Investigating the Properties of Indicators and an Evolutionary Many-Objective Algorithm Using Promising Regions

This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objectiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 25; no. 1; pp. 75 - 86
Main Authors Yuan, Jiawei, Liu, Hai-Lin, Gu, Fangqing, Zhang, Qingfu, He, Zhaoshui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objective algorithm with the ratio-based indicator is proposed. In our proposed algorithm, a promising region is identified in the objective space using the ratio-based indicator with infinite norm. Since the individuals outside the promising region are of poor quality, we can discard these solutions from the current population. To ensure the diversity of population, a strategy based on the parallel distance is introduced to select individuals in the promising region. In this strategy, all individuals in the promising region are projected vertically onto the normal plane so that crowded distances between them can be calculated. Afterward, two solutions with a smaller distance are selected from the candidate solutions each time, and the solution with the smaller indicator fitness value is removed from the current population. Empirical studies on various benchmark problems with 3-20 objectives show that the proposed algorithm performs competitively on all test problems. Compared with a number of other state-of-the-art evolutionary algorithms, the proposed algorithm is more robust on these problems with various Pareto fronts.
AbstractList This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objective algorithm with the ratio-based indicator is proposed. In our proposed algorithm, a promising region is identified in the objective space using the ratio-based indicator with infinite norm. Since the individuals outside the promising region are of poor quality, we can discard these solutions from the current population. To ensure the diversity of population, a strategy based on the parallel distance is introduced to select individuals in the promising region. In this strategy, all individuals in the promising region are projected vertically onto the normal plane so that crowded distances between them can be calculated. Afterward, two solutions with a smaller distance are selected from the candidate solutions each time, and the solution with the smaller indicator fitness value is removed from the current population. Empirical studies on various benchmark problems with 3–20 objectives show that the proposed algorithm performs competitively on all test problems. Compared with a number of other state-of-the-art evolutionary algorithms, the proposed algorithm is more robust on these problems with various Pareto fronts.
Author Zhang, Qingfu
Gu, Fangqing
Yuan, Jiawei
He, Zhaoshui
Liu, Hai-Lin
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0001-5440-3794
  surname: Yuan
  fullname: Yuan, Jiawei
  email: yuan.jiaweipaper@aliyun.com
  organization: School of automation, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Hai-Lin
  orcidid: 0000-0003-2276-1938
  surname: Liu
  fullname: Liu, Hai-Lin
  email: hlliu@gdut.edu.cn
  organization: School of automation, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Fangqing
  surname: Gu
  fullname: Gu, Fangqing
  email: fqgu@gdut.edu.cn
  organization: School of automation, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
  email: qingfu.zhang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Zhaoshui
  orcidid: 0000-0001-5198-7851
  surname: He
  fullname: He, Zhaoshui
  email: zhshhe@gdut.edu.cn
  organization: School of Automation and Guangdong Engineering Center of Auto-Detection Technology for Intelligent Manufacturing, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kM1KAzEUhYNUsK0-gLgJuJ6aZH6zLKVqoaJIK-6GTObONKVNapIW-vZmbHHhwkXIJfd8J5wzQD1tNCB0S8mIUsIfFtOPyYgRRkaMc04JuUB9yhMaEcKyXphJwaM8Lz6v0MC5NSE0SSnvIzPTB3BetcIr3WK_AvxmzQ6sV-CwafBM10oKb6zDQtfh4OnBbPZeGS3sEb8IfYxeqzVIrw6Ax5vWWOVXW7x0nV_w2qqf6R3agLhrdNmIjYOb8z1Ey8fpYvIczV-fZpPxPJJxyn3UiCata5KTjNZMZBLiuK7CC-MVhQaAVhLCkocQmZS5bBgUsihknGQ5rxsWD9H9yXdnzdc-JCzXZm91-LJkSRGztMgJDar8pJLWOGehKaXyosvmrVCbkpKya7fs2i27dstzu4Gkf8idVdvQyL_M3YlRAPCrD6uUcBZ_AygEikM
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s44196_024_00627_0
crossref_primary_10_1109_TGRS_2025_3540269
crossref_primary_10_1007_s44196_024_00702_6
crossref_primary_10_1016_j_cie_2024_110151
crossref_primary_10_1016_j_ins_2022_11_002
crossref_primary_10_1016_j_ins_2020_11_008
crossref_primary_10_1016_j_engappai_2024_108153
crossref_primary_10_1109_TAI_2024_3454025
crossref_primary_10_1016_j_asoc_2024_111369
crossref_primary_10_1016_j_asoc_2024_111800
crossref_primary_10_1109_TEVC_2022_3147568
crossref_primary_10_3390_math11081911
crossref_primary_10_1016_j_swevo_2023_101372
crossref_primary_10_1109_ACCESS_2024_3486255
crossref_primary_10_1142_S0218001421590394
crossref_primary_10_1016_j_eswa_2023_122539
crossref_primary_10_32604_iasc_2024_042841
crossref_primary_10_1016_j_swevo_2023_101408
crossref_primary_10_4236_jcc_2021_96016
crossref_primary_10_1007_s40747_022_00747_0
crossref_primary_10_1109_TCYB_2022_3189684
crossref_primary_10_3934_mbe_2023878
crossref_primary_10_1016_j_eswa_2024_125068
crossref_primary_10_1007_s10489_022_03982_7
crossref_primary_10_1109_TEVC_2022_3211643
crossref_primary_10_1016_j_ins_2021_11_027
crossref_primary_10_1016_j_ins_2023_120053
crossref_primary_10_1016_j_swevo_2023_101410
crossref_primary_10_12677_AAM_2023_124165
crossref_primary_10_1016_j_ins_2021_12_103
crossref_primary_10_1016_j_swevo_2023_101411
crossref_primary_10_3390_s22124321
crossref_primary_10_1016_j_ins_2024_121837
crossref_primary_10_1016_j_ins_2021_08_054
crossref_primary_10_1016_j_swevo_2023_101392
crossref_primary_10_3934_math_2021365
crossref_primary_10_1016_j_eswa_2023_121825
crossref_primary_10_1016_j_swevo_2023_101305
crossref_primary_10_1007_s12293_023_00401_3
crossref_primary_10_1007_s10489_022_04296_4
crossref_primary_10_1016_j_swevo_2024_101601
crossref_primary_10_1007_s10489_022_03964_9
crossref_primary_10_1007_s40747_022_00670_4
crossref_primary_10_1016_j_ins_2023_118996
crossref_primary_10_1016_j_eswa_2024_124226
crossref_primary_10_1016_j_swevo_2022_101161
crossref_primary_10_1002_cpe_8196
crossref_primary_10_1016_j_ins_2022_07_180
crossref_primary_10_1007_s12293_021_00349_2
crossref_primary_10_1016_j_asoc_2024_112660
crossref_primary_10_1016_j_enconman_2022_116308
crossref_primary_10_23919_CSMS_2022_0024
crossref_primary_10_2174_2666782701666210707144755
crossref_primary_10_1016_j_comcom_2023_10_020
crossref_primary_10_1016_j_eswa_2023_122720
crossref_primary_10_1016_j_swevo_2023_101398
crossref_primary_10_1093_jcde_qwae055
crossref_primary_10_1109_TITS_2023_3296002
crossref_primary_10_1016_j_ins_2023_119977
crossref_primary_10_1007_s10489_022_03307_8
crossref_primary_10_1007_s10845_021_01865_1
crossref_primary_10_1016_j_enconman_2023_117878
crossref_primary_10_1007_s00170_023_11157_y
crossref_primary_10_1016_j_swevo_2023_101449
crossref_primary_10_3390_math11020413
crossref_primary_10_1007_s00500_021_05981_1
crossref_primary_10_1007_s40747_025_01822_y
crossref_primary_10_1016_j_swevo_2022_101145
crossref_primary_10_1016_j_knosys_2022_110112
crossref_primary_10_3390_math11030493
crossref_primary_10_1016_j_asoc_2023_110925
crossref_primary_10_1007_s11227_023_05725_y
crossref_primary_10_1016_j_eswa_2024_125613
crossref_primary_10_1016_j_engappai_2024_108127
crossref_primary_10_1007_s12293_021_00344_7
crossref_primary_10_1007_s00500_023_08952_w
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_1016_j_swevo_2024_101539
crossref_primary_10_1109_TETCI_2024_3359517
crossref_primary_10_1016_j_ins_2024_120940
crossref_primary_10_1049_cth2_12399
crossref_primary_10_1007_s40747_022_00714_9
crossref_primary_10_1016_j_ins_2023_119260
crossref_primary_10_1109_TCYB_2022_3185554
crossref_primary_10_1016_j_swevo_2024_101499
crossref_primary_10_1016_j_swevo_2024_101495
crossref_primary_10_1007_s40747_020_00263_z
crossref_primary_10_1109_TEVC_2021_3089155
crossref_primary_10_1016_j_ins_2021_07_051
crossref_primary_10_1016_j_neucom_2024_127836
crossref_primary_10_1007_s10489_022_03883_9
crossref_primary_10_1007_s10586_024_04739_2
crossref_primary_10_1109_TASE_2024_3371940
crossref_primary_10_1109_TPDS_2023_3243634
crossref_primary_10_1016_j_swevo_2021_101020
crossref_primary_10_1016_j_eswa_2025_126675
crossref_primary_10_1109_JAS_2024_124515
crossref_primary_10_1093_jcde_qwae022
crossref_primary_10_1109_ACCESS_2021_3050552
crossref_primary_10_1016_j_swevo_2021_101026
Cites_doi 10.1080/0305215X.2019.1617286
10.1109/TEVC.2017.2725902
10.1109/TEVC.2013.2262178
10.1007/978-3-319-09584-4_15
10.1016/j.artint.2012.09.005
10.1109/TEVC.2016.2587808
10.1016/j.neucom.2014.06.075
10.1109/TEVC.2016.2549267
10.1109/TEVC.2013.2281535
10.1007/s00521-017-3049-x
10.1109/TEVC.2018.2791283
10.1109/CEC.2018.8477649
10.1007/978-3-540-31880-4_5
10.1109/TEVC.2014.2350987
10.1109/CEC.2013.6557868
10.1145/3205455.3205463
10.1109/TEVC.2005.861417
10.1109/TEVC.2013.2281533
10.1162/106365605774666895
10.1109/TEVC.2016.2519378
10.1162/106365602760234108
10.1016/j.swevo.2017.11.004
10.1109/TEVC.2016.2631279
10.1109/TEVC.2016.2592479
10.1109/TCYB.2017.2779450
10.1109/CEC.2007.4424730
10.1109/4235.996017
10.1109/TCYB.2017.2679705
10.3233/ICA-180575
10.1109/TCYB.2016.2586191
10.1109/TEVC.2003.810761
10.1109/TCYB.2018.2819360
10.1007/s00521-011-0588-4
10.1007/978-3-540-30217-9_84
10.1162/evco.2007.15.1.1
10.1109/TCYB.2019.2899225
10.1109/TEVC.2007.892759
10.1109/4235.873238
10.1109/TEVC.2019.2926151
10.1109/TEVC.2017.2749619
10.1109/TEVC.2018.2848254
10.1137/S1052623496307510
10.1007/s00500-014-1570-8
10.1109/TCYB.2015.2403849
10.1109/TEVC.2009.2015575
10.1109/TCYB.2014.2367526
10.1109/TEVC.2015.2504730
10.1162/evco.2007.15.4.493
10.1109/TEVC.2003.810758
10.1109/MCI.2017.2742868
10.1007/978-3-319-10762-2_66
10.1007/1-84628-137-7_6
10.1109/4235.797969
10.1109/TEVC.2016.2600642
10.1162/EVCO_a_00009
10.1007/s40747-017-0039-7
10.1109/TEVC.2010.2041060
10.1109/TEVC.2012.2227145
10.1016/j.ejor.2006.08.008
10.1007/978-3-319-91641-5_22
10.1109/TSMC.2019.2931636
10.1016/j.ins.2016.07.009
10.1109/TEVC.2013.2281525
10.1109/TEVC.2015.2424921
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2020.2999100
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 86
ExternalDocumentID 10_1109_TEVC_2020_2999100
9105092
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773127; 61727810
  funderid: 10.13039/501100001809
– fundername: France National Research Agency
  grantid: A-CityU101/16
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2020A1515011500
  funderid: 10.13039/501100003453
– fundername: National Natural Science Foundation of China
  grantid: 61876163
  funderid: 10.13039/501100001809
– fundername: Ten Thousand Talent Program approved in 2018
– fundername: ANR/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong
– fundername: Science and Technology Planning Project of Guangdong Province
  grantid: 20190510
  funderid: 10.13039/501100012245
– fundername: Guangdong Province Foundation
  grantid: 2019B1515120036
– fundername: Guangzhou Municipal Science and Technology Project; Guangzhou Science and Technology Foundation
  grantid: 201802010037
  funderid: 10.13039/501100010256
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-faf5dd07061d2a6ce33db5dd29b1efee1bce70694516cc7cf2e8c88c34679df23
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sun Jun 29 13:14:12 EDT 2025
Tue Jul 01 01:56:22 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 02:30:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-faf5dd07061d2a6ce33db5dd29b1efee1bce70694516cc7cf2e8c88c34679df23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5198-7851
0000-0001-5440-3794
0000-0003-2276-1938
PQID 2483258701
PQPubID 85418
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2020_2999100
proquest_journals_2483258701
crossref_primary_10_1109_TEVC_2020_2999100
ieee_primary_9105092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
trautmann (ref53) 2013
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
deb (ref68) 1994; 9
ref29
deb (ref69) 1996; 26
ref60
ref62
ref61
References_xml – ident: ref8
  doi: 10.1080/0305215X.2019.1617286
– ident: ref21
  doi: 10.1109/TEVC.2017.2725902
– ident: ref50
  doi: 10.1109/TEVC.2013.2262178
– ident: ref55
  doi: 10.1007/978-3-319-09584-4_15
– ident: ref36
  doi: 10.1016/j.artint.2012.09.005
– ident: ref19
  doi: 10.1109/TEVC.2016.2587808
– ident: ref43
  doi: 10.1016/j.neucom.2014.06.075
– ident: ref48
  doi: 10.1109/TEVC.2016.2549267
– ident: ref11
  doi: 10.1109/TEVC.2013.2281535
– ident: ref9
  doi: 10.1007/s00521-017-3049-x
– ident: ref2
  doi: 10.1109/TEVC.2016.2587808
– ident: ref26
  doi: 10.1109/TEVC.2018.2791283
– ident: ref27
  doi: 10.1109/CEC.2018.8477649
– ident: ref29
  doi: 10.1007/978-3-540-31880-4_5
– ident: ref47
  doi: 10.1109/TEVC.2014.2350987
– ident: ref54
  doi: 10.1109/CEC.2013.6557868
– ident: ref24
  doi: 10.1145/3205455.3205463
– ident: ref64
  doi: 10.1109/TEVC.2005.861417
– ident: ref20
  doi: 10.1109/TEVC.2013.2281533
– ident: ref44
  doi: 10.1162/106365605774666895
– ident: ref60
  doi: 10.1109/TEVC.2016.2519378
– ident: ref38
  doi: 10.1162/106365602760234108
– ident: ref22
  doi: 10.1016/j.swevo.2017.11.004
– ident: ref51
  doi: 10.1109/TEVC.2016.2631279
– ident: ref16
  doi: 10.1109/TEVC.2016.2592479
– ident: ref5
  doi: 10.1109/TCYB.2017.2779450
– ident: ref28
  doi: 10.1109/CEC.2007.4424730
– ident: ref10
  doi: 10.1109/4235.996017
– ident: ref7
  doi: 10.1109/TCYB.2017.2679705
– ident: ref12
  doi: 10.3233/ICA-180575
– ident: ref58
  doi: 10.1109/TCYB.2016.2586191
– ident: ref65
  doi: 10.1109/TEVC.2003.810761
– ident: ref57
  doi: 10.1109/TCYB.2018.2819360
– ident: ref41
  doi: 10.1007/s00521-011-0588-4
– ident: ref39
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref30
  doi: 10.1162/evco.2007.15.1.1
– ident: ref59
  doi: 10.1109/TCYB.2019.2899225
– ident: ref15
  doi: 10.1109/TEVC.2007.892759
– ident: ref49
  doi: 10.1109/4235.873238
– ident: ref18
  doi: 10.1109/TEVC.2019.2926151
– ident: ref25
  doi: 10.1109/TEVC.2017.2749619
– volume: 26
  start-page: 30
  year: 1996
  ident: ref69
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J Inform Comput Sci
– ident: ref3
  doi: 10.1109/TEVC.2018.2848254
– ident: ref67
  doi: 10.1137/S1052623496307510
– ident: ref14
  doi: 10.1007/s00500-014-1570-8
– ident: ref4
  doi: 10.1109/TCYB.2015.2403849
– ident: ref35
  doi: 10.1109/TEVC.2009.2015575
– ident: ref6
  doi: 10.1109/TCYB.2014.2367526
– ident: ref37
  doi: 10.1109/TEVC.2015.2504730
– ident: ref42
  doi: 10.1162/evco.2007.15.4.493
– volume: 9
  start-page: 1
  year: 1994
  ident: ref68
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref40
  doi: 10.1109/TEVC.2003.810758
– ident: ref62
  doi: 10.1109/MCI.2017.2742868
– ident: ref52
  doi: 10.1007/978-3-319-10762-2_66
– ident: ref63
  doi: 10.1007/1-84628-137-7_6
– ident: ref66
  doi: 10.1109/4235.797969
– ident: ref33
  doi: 10.1109/TCYB.2014.2367526
– ident: ref1
  doi: 10.1109/TEVC.2016.2600642
– ident: ref32
  doi: 10.1162/EVCO_a_00009
– ident: ref61
  doi: 10.1007/s40747-017-0039-7
– start-page: 70
  year: 2013
  ident: ref53
  publication-title: R2-EMOA Focused Multiobjective Search Using R2-Indicator-Based Selection
– ident: ref13
  doi: 10.1109/TEVC.2010.2041060
– ident: ref46
  doi: 10.1109/TEVC.2012.2227145
– ident: ref31
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref23
  doi: 10.1007/978-3-319-91641-5_22
– ident: ref17
  doi: 10.1109/TSMC.2019.2931636
– ident: ref45
  doi: 10.1016/j.ins.2016.07.009
– ident: ref34
  doi: 10.1109/TEVC.2013.2281525
– ident: ref56
  doi: 10.1109/TEVC.2015.2424921
SSID ssj0014519
Score 2.6167812
Snippet This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Algorithms
Evolutionary algorithm
Evolutionary algorithms
Evolutionary computation
Indicators
Loss measurement
many-objective optimization
multiobjective optimization
Multiple objective analysis
Optimization
Robustness
Sociology
Statistics
Urban areas
Title Investigating the Properties of Indicators and an Evolutionary Many-Objective Algorithm Using Promising Regions
URI https://ieeexplore.ieee.org/document/9105092
https://www.proquest.com/docview/2483258701
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SnNJDk25aunkUHXIq9caS38cQNqSFTUtJyt6MJY3TvOyw8QaSX58ZWbssbSk9GISRjGFG34w0M98AHCQosSLLGmSSIDAOqzyotMIAVWYznaPNXFXa5Cw9vYi_TpPpGnxe1sIgoks-wxEPXSzftmbOV2WHZNrIvhHgvqKDW1-rtYwYME1Kn0xfkMeYT30EU4bF4fn45zGdBFU4UuwOcTHbig1yTVX-QGJnXk42YbL4sT6r5GY07_TIPP_G2fi_f74Fb7yfKY56xXgLa9gMYHPRw0H4LT2A1yuEhAPYYN-zp27ehnaFg6O5FOQpiu98dT9jDlbR1uJLw0EebtcjqsbSI8aPXpOr2ZOYEM4E3_R1D6ni6PaynV11v-6ES1Pgb5GO8egHclL0wzu4OBmfH58Gvj9DYKKk6IK6qhNrCTNSaVWVGowiq-mNKrTEGlFqgxkX1iYyNSYztcLc5LmJCJwLW6voPaw3bYMfQBiJaCzWRjIDV8xlK1mEYUZ6FKfW6iGEC4mVxpOXcw-N29IdYsKiZCGXLOTSC3kIn5ZL7nvmjn9N3mahLSd6eQ1hb6EWpd_bD6WKCQUTwjm58_dVu7ChOPPF5XbvwXo3m-M-uS6d_uh09gWfBez5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N2wPjgUEHojDADzwh0sXO9-M0depgHQh1qG9RbF_Gx0hQl07a_nruHLeqACEeIlmRHUW68-_OvrvfAbxOUGJFljXIJEFgHFZ5UGmFAarMZjpHm7mqtOl5OrmI382T-Ra8XdfCIKJLPsMRD10s37ZmyVdlh2TayL4R4O6Q3U9kX621jhkwUUqfTl-Qz5jPfQxThsXhbPz5mM6CKhwpdoi4nG3DCrm2Kn9gsTMwJ3swXf1an1fyfbTs9Mjc_cba-L___hAeeE9THPWq8Qi2sBnA3qqLg_CbegD3NygJB7DL3mdP3rwP7QYLR3MpyFcUH_nyfsEsrKKtxWnDYR5u2COqxtIjxjdel6vFrZgS0gQf9LceVMXR1WW7-Np9-SFcogJ_i7SMR5-Q06KvH8PFyXh2PAl8h4bAREnRBXVVJ9YSaqTSqio1GEVW0xtVaIk1otQGMy6tTWRqTGZqhbnJcxMRPBe2VtET2G7aBp-CMBLRWKyNZA6umAtXsgjDjDQpTq3VQwhXEiuNpy_nLhpXpTvGhEXJQi5ZyKUX8hDerJf87Lk7_jV5n4W2nujlNYSDlVqUfndflyomHEwI6eSzv696Bfcms-lZeXZ6_v457CrOg3GZ3gew3S2W-IIcmU6_dPr7Cx3c8EI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Properties+of+Indicators+and+an+Evolutionary+Many-Objective+Algorithm+Using+Promising+Regions&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yuan%2C+Jiawei&rft.au=Liu%2C+Hai-Lin&rft.au=Gu%2C+Fangqing&rft.au=Zhang%2C+Qingfu&rft.date=2021-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1109%2FTEVC.2020.2999100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2020_2999100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon