693 https://www.proquest.com/docview/3161372207 https://doaj.org/article/f52aa64cf4034d98b44f5fe3cfff94d1 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f5ODRardJmuZYl1URXGRV9BbSZqKCdMWtnvzxTpKurHjw4rGlJe3MJPNemLwh5LBCzoCoQSTIHmTClZ9zStjEABiHtBlSE6otRvnFHb98EA9zrb58TViUB46GO3EiMybnteMp41YVFedOOGC1c05xG4gP5rw5MhXW4KKfKyE7maF-qk7KwQD_CAlhJo6Z8MBZ_khFQbG_a7Hya10OyeZslax0KJGW8evWyAI062R5Tjtwg3yW9PoNkrKe9SejY5iGk1V0MGk-uojCq1Es9Kb3z-0TLds21jfSq4l9f4EpRdBKfbFH4jfy40v0Bh6DVqelw-E5HcZOP3Q8qzWaNJvk7mx4O7hIulYKSc2EahNnEWc5zjJl6rzvclASMxNa0GWVAY9TbAoWqYx0tbB5gawkq5n0eCSrALPbFllsJg1sE4ozHlmMAZMLwwvgihvfrF5KZTG1Od4jRzOr6teomKED00iVjk7Q3gm6c0KPnHrLfz_q5a7DDQwC3QWB_isIemTT-21uvIKzXLEe2Zs5Undzc6oZglwmsyyVO_8x9i5Z8v8Tt2X2yGL79g77CFTa6iDE5EE4U_gFBOPlbg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADz1YsFPCBI1mysR2vj2G1ZYF2hUorerMcewwIlKBulgPixzN-pCogJG5JFCu2vpnMN_Y8CHnWos-ArEEU6D3Igqugc0q4wgAYj24zlCZGW6zr1Sl_cybOcrJ6zIUBgBh8BtNwGc_yXW-3YasMNXzOWa3YVXINDb-YpXStiy2V0ENCCZlrC81K9aJZLHAZ6AVWYspEYMvyN_sTy_Tnvip__YyjhTm4Tdbj3FJgyZfpdmin9scfZRv_e_J3yK3MNWmThOMuuQLdPXLzUgXC--RnQ9-dQ9HYscsZPYZNzM-ii777nuUS79YpXJx--Dx8os0wpChJetS77VfYUKS-NISMFOE4IA2i7-FjrPjp6HL5ii5TvyB6PEYs9d0uOT1YnixWRW7IUFgm1FB4h2zNc1YpY-uZr0FJtG_eK1-1BgLbcSU4dIikt8LVc_RtKstkYDVVC2gj98hO13fwgFD8b6AvZMDUwvA5cMVNaHkvpXJoID2fkOcjTPpbqruho79SKp1Q1QFVnVGdkJcByotXQ9Hs-AAh0FkHtReVMTW3npeMOzVvOffCA7Mel8DdbEJ2A2yXvpcQm5D9UTJ01vCNZkiVmayqUj78x7Cn5Prq5OhQH75ev31EboTppr2bfbIznG_hMbKZoX0SZfgXHZ3wgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pre-Activation+Residual+Convolutional+Network+With+Attention+Modules+for+High-Resolution+Segmented+EEG+Emotion+Recognition&rft.jtitle=IEEE+access&rft.au=Charalampous%2C+Ioannis&rft.au=Mavrokefalidis%2C+Christos&rft.au=Berberidis%2C+Kostas&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=16303&rft.epage=16313&rft_id=info:doi/10.1109%2FACCESS.2025.3530567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3530567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |