A Hybrid Approach of the Deep Learning Method and Rule-Based Method for Fault Diagnosis of Sucker Rod Pumping Wells

Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect working data to form surface dynamometer cards for fault diagnosis. A prevalent method for recognizing these cards is the convolutional neural netw...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 16; no. 7; p. 3170
Main Authors He, Yanfeng, Guo, Zhijie, Wang, Xiang, Abdul, Waheed
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect working data to form surface dynamometer cards for fault diagnosis. A prevalent method for recognizing these cards is the convolutional neural network (CNN). However, this approach has two problems: an unbalanced dataset due to varying fault frequencies and similar dynamometer card shapes that complicate recognition. This leads to a low accuracy of fault diagnosis in practice, which is unsatisfactory. Therefore, this paper proposes a hybrid approach of the deep learning method and rule-based method for fault diagnosis of sucker rod pumping wells. Specifically, when the CNN model alone fails to achieve satisfactory accuracy in the working status, historical monitoring data of the relevant wells can be collected, and expert rules can assist CNN to improve diagnostic accuracy. By analyzing time series data of factors such as the maximum and minimum loads, the area of the dynamometer card, and the load difference, a knowledgebase of expert rules can be created. When performing fault diagnosis, both the dynamometer cards and related time series data are used as inputs. The dynamometer cards are used for the CNN model to diagnose, and the related time series data are used for expert rules to diagnose. The diagnostic results and the confidence levels of the two methods are obtained and compared. When the two diagnostic results conflict, the one with higher confidence is preserved. Out of the 2066 wells and 7 fault statuses analyzed in field applications, the hybrid approach demonstrated a 21.25% increase in fault diagnosis accuracy compared with using only the CNN model. Additionally, the overall accuracy rate of the hybrid approach exceeded 95%, indicating its high effectiveness in diagnosing faults in sucker rod pumping wells.
AbstractList Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect working data to form surface dynamometer cards for fault diagnosis. A prevalent method for recognizing these cards is the convolutional neural network (CNN). However, this approach has two problems: an unbalanced dataset due to varying fault frequencies and similar dynamometer card shapes that complicate recognition. This leads to a low accuracy of fault diagnosis in practice, which is unsatisfactory. Therefore, this paper proposes a hybrid approach of the deep learning method and rule-based method for fault diagnosis of sucker rod pumping wells. Specifically, when the CNN model alone fails to achieve satisfactory accuracy in the working status, historical monitoring data of the relevant wells can be collected, and expert rules can assist CNN to improve diagnostic accuracy. By analyzing time series data of factors such as the maximum and minimum loads, the area of the dynamometer card, and the load difference, a knowledgebase of expert rules can be created. When performing fault diagnosis, both the dynamometer cards and related time series data are used as inputs. The dynamometer cards are used for the CNN model to diagnose, and the related time series data are used for expert rules to diagnose. The diagnostic results and the confidence levels of the two methods are obtained and compared. When the two diagnostic results conflict, the one with higher confidence is preserved. Out of the 2066 wells and 7 fault statuses analyzed in field applications, the hybrid approach demonstrated a 21.25% increase in fault diagnosis accuracy compared with using only the CNN model. Additionally, the overall accuracy rate of the hybrid approach exceeded 95%, indicating its high effectiveness in diagnosing faults in sucker rod pumping wells.
Audience Academic
Author Wang, Xiang
Guo, Zhijie
He, Yanfeng
Abdul, Waheed
Author_xml – sequence: 1
  givenname: Yanfeng
  surname: He
  fullname: He, Yanfeng
– sequence: 2
  givenname: Zhijie
  surname: Guo
  fullname: Guo, Zhijie
– sequence: 3
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
– sequence: 4
  givenname: Waheed
  surname: Abdul
  fullname: Abdul, Waheed
BookMark eNpNkVtv1DAQhSNUJErpC7_AEm9Iae34kvhxaelFWkTVgniMJvZ410vWDnby0H-Pl-VmP3h8dObTaM7r6iTEgFX1ltELzjW9xMAUbTlr6YvqlGmtala-J__Vr6rznHe0HM4Z5_y0yity9zwkb8lqmlIEsyXRkXmL5BpxImuEFHzYkE84b6MlECx5XEasP0BG-0d1MZEbWMaZXHvYhJh9PlCeFvMdE3ksjodlPx0w33Ac85vqpYMx4_nv96z6evPxy9Vdvf58e3-1WteGSz3XzvKBsQagkYw6ye0gwTVcW-yU62TbgKSUCQ6CC9papdnAB2M7YIIaxTQ_q-6PXBth10_J7yE99xF8_0uIadNDmr0ZsbfCqUKGTg8gRIO64FHKTjaOis6Ywnp3ZJUl_Vgwz_0uLimU8fumLetlSom2uC6Org0UqA8uzglMuRb33pS0nC_6qhVKNy2lsjS8PzaYFHNO6P6OyWh_CLX_Fyr_CcVZkt0
Cites_doi 10.2118/17318-MS
10.1016/j.apacoust.2023.109225
10.1016/j.petrol.2022.110900
10.1016/j.petrol.2021.108806
10.1016/j.petrol.2021.108986
10.1016/j.petrol.2017.10.052
10.1007/s11242-020-01475-0
10.1016/j.compeleceng.2022.107960
10.1016/j.jprocont.2019.02.008
10.3390/en10010039
10.1016/j.petrol.2020.108254
10.1007/s11227-021-04151-2
10.1016/j.petrol.2006.11.008
10.1016/j.neucom.2020.07.088
10.2118/19031-PA
10.2118/173964-MS
10.1016/j.scient.2011.09.002
10.1007/s13202-022-01583-1
10.1109/5.726791
10.3390/en15041514
10.1145/3065386
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16073170
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_d4f639da89ba442e9572e55852f048cc
A746927005
10_3390_en16073170
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
ITC
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-fd3b112aa2510f53db5af239de86f8572a500143a43407d691b3bcd8a140c6193
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 22 15:06:54 EDT 2024
Sat Nov 09 11:11:20 EST 2024
Tue Nov 12 23:32:53 EST 2024
Fri Aug 23 01:30:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-fd3b112aa2510f53db5af239de86f8572a500143a43407d691b3bcd8a140c6193
OpenAccessLink https://doaj.org/article/d4f639da89ba442e9572e55852f048cc
PQID 2799616647
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_d4f639da89ba442e9572e55852f048cc
proquest_journals_2799616647
gale_infotracacademiconefile_A746927005
crossref_primary_10_3390_en16073170
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_4) 2018; 160
Tian (ref_13) 2021; 206
Gou (ref_21) 2022; 78
Khormali (ref_2) 2022; 13
Tripp (ref_1) 1989; 41
Abdalla (ref_23) 2020; 35
Lu (ref_6) 2022; 217
Jiao (ref_12) 2020; 417
Zheng (ref_9) 2019; 77
ref_19
Xu (ref_17) 2007; 58
Krizhevsky (ref_25) 2017; 60
Gong (ref_16) 2020; 135
Lv (ref_8) 2021; 203
Zhang (ref_18) 2021; 198
Yanfeng (ref_5) 2020; 46
Wang (ref_14) 2021; 36
ref_22
ref_20
Johari (ref_11) 2011; 18
Zhou (ref_15) 2023; 203
Vankdothu (ref_26) 2022; 101
ref_3
Lecun (ref_24) 1998; 86
Johari (ref_10) 2006; 13
ref_7
References_xml – ident: ref_7
  doi: 10.2118/17318-MS
– volume: 203
  start-page: 109225
  year: 2023
  ident: ref_15
  article-title: Development of entropy measure for selecting highly sensitive WPT band to identify defective components of an axial piston pump
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109225
  contributor:
    fullname: Zhou
– volume: 217
  start-page: 110900
  year: 2022
  ident: ref_6
  article-title: Shale oil production prediction and fracturing optimization based on machine learning
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110900
  contributor:
    fullname: Lu
– volume: 46
  start-page: 22
  year: 2020
  ident: ref_5
  article-title: Fault diagnosis of rod pump working conditions based on improved indicator AlexNet model
  publication-title: Ind. Saf. Environ. Prot.
  contributor:
    fullname: Yanfeng
– volume: 203
  start-page: 108806
  year: 2021
  ident: ref_8
  article-title: An evolutional SVM method based on incremental algorithm and simulated indicator diagrams for fault diagnosis in sucker rod pumping systems
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108806
  contributor:
    fullname: Lv
– volume: 206
  start-page: 108986
  year: 2021
  ident: ref_13
  article-title: A novel method for prediction of paraffin deposit in sucker rod pumping system based on CNN indicator diagram feature deep learning
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108986
  contributor:
    fullname: Tian
– volume: 160
  start-page: 285
  year: 2018
  ident: ref_4
  article-title: A novel prediction method for down-hole working conditions of the beam pumping unit based on 8-directions chain codes and online sequential extreme learning machine
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.10.052
  contributor:
    fullname: Li
– volume: 135
  start-page: 181
  year: 2020
  ident: ref_16
  article-title: Pore-to-core upscaling of solute transport under steady-state two-phase flow conditions using dynamic pore network modeling approach
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-020-01475-0
  contributor:
    fullname: Gong
– volume: 101
  start-page: 107960
  year: 2022
  ident: ref_26
  article-title: A brain tumor identification and classification using deep learning based on CNN-LSTM method
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107960
  contributor:
    fullname: Vankdothu
– volume: 77
  start-page: 76
  year: 2019
  ident: ref_9
  article-title: Diagnosis of sucker rod pump based on generating dynamometer cards
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.02.008
  contributor:
    fullname: Zheng
– ident: ref_20
  doi: 10.3390/en10010039
– volume: 198
  start-page: 108254
  year: 2021
  ident: ref_18
  article-title: A Real-Time Diagnosis Method of Reservoir-Wellbore-Surface Conditions in Sucker-Rod Pump Wells Based on Multidata Combination Analysis
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108254
  contributor:
    fullname: Zhang
– volume: 78
  start-page: 8268
  year: 2022
  ident: ref_21
  article-title: Driver attention prediction based on convolution and transformers
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04151-2
  contributor:
    fullname: Gou
– volume: 58
  start-page: 43
  year: 2007
  ident: ref_17
  article-title: Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2006.11.008
  contributor:
    fullname: Xu
– volume: 417
  start-page: 36
  year: 2020
  ident: ref_12
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
  contributor:
    fullname: Jiao
– volume: 41
  start-page: 457
  year: 1989
  ident: ref_1
  article-title: A review: Analyzing beam-pumped wells
  publication-title: J. Pet. Technol.
  doi: 10.2118/19031-PA
  contributor:
    fullname: Tripp
– volume: 35
  start-page: 435
  year: 2020
  ident: ref_23
  article-title: Identification of downhole conditions in sucker rod pumped wells using deep neural networks and genetic algorithms (includes associated discussion)
  publication-title: SPE Prod. Oper.
  contributor:
    fullname: Abdalla
– ident: ref_3
  doi: 10.2118/173964-MS
– volume: 18
  start-page: 1002
  year: 2011
  ident: ref_11
  article-title: Prediction of SWCC using artificial intelligent systems: A comparative study
  publication-title: Sci. Iran.
  doi: 10.1016/j.scient.2011.09.002
  contributor:
    fullname: Johari
– volume: 13
  start-page: 903
  year: 2022
  ident: ref_2
  article-title: Experimental study of the low salinity water injection process in the presence of scale inhibitor and various nanoparticles
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-022-01583-1
  contributor:
    fullname: Khormali
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_24
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
  contributor:
    fullname: Lecun
– volume: 13
  start-page: 284
  year: 2006
  ident: ref_10
  article-title: Prediction of a soil-water characteristic curve using a genetic-based neural network
  publication-title: Sci. Iran.
  contributor:
    fullname: Johari
– ident: ref_22
– ident: ref_19
  doi: 10.3390/en15041514
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_25
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: Krizhevsky
– volume: 36
  start-page: 317
  year: 2021
  ident: ref_14
  article-title: A working condition diagnosis model of sucker rod pumping wells based on deep learning
  publication-title: SPE Prod. Oper.
  contributor:
    fullname: Wang
SSID ssj0000331333
Score 2.3686662
Snippet Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 3170
SubjectTerms Accuracy
Analysis
Cards
Classification
Cognition & reasoning
Confidence intervals
convolutional neural network
Deep learning
Electrocardiography
expert rules
Fault diagnosis
Knowledge bases (artificial intelligence)
Medical diagnosis
Methods
Neural networks
Oil fields
Oil wells
Petroleum production
Pumping
Sensors
sucker rod pumping well
surface dynamometer card
Teaching methods
Time series
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKvZQDgj7U5SVLIPVksYkdOzmh5bGskIoqWlRulp8IaZVdNtkD_56ZxAv0UK6OZVkz9vj7nPE3hBzZrHBKDD3LjeMMoh9nlYklcxFFcR0vnOuyfK_l5FZc3RV36cKtSWmVq5jYBWo_c3hHfpwrQOaZlEKdzB8ZVo3Cv6uphMYa-ZjlSiH5KseXL3csQ86BgvFelZQDuz8ONQqqwZk5_Occ6uT6_xeUu5NmvEU2E0Sko96n2-RDqD-TjTfCgV9IM6KTJ3xrRUdJE5zOIgUsR89DmNMkmnpPf3b1oampPb1ZTgM7hTPLr1oBrtKxWU5bet7n2z00OMrvLtOC3kCPX-BrHOZvmE6br-R2fPHnbMJS-QQGJq5aFj23gKaMAQgzjAX3tjAx55UPpYxloXIshgBwyQgOrM7LKrPcOl8a4FwOeBX_RtbrWR2-E2qdLFXlsFsulIzgTSszLzyXwVsXBuRwZUw971UyNLALNLl-NfmAnKKdX3qgsnXXMFvc67RRtBcRQJM3ZWWNEHmoYKKhAFKTRwg2zg3ID_SSxv3XLowz6RkBTBSVrPRIAeHHv-nFgOytHKnTxmz06zLaef_zLvmEleX7JJ09st4ulmEf8EdrD7pF9gyTadkq
  priority: 102
  providerName: ProQuest
Title A Hybrid Approach of the Deep Learning Method and Rule-Based Method for Fault Diagnosis of Sucker Rod Pumping Wells
URI https://www.proquest.com/docview/2799616647
https://doaj.org/article/d4f639da89ba442e9572e55852f048cc
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58XPQgPrE-SkDB02J3k83uHlu1FkGRqthbyFOEshW7PfjvnWS3Wg_ixcseQgjhm2RmPnbyDcCpilOdsY6JEqlphN6PRoV0eaSdF8XVNNU6VPne8cETuxmlo4VWX74mrJYHroE7N8xhEDUyL5RkLLFFmiU2xSQ3cXj4tA7et1MskKnggylF8kVrPVKKvP7cll5KDaNl50cECkL9v7njEGP6m7DRJIekW29qC5ZsuQ3rC5KBOzDtksGHf2VFuo0aOJk4glkcubT2jTRyqS_kNnSGJrI0ZDgb26iH0crMRzFRJX05G1fksq60e536VR5CjQUZ4ox7tLJf5tmOx9NdeOpfPV4MoqZxQoTgFlXkDFWYR0mJyUvHpdSoVLoEUbQ5dzkC6NsgYKIkGUU-Z3gRK6q0ySWyLY2Miu7BSjkp7T4QpXmeFdpPS1jGHdpR8dgwQ7k1StsWnMzBFG-1PoZAXuEhF9-Qt6Dncf6a4TWtwwBaWjSWFn9ZugVn3krC37zqXWrZPCDAjXoNK9HNkOr7_-hpC47mhhTNlZyKJENqF3POsoP_2M0hrPnO83URzxGsVO8ze4z5SaXasJz3r9uw2ru6ux-2w8HE7_Uo_gROW-Ta
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7Rcmg5IB5FbFvAEkicrO7GjpOc0JayLH0J9SF6s_yskFbZZZM98O-ZSbxtOcDVsSJrJp75Pmf8DcAHO8pdIYeeZ8YJjtFP8MrEkrtIorhO5M51Vb7nanotj2_ym3Tg1qSyynVM7AK1nzs6Iz_ICkTmI6Vk8Wnxi1PXKPq7mlpobMBjKTBX003xyde7M5ahEEjBRK9KKpDdH4SaBNUwZw7_ykOdXP-_gnKXaSbP4GmCiGzc-_Q5PAr1C3jyQDjwJTRjNv1Nd63YOGmCs3lkiOXYUQgLlkRTb9lZ1x-amdqzi9Us8EPMWX49inCVTcxq1rKjvt7uZ0NvuewqLdgFzviOvqbX_AizWbMD15MvV5-nPLVP4GjiquXRC4toyhiEMMOYC29zEzNR-VCqWOZFRs0QEC4ZKZDVeVWNrLDOlwY5l0NeJV7BZj2vw2tg1qmyqBxNy2ShInrTqpGXXqjgrQsDeL82pl70Khka2QWZXN-bfACHZOe7GaRs3Q3Ml7c6bRTtZUTQ5E1ZWSNlFipcaMiR1GQRg41zA_hIXtK0_9qlcSZdI8CFkpKVHhdI-Olvej6A_bUjddqYjb7_jHb___gdbE2vzk716bfzkz3Ypi7zfcHOPmy2y1V4g1iktW-7D-4P0FTcDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAcEE-xUIolkDhZuxs7TnJCW7ZheVVVoaI3y88KaZVdNtlD_z0zibeFA706lmXNjGe-ccbfALy109wVcuJ5Zpzg6P0Er0wsuYtEiutE7lxf5XusFmfy83l-nuqf2lRWufOJvaP2K0d35OOsQGQ-VUoW45jKIk7m9fv1b04dpOhPa2qncRvuYFRUZPNl_fHqvmUiBKZjYmAoFZjpj0ND5GoYPyf_xKSeuv9_DrqPOvVDeJDgIpsN-n0Et0LzGO7_RSL4BNoZW1zSuys2S_zgbBUZ4jo2D2HNEoHqBfvW94pmpvHsdLsM_BDjl9-NInRltdkuOzYfau9-tbTK977qgp3ijBPUOy3zMyyX7VM4q49-fFjw1EqBo7irjkcvLCIrYxDOTGIuvM1NzETlQ6limRcZNUZA6GSkwAzPq2pqhXW-NJh_OcyxxDPYa1ZNeA7MOlUWlaNpmSxURM1aNfXSCxW8dWEEb3bC1OuBMUNjpkEi19ciH8EhyflqBrFc9wOrzYVOh0Z7GRFAeVNW1kiZhQo3GnJMcLKIjse5EbwjLWk6i93GOJOeFOBGidVKzwpM_unPej6C_Z0idTqkrb42qRc3f34Nd9HW9NdPx19ewj1qOD_U7uzDXrfZhlcISzp70NvbHxfB4EQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Approach+of+the+Deep+Learning+Method+and+Rule-Based+Method+for+Fault+Diagnosis+of+Sucker+Rod+Pumping+Wells&rft.jtitle=Energies+%28Basel%29&rft.au=Yanfeng+He&rft.au=Zhijie+Guo&rft.au=Xiang+Wang&rft.au=Waheed+Abdul&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=7&rft.spage=3170&rft_id=info:doi/10.3390%2Fen16073170&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4f639da89ba442e9572e55852f048cc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon