A Pre-Activation Residual Convolutional Network With Attention Modules for High-Resolution Segmented EEG Emotion Recognition

Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential applications have been proposed such as enhancing human-computer interaction, improving mental health diagnosis, and fine-tuning the customer e...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 16303 - 16313
Main Authors Charalampous, Ioannis, Mavrokefalidis, Christos, Berberidis, Kostas
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3530567

Cover

Loading…
Abstract Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential applications have been proposed such as enhancing human-computer interaction, improving mental health diagnosis, and fine-tuning the customer experience at the marketing level. This paper introduces a novel model, called Pre-Activation Residual Convolutional Network with Attention Modules (PRCN-AM), designed to enhance the accuracy and robustness of emotion recognition based on EEG signals. PRCN-AM combines residual convolutional layers with pre-activation and attention modules to effectively capture and analyze the complex spatial-temporal patterns inherent in EEG signals. Two experimental procedures, namely, subject-dependent and subject-independent, were conducted and different time segmentations on the preprocessing stage were tested. The suggested exploitation of the temporal dynamics of the EEG signals in emotion recognition turns out to be useful, as classification accuracies of up to 99.51% and 97.51% on SEED and SEED-IV datasets have been achieved, respectively, thus, outperforming the current state-of-the-art models.
AbstractList Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential applications have been proposed such as enhancing human-computer interaction, improving mental health diagnosis, and fine-tuning the customer experience at the marketing level. This paper introduces a novel model, called Pre-Activation Residual Convolutional Network with Attention Modules (PRCN-AM), designed to enhance the accuracy and robustness of emotion recognition based on EEG signals. PRCN-AM combines residual convolutional layers with pre-activation and attention modules to effectively capture and analyze the complex spatial-temporal patterns inherent in EEG signals. Two experimental procedures, namely, subject-dependent and subject-independent, were conducted and different time segmentations on the preprocessing stage were tested. The suggested exploitation of the temporal dynamics of the EEG signals in emotion recognition turns out to be useful, as classification accuracies of up to 99.51% and 97.51% on SEED and SEED-IV datasets have been achieved, respectively, thus, outperforming the current state-of-the-art models.
Author Charalampous, Ioannis
Mavrokefalidis, Christos
Berberidis, Kostas
Author_xml – sequence: 1
  givenname: Ioannis
  orcidid: 0009-0003-5020-030X
  surname: Charalampous
  fullname: Charalampous, Ioannis
  organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
– sequence: 2
  givenname: Christos
  orcidid: 0000-0002-0131-9633
  surname: Mavrokefalidis
  fullname: Mavrokefalidis, Christos
  organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
– sequence: 3
  givenname: Kostas
  orcidid: 0000-0003-2175-9043
  surname: Berberidis
  fullname: Berberidis, Kostas
  email: berberid@ceid.upatras.gr
  organization: Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
BookMark eNpNUU1v1DAQtVCRKKW_AA6WOGfxV5zNMYpCW6l8iAVxtLz2eOslGxfbaYXEj8fbrFDnMjNP772R5r1GZ1OYAKG3lKwoJe2Hru-HzWbFCKtXvOakls0LdM6obKuyyrNn8yt0mdKelFoXqG7O0d8Of41QdSb7B519mPA3SN7OesR9mB7COB_Bsn2G_BjiL_zT5zvc5QzTE_tTsPMICbsQ8bXf3VVFfhLhDewOhQYWD8MVHg7h5G_CbvLH-Q166fSY4PLUL9CPj8P3_rq6_XJ103e3leF1mytna8ac4KzVRlInoW0IZc61jm01ECK5JWCllI0ztZVrKRgzvCFScrYFyvgFull8bdB7dR_9Qcc_KmivnoAQd0rH7M0IytVMaymME4QL2663QrjaATeu3BOWFq_3i9d9DL9nSFntwxzLh5LiVFLeMEaawuILy8SQUgT3_yol6piaWlJTx9TUKbWiereoPAA8U6wFly3n_wBzEZZC
CODEN IAECCG
Cites_doi 10.14569/IJACSA.2017.081046
10.1007/978-3-030-30581-9
10.1051/itmconf/20224702041
10.1109/ACCESS.2019.2957163
10.1088/1741-2560/12/3/031001
10.1109/TNSRE.2023.3304660
10.3390/brainsci13040685
10.1109/BIBM.2016.7822545
10.1007/s13246-023-01225-8
10.3390/app7121239
10.1016/j.neucli.2016.07.002
10.3390/s23187853
10.1007/978-3-030-49062-1
10.1109/taffc.2014.2339834
10.3389/fnhum.2023.1169949
10.1109/TAMD.2015.2431497
10.1109/JBHI.2021.3083525
10.1109/TCYB.2018.2797176
10.1109/TCDS.2020.2999337
10.1109/TAFFC.2020.2994159
10.1109/tbme.2010.2048568
10.1007/s11571-021-09751-5
10.1109/TAFFC.2018.2817622
10.1109/TAFFC.2019.2922912
10.1109/IAEAC54830.2022.9929699
10.1007/s11571-023-10004-w
10.1109/JSEN.2022.3144317
10.1155/2013/573734
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3530567
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 16313
ExternalDocumentID oai_doaj_org_article_f52aa64cf4034d98b44f5fe3cfff94d1
10_1109_ACCESS_2025_3530567
10843693
Genre orig-research
GrantInformation_xml – fundername: Research Council of the University of Patras
  funderid: 10.13039/100009043
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-fd522f4329ac61f6e97012ff9f2bae0063d0ed6667fc5d686422c3706632be123
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:47 EDT 2025
Mon Jun 30 13:00:25 EDT 2025
Tue Jul 01 03:03:05 EDT 2025
Wed Aug 27 01:53:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-fd522f4329ac61f6e97012ff9f2bae0063d0ed6667fc5d686422c3706632be123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-5020-030X
0000-0002-0131-9633
0000-0003-2175-9043
OpenAccessLink https://doaj.org/article/f52aa64cf4034d98b44f5fe3cfff94d1
PQID 3161372207
PQPubID 4845423
PageCount 11
ParticipantIDs ieee_primary_10843693
doaj_primary_oai_doaj_org_article_f52aa64cf4034d98b44f5fe3cfff94d1
proquest_journals_3161372207
crossref_primary_10_1109_ACCESS_2025_3530567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
Li (ref18) 2022
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.14569/IJACSA.2017.081046
– ident: ref3
  doi: 10.1007/978-3-030-30581-9
– ident: ref11
  doi: 10.1051/itmconf/20224702041
– ident: ref23
  doi: 10.1109/ACCESS.2019.2957163
– ident: ref25
  doi: 10.1088/1741-2560/12/3/031001
– ident: ref29
  doi: 10.1109/TNSRE.2023.3304660
– ident: ref14
  doi: 10.3390/brainsci13040685
– ident: ref7
  doi: 10.1109/BIBM.2016.7822545
– ident: ref22
  doi: 10.1007/s13246-023-01225-8
– ident: ref6
  doi: 10.3390/app7121239
– ident: ref26
  doi: 10.1016/j.neucli.2016.07.002
– year: 2022
  ident: ref18
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: arXiv:2205.01030
– ident: ref15
  doi: 10.3390/s23187853
– ident: ref1
  doi: 10.1007/978-3-030-49062-1
– ident: ref4
  doi: 10.1109/taffc.2014.2339834
– ident: ref17
  doi: 10.3389/fnhum.2023.1169949
– ident: ref27
  doi: 10.1109/TAMD.2015.2431497
– ident: ref12
  doi: 10.1109/JBHI.2021.3083525
– ident: ref28
  doi: 10.1109/TCYB.2018.2797176
– ident: ref10
  doi: 10.1109/TCDS.2020.2999337
– ident: ref16
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref2
  doi: 10.1109/tbme.2010.2048568
– ident: ref13
  doi: 10.1007/s11571-021-09751-5
– ident: ref20
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref9
  doi: 10.1109/TAFFC.2019.2922912
– ident: ref19
  doi: 10.1109/IAEAC54830.2022.9929699
– ident: ref24
  doi: 10.1007/s11571-023-10004-w
– ident: ref21
  doi: 10.1109/JSEN.2022.3144317
– ident: ref5
  doi: 10.1155/2013/573734
SSID ssj0000816957
Score 2.3339393
Snippet Emotion recognition based on electroencephalography (EEG) signals has attracted considerable research interest over the past few years and several potential...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 16303
SubjectTerms Accuracy
attention modules
Brain modeling
Convolution
Convolutional neural networks
Data models
EEG
Electroencephalography
Emotion recognition
Emotions
Feature extraction
human-computer interaction
mental health diagnosis
Modules
pre-activation
residual convolutional network
SEED
SEED-IV
segmentation
Solid modeling
subject-dependent
subject-independent
Three-dimensional displays
Transformers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgPIrYtiAfODZLNrbj9TGstlRIrKpCRW-WY4-hapVU3WwPFT-e8SNVASFxS6JYsTUzme-z50HIuxY5A6IGUSB7kAVXweaUcIUBMB5pM5QmRlus6uMz_ulcnOdk9ZgLAwAx-Aym4TKe5bvebsJWGVr4nLNasS2yhcwtJWvdb6iEDhJKyFxZaFaq981igYtADliJKRMBK8vfvE8s0p-7qvz1K47-5WiHrMaZpbCSy-lmaKf27o-ijf899WfkaUaatEmq8Zw8gu4FefKg_uBL8rOhJzdQNHbscUZPYR2zs-ii726zVuLdKgWL028Xww_aDEOKkaSfe7e5gjVF4EtDwEgRDgPSIPoFvsd6n44ulx_pMnULoqdjvFLf7ZKzo-XXxXGR2zEUlgk1FN4hVvOcVcrYeuZrUBK9m_fKV62BgHVcCQ7pkPRWuHqOzKayTAZMU7WAHvIV2e76Dl4Tin8NZEIGTC0MnwNX3ISG91Iqh-7R8wk5HMWkr1PVDR3ZSql0kqoOUtVZqhPyIYjy_tVQMjs-QBHobIHai8qYmlvPS8admrece-GBWY9L4G42IbtBbA--lyQ2IQejZuhs32vNECgzWVWl3PvHsH3yOEwx7dYckO3hZgNvEL8M7duot78Amy7tOQ
  priority: 102
  providerName: IEEE
Title A Pre-Activation Residual Convolutional Network With Attention Modules for High-Resolution Segmented EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/10843693
https://www.proquest.com/docview/3161372207
https://doaj.org/article/f52aa64cf4034d98b44f5fe3cfff94d1
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f5ODRardJmuZYl1URXGRV9BbSZqKCdMWtnvzxTpKurHjw4rGlJe3MJPNemLwh5LBCzoCoQSTIHmTClZ9zStjEABiHtBlSE6otRvnFHb98EA9zrb58TViUB46GO3EiMybnteMp41YVFedOOGC1c05xG4gP5rw5MhXW4KKfKyE7maF-qk7KwQD_CAlhJo6Z8MBZ_khFQbG_a7Hya10OyeZslax0KJGW8evWyAI062R5Tjtwg3yW9PoNkrKe9SejY5iGk1V0MGk-uojCq1Es9Kb3z-0TLds21jfSq4l9f4EpRdBKfbFH4jfy40v0Bh6DVqelw-E5HcZOP3Q8qzWaNJvk7mx4O7hIulYKSc2EahNnEWc5zjJl6rzvclASMxNa0GWVAY9TbAoWqYx0tbB5gawkq5n0eCSrALPbFllsJg1sE4ozHlmMAZMLwwvgihvfrF5KZTG1Od4jRzOr6teomKED00iVjk7Q3gm6c0KPnHrLfz_q5a7DDQwC3QWB_isIemTT-21uvIKzXLEe2Zs5Undzc6oZglwmsyyVO_8x9i5Z8v8Tt2X2yGL79g77CFTa6iDE5EE4U_gFBOPlbg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADz1YsFPCBI1mysR2vj2G1ZYF2hUorerMcewwIlKBulgPixzN-pCogJG5JFCu2vpnMN_Y8CHnWos-ArEEU6D3Igqugc0q4wgAYj24zlCZGW6zr1Sl_cybOcrJ6zIUBgBh8BtNwGc_yXW-3YasMNXzOWa3YVXINDb-YpXStiy2V0ENCCZlrC81K9aJZLHAZ6AVWYspEYMvyN_sTy_Tnvip__YyjhTm4Tdbj3FJgyZfpdmin9scfZRv_e_J3yK3MNWmThOMuuQLdPXLzUgXC--RnQ9-dQ9HYscsZPYZNzM-ii777nuUS79YpXJx--Dx8os0wpChJetS77VfYUKS-NISMFOE4IA2i7-FjrPjp6HL5ii5TvyB6PEYs9d0uOT1YnixWRW7IUFgm1FB4h2zNc1YpY-uZr0FJtG_eK1-1BgLbcSU4dIikt8LVc_RtKstkYDVVC2gj98hO13fwgFD8b6AvZMDUwvA5cMVNaHkvpXJoID2fkOcjTPpbqruho79SKp1Q1QFVnVGdkJcByotXQ9Hs-AAh0FkHtReVMTW3npeMOzVvOffCA7Mel8DdbEJ2A2yXvpcQm5D9UTJ01vCNZkiVmayqUj78x7Cn5Prq5OhQH75ev31EboTppr2bfbIznG_hMbKZoX0SZfgXHZ3wgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pre-Activation+Residual+Convolutional+Network+With+Attention+Modules+for+High-Resolution+Segmented+EEG+Emotion+Recognition&rft.jtitle=IEEE+access&rft.au=Charalampous%2C+Ioannis&rft.au=Mavrokefalidis%2C+Christos&rft.au=Berberidis%2C+Kostas&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=16303&rft.epage=16313&rft_id=info:doi/10.1109%2FACCESS.2025.3530567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3530567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon