A Hybrid Approach of the Deep Learning Method and Rule-Based Method for Fault Diagnosis of Sucker Rod Pumping Wells
Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect working data to form surface dynamometer cards for fault diagnosis. A prevalent method for recognizing these cards is the convolutional neural netw...
Saved in:
Published in | Energies (Basel) Vol. 16; no. 7; p. 3170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect working data to form surface dynamometer cards for fault diagnosis. A prevalent method for recognizing these cards is the convolutional neural network (CNN). However, this approach has two problems: an unbalanced dataset due to varying fault frequencies and similar dynamometer card shapes that complicate recognition. This leads to a low accuracy of fault diagnosis in practice, which is unsatisfactory. Therefore, this paper proposes a hybrid approach of the deep learning method and rule-based method for fault diagnosis of sucker rod pumping wells. Specifically, when the CNN model alone fails to achieve satisfactory accuracy in the working status, historical monitoring data of the relevant wells can be collected, and expert rules can assist CNN to improve diagnostic accuracy. By analyzing time series data of factors such as the maximum and minimum loads, the area of the dynamometer card, and the load difference, a knowledgebase of expert rules can be created. When performing fault diagnosis, both the dynamometer cards and related time series data are used as inputs. The dynamometer cards are used for the CNN model to diagnose, and the related time series data are used for expert rules to diagnose. The diagnostic results and the confidence levels of the two methods are obtained and compared. When the two diagnostic results conflict, the one with higher confidence is preserved. Out of the 2066 wells and 7 fault statuses analyzed in field applications, the hybrid approach demonstrated a 21.25% increase in fault diagnosis accuracy compared with using only the CNN model. Additionally, the overall accuracy rate of the hybrid approach exceeded 95%, indicating its high effectiveness in diagnosing faults in sucker rod pumping wells. |
---|---|
AbstractList | Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect working data to form surface dynamometer cards for fault diagnosis. A prevalent method for recognizing these cards is the convolutional neural network (CNN). However, this approach has two problems: an unbalanced dataset due to varying fault frequencies and similar dynamometer card shapes that complicate recognition. This leads to a low accuracy of fault diagnosis in practice, which is unsatisfactory. Therefore, this paper proposes a hybrid approach of the deep learning method and rule-based method for fault diagnosis of sucker rod pumping wells. Specifically, when the CNN model alone fails to achieve satisfactory accuracy in the working status, historical monitoring data of the relevant wells can be collected, and expert rules can assist CNN to improve diagnostic accuracy. By analyzing time series data of factors such as the maximum and minimum loads, the area of the dynamometer card, and the load difference, a knowledgebase of expert rules can be created. When performing fault diagnosis, both the dynamometer cards and related time series data are used as inputs. The dynamometer cards are used for the CNN model to diagnose, and the related time series data are used for expert rules to diagnose. The diagnostic results and the confidence levels of the two methods are obtained and compared. When the two diagnostic results conflict, the one with higher confidence is preserved. Out of the 2066 wells and 7 fault statuses analyzed in field applications, the hybrid approach demonstrated a 21.25% increase in fault diagnosis accuracy compared with using only the CNN model. Additionally, the overall accuracy rate of the hybrid approach exceeded 95%, indicating its high effectiveness in diagnosing faults in sucker rod pumping wells. |
Audience | Academic |
Author | Wang, Xiang Guo, Zhijie He, Yanfeng Abdul, Waheed |
Author_xml | – sequence: 1 givenname: Yanfeng surname: He fullname: He, Yanfeng – sequence: 2 givenname: Zhijie surname: Guo fullname: Guo, Zhijie – sequence: 3 givenname: Xiang surname: Wang fullname: Wang, Xiang – sequence: 4 givenname: Waheed surname: Abdul fullname: Abdul, Waheed |
BookMark | eNpNkVtv1DAQhSNUJErpC7_AEm9Iae34kvhxaelFWkTVgniMJvZ410vWDnby0H-Pl-VmP3h8dObTaM7r6iTEgFX1ltELzjW9xMAUbTlr6YvqlGmtala-J__Vr6rznHe0HM4Z5_y0yity9zwkb8lqmlIEsyXRkXmL5BpxImuEFHzYkE84b6MlECx5XEasP0BG-0d1MZEbWMaZXHvYhJh9PlCeFvMdE3ksjodlPx0w33Ac85vqpYMx4_nv96z6evPxy9Vdvf58e3-1WteGSz3XzvKBsQagkYw6ye0gwTVcW-yU62TbgKSUCQ6CC9papdnAB2M7YIIaxTQ_q-6PXBth10_J7yE99xF8_0uIadNDmr0ZsbfCqUKGTg8gRIO64FHKTjaOis6Ywnp3ZJUl_Vgwz_0uLimU8fumLetlSom2uC6Org0UqA8uzglMuRb33pS0nC_6qhVKNy2lsjS8PzaYFHNO6P6OyWh_CLX_Fyr_CcVZkt0 |
Cites_doi | 10.2118/17318-MS 10.1016/j.apacoust.2023.109225 10.1016/j.petrol.2022.110900 10.1016/j.petrol.2021.108806 10.1016/j.petrol.2021.108986 10.1016/j.petrol.2017.10.052 10.1007/s11242-020-01475-0 10.1016/j.compeleceng.2022.107960 10.1016/j.jprocont.2019.02.008 10.3390/en10010039 10.1016/j.petrol.2020.108254 10.1007/s11227-021-04151-2 10.1016/j.petrol.2006.11.008 10.1016/j.neucom.2020.07.088 10.2118/19031-PA 10.2118/173964-MS 10.1016/j.scient.2011.09.002 10.1007/s13202-022-01583-1 10.1109/5.726791 10.3390/en15041514 10.1145/3065386 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en16073170 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_d4f639da89ba442e9572e55852f048cc A746927005 10_3390_en16073170 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO ITC KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c359t-fd3b112aa2510f53db5af239de86f8572a500143a43407d691b3bcd8a140c6193 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:06:54 EDT 2024 Sat Nov 09 11:11:20 EST 2024 Tue Nov 12 23:32:53 EST 2024 Fri Aug 23 01:30:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-fd3b112aa2510f53db5af239de86f8572a500143a43407d691b3bcd8a140c6193 |
OpenAccessLink | https://doaj.org/article/d4f639da89ba442e9572e55852f048cc |
PQID | 2799616647 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4f639da89ba442e9572e55852f048cc proquest_journals_2799616647 gale_infotracacademiconefile_A746927005 crossref_primary_10_3390_en16073170 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_4) 2018; 160 Tian (ref_13) 2021; 206 Gou (ref_21) 2022; 78 Khormali (ref_2) 2022; 13 Tripp (ref_1) 1989; 41 Abdalla (ref_23) 2020; 35 Lu (ref_6) 2022; 217 Jiao (ref_12) 2020; 417 Zheng (ref_9) 2019; 77 ref_19 Xu (ref_17) 2007; 58 Krizhevsky (ref_25) 2017; 60 Gong (ref_16) 2020; 135 Lv (ref_8) 2021; 203 Zhang (ref_18) 2021; 198 Yanfeng (ref_5) 2020; 46 Wang (ref_14) 2021; 36 ref_22 ref_20 Johari (ref_11) 2011; 18 Zhou (ref_15) 2023; 203 Vankdothu (ref_26) 2022; 101 ref_3 Lecun (ref_24) 1998; 86 Johari (ref_10) 2006; 13 ref_7 |
References_xml | – ident: ref_7 doi: 10.2118/17318-MS – volume: 203 start-page: 109225 year: 2023 ident: ref_15 article-title: Development of entropy measure for selecting highly sensitive WPT band to identify defective components of an axial piston pump publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2023.109225 contributor: fullname: Zhou – volume: 217 start-page: 110900 year: 2022 ident: ref_6 article-title: Shale oil production prediction and fracturing optimization based on machine learning publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110900 contributor: fullname: Lu – volume: 46 start-page: 22 year: 2020 ident: ref_5 article-title: Fault diagnosis of rod pump working conditions based on improved indicator AlexNet model publication-title: Ind. Saf. Environ. Prot. contributor: fullname: Yanfeng – volume: 203 start-page: 108806 year: 2021 ident: ref_8 article-title: An evolutional SVM method based on incremental algorithm and simulated indicator diagrams for fault diagnosis in sucker rod pumping systems publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108806 contributor: fullname: Lv – volume: 206 start-page: 108986 year: 2021 ident: ref_13 article-title: A novel method for prediction of paraffin deposit in sucker rod pumping system based on CNN indicator diagram feature deep learning publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108986 contributor: fullname: Tian – volume: 160 start-page: 285 year: 2018 ident: ref_4 article-title: A novel prediction method for down-hole working conditions of the beam pumping unit based on 8-directions chain codes and online sequential extreme learning machine publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.10.052 contributor: fullname: Li – volume: 135 start-page: 181 year: 2020 ident: ref_16 article-title: Pore-to-core upscaling of solute transport under steady-state two-phase flow conditions using dynamic pore network modeling approach publication-title: Transp. Porous Media doi: 10.1007/s11242-020-01475-0 contributor: fullname: Gong – volume: 101 start-page: 107960 year: 2022 ident: ref_26 article-title: A brain tumor identification and classification using deep learning based on CNN-LSTM method publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.107960 contributor: fullname: Vankdothu – volume: 77 start-page: 76 year: 2019 ident: ref_9 article-title: Diagnosis of sucker rod pump based on generating dynamometer cards publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.02.008 contributor: fullname: Zheng – ident: ref_20 doi: 10.3390/en10010039 – volume: 198 start-page: 108254 year: 2021 ident: ref_18 article-title: A Real-Time Diagnosis Method of Reservoir-Wellbore-Surface Conditions in Sucker-Rod Pump Wells Based on Multidata Combination Analysis publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.108254 contributor: fullname: Zhang – volume: 78 start-page: 8268 year: 2022 ident: ref_21 article-title: Driver attention prediction based on convolution and transformers publication-title: J. Supercomput. doi: 10.1007/s11227-021-04151-2 contributor: fullname: Gou – volume: 58 start-page: 43 year: 2007 ident: ref_17 article-title: Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2006.11.008 contributor: fullname: Xu – volume: 417 start-page: 36 year: 2020 ident: ref_12 article-title: A comprehensive review on convolutional neural network in machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.088 contributor: fullname: Jiao – volume: 41 start-page: 457 year: 1989 ident: ref_1 article-title: A review: Analyzing beam-pumped wells publication-title: J. Pet. Technol. doi: 10.2118/19031-PA contributor: fullname: Tripp – volume: 35 start-page: 435 year: 2020 ident: ref_23 article-title: Identification of downhole conditions in sucker rod pumped wells using deep neural networks and genetic algorithms (includes associated discussion) publication-title: SPE Prod. Oper. contributor: fullname: Abdalla – ident: ref_3 doi: 10.2118/173964-MS – volume: 18 start-page: 1002 year: 2011 ident: ref_11 article-title: Prediction of SWCC using artificial intelligent systems: A comparative study publication-title: Sci. Iran. doi: 10.1016/j.scient.2011.09.002 contributor: fullname: Johari – volume: 13 start-page: 903 year: 2022 ident: ref_2 article-title: Experimental study of the low salinity water injection process in the presence of scale inhibitor and various nanoparticles publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-022-01583-1 contributor: fullname: Khormali – volume: 86 start-page: 2278 year: 1998 ident: ref_24 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 contributor: fullname: Lecun – volume: 13 start-page: 284 year: 2006 ident: ref_10 article-title: Prediction of a soil-water characteristic curve using a genetic-based neural network publication-title: Sci. Iran. contributor: fullname: Johari – ident: ref_22 – ident: ref_19 doi: 10.3390/en15041514 – volume: 60 start-page: 84 year: 2017 ident: ref_25 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: Krizhevsky – volume: 36 start-page: 317 year: 2021 ident: ref_14 article-title: A working condition diagnosis model of sucker rod pumping wells based on deep learning publication-title: SPE Prod. Oper. contributor: fullname: Wang |
SSID | ssj0000331333 |
Score | 2.3686662 |
Snippet | Accurately obtaining the working status of the sucker rod pumping wells is a challenging problem for oil production. Sensors at the polished rod collect... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3170 |
SubjectTerms | Accuracy Analysis Cards Classification Cognition & reasoning Confidence intervals convolutional neural network Deep learning Electrocardiography expert rules Fault diagnosis Knowledge bases (artificial intelligence) Medical diagnosis Methods Neural networks Oil fields Oil wells Petroleum production Pumping Sensors sucker rod pumping well surface dynamometer card Teaching methods Time series |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKvZQDgj7U5SVLIPVksYkdOzmh5bGskIoqWlRulp8IaZVdNtkD_56ZxAv0UK6OZVkz9vj7nPE3hBzZrHBKDD3LjeMMoh9nlYklcxFFcR0vnOuyfK_l5FZc3RV36cKtSWmVq5jYBWo_c3hHfpwrQOaZlEKdzB8ZVo3Cv6uphMYa-ZjlSiH5KseXL3csQ86BgvFelZQDuz8ONQqqwZk5_Occ6uT6_xeUu5NmvEU2E0Sko96n2-RDqD-TjTfCgV9IM6KTJ3xrRUdJE5zOIgUsR89DmNMkmnpPf3b1oampPb1ZTgM7hTPLr1oBrtKxWU5bet7n2z00OMrvLtOC3kCPX-BrHOZvmE6br-R2fPHnbMJS-QQGJq5aFj23gKaMAQgzjAX3tjAx55UPpYxloXIshgBwyQgOrM7LKrPcOl8a4FwOeBX_RtbrWR2-E2qdLFXlsFsulIzgTSszLzyXwVsXBuRwZUw971UyNLALNLl-NfmAnKKdX3qgsnXXMFvc67RRtBcRQJM3ZWWNEHmoYKKhAFKTRwg2zg3ID_SSxv3XLowz6RkBTBSVrPRIAeHHv-nFgOytHKnTxmz06zLaef_zLvmEleX7JJ09st4ulmEf8EdrD7pF9gyTadkq priority: 102 providerName: ProQuest |
Title | A Hybrid Approach of the Deep Learning Method and Rule-Based Method for Fault Diagnosis of Sucker Rod Pumping Wells |
URI | https://www.proquest.com/docview/2799616647 https://doaj.org/article/d4f639da89ba442e9572e55852f048cc |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58XPQgPrE-SkDB02J3k83uHlu1FkGRqthbyFOEshW7PfjvnWS3Wg_ixcseQgjhm2RmPnbyDcCpilOdsY6JEqlphN6PRoV0eaSdF8XVNNU6VPne8cETuxmlo4VWX74mrJYHroE7N8xhEDUyL5RkLLFFmiU2xSQ3cXj4tA7et1MskKnggylF8kVrPVKKvP7cll5KDaNl50cECkL9v7njEGP6m7DRJIekW29qC5ZsuQ3rC5KBOzDtksGHf2VFuo0aOJk4glkcubT2jTRyqS_kNnSGJrI0ZDgb26iH0crMRzFRJX05G1fksq60e536VR5CjQUZ4ox7tLJf5tmOx9NdeOpfPV4MoqZxQoTgFlXkDFWYR0mJyUvHpdSoVLoEUbQ5dzkC6NsgYKIkGUU-Z3gRK6q0ySWyLY2Miu7BSjkp7T4QpXmeFdpPS1jGHdpR8dgwQ7k1StsWnMzBFG-1PoZAXuEhF9-Qt6Dncf6a4TWtwwBaWjSWFn9ZugVn3krC37zqXWrZPCDAjXoNK9HNkOr7_-hpC47mhhTNlZyKJENqF3POsoP_2M0hrPnO83URzxGsVO8ze4z5SaXasJz3r9uw2ru6ux-2w8HE7_Uo_gROW-Ta |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7Rcmg5IB5FbFvAEkicrO7GjpOc0JayLH0J9SF6s_yskFbZZZM98O-ZSbxtOcDVsSJrJp75Pmf8DcAHO8pdIYeeZ8YJjtFP8MrEkrtIorhO5M51Vb7nanotj2_ym3Tg1qSyynVM7AK1nzs6Iz_ICkTmI6Vk8Wnxi1PXKPq7mlpobMBjKTBX003xyde7M5ahEEjBRK9KKpDdH4SaBNUwZw7_ykOdXP-_gnKXaSbP4GmCiGzc-_Q5PAr1C3jyQDjwJTRjNv1Nd63YOGmCs3lkiOXYUQgLlkRTb9lZ1x-amdqzi9Us8EPMWX49inCVTcxq1rKjvt7uZ0NvuewqLdgFzviOvqbX_AizWbMD15MvV5-nPLVP4GjiquXRC4toyhiEMMOYC29zEzNR-VCqWOZFRs0QEC4ZKZDVeVWNrLDOlwY5l0NeJV7BZj2vw2tg1qmyqBxNy2ShInrTqpGXXqjgrQsDeL82pl70Khka2QWZXN-bfACHZOe7GaRs3Q3Ml7c6bRTtZUTQ5E1ZWSNlFipcaMiR1GQRg41zA_hIXtK0_9qlcSZdI8CFkpKVHhdI-Olvej6A_bUjddqYjb7_jHb___gdbE2vzk716bfzkz3Ypi7zfcHOPmy2y1V4g1iktW-7D-4P0FTcDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAcEE-xUIolkDhZuxs7TnJCW7ZheVVVoaI3y88KaZVdNtlD_z0zibeFA706lmXNjGe-ccbfALy109wVcuJ5Zpzg6P0Er0wsuYtEiutE7lxf5XusFmfy83l-nuqf2lRWufOJvaP2K0d35OOsQGQ-VUoW45jKIk7m9fv1b04dpOhPa2qncRvuYFRUZPNl_fHqvmUiBKZjYmAoFZjpj0ND5GoYPyf_xKSeuv9_DrqPOvVDeJDgIpsN-n0Et0LzGO7_RSL4BNoZW1zSuys2S_zgbBUZ4jo2D2HNEoHqBfvW94pmpvHsdLsM_BDjl9-NInRltdkuOzYfau9-tbTK977qgp3ijBPUOy3zMyyX7VM4q49-fFjw1EqBo7irjkcvLCIrYxDOTGIuvM1NzETlQ6limRcZNUZA6GSkwAzPq2pqhXW-NJh_OcyxxDPYa1ZNeA7MOlUWlaNpmSxURM1aNfXSCxW8dWEEb3bC1OuBMUNjpkEi19ciH8EhyflqBrFc9wOrzYVOh0Z7GRFAeVNW1kiZhQo3GnJMcLKIjse5EbwjLWk6i93GOJOeFOBGidVKzwpM_unPej6C_Z0idTqkrb42qRc3f34Nd9HW9NdPx19ewj1qOD_U7uzDXrfZhlcISzp70NvbHxfB4EQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Approach+of+the+Deep+Learning+Method+and+Rule-Based+Method+for+Fault+Diagnosis+of+Sucker+Rod+Pumping+Wells&rft.jtitle=Energies+%28Basel%29&rft.au=Yanfeng+He&rft.au=Zhijie+Guo&rft.au=Xiang+Wang&rft.au=Waheed+Abdul&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=7&rft.spage=3170&rft_id=info:doi/10.3390%2Fen16073170&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4f639da89ba442e9572e55852f048cc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |