Investigating the Properties of Indicators and an Evolutionary Many-Objective Algorithm Using Promising Regions
This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objectiv...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 25; no. 1; pp. 75 - 86 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objective algorithm with the ratio-based indicator is proposed. In our proposed algorithm, a promising region is identified in the objective space using the ratio-based indicator with infinite norm. Since the individuals outside the promising region are of poor quality, we can discard these solutions from the current population. To ensure the diversity of population, a strategy based on the parallel distance is introduced to select individuals in the promising region. In this strategy, all individuals in the promising region are projected vertically onto the normal plane so that crowded distances between them can be calculated. Afterward, two solutions with a smaller distance are selected from the candidate solutions each time, and the solution with the smaller indicator fitness value is removed from the current population. Empirical studies on various benchmark problems with 3-20 objectives show that the proposed algorithm performs competitively on all test problems. Compared with a number of other state-of-the-art evolutionary algorithms, the proposed algorithm is more robust on these problems with various Pareto fronts. |
---|---|
AbstractList | This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objective algorithm with the ratio-based indicator is proposed. In our proposed algorithm, a promising region is identified in the objective space using the ratio-based indicator with infinite norm. Since the individuals outside the promising region are of poor quality, we can discard these solutions from the current population. To ensure the diversity of population, a strategy based on the parallel distance is introduced to select individuals in the promising region. In this strategy, all individuals in the promising region are projected vertically onto the normal plane so that crowded distances between them can be calculated. Afterward, two solutions with a smaller distance are selected from the candidate solutions each time, and the solution with the smaller indicator fitness value is removed from the current population. Empirical studies on various benchmark problems with 3–20 objectives show that the proposed algorithm performs competitively on all test problems. Compared with a number of other state-of-the-art evolutionary algorithms, the proposed algorithm is more robust on these problems with various Pareto fronts. |
Author | Zhang, Qingfu Gu, Fangqing Yuan, Jiawei He, Zhaoshui Liu, Hai-Lin |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0001-5440-3794 surname: Yuan fullname: Yuan, Jiawei email: yuan.jiaweipaper@aliyun.com organization: School of automation, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Hai-Lin orcidid: 0000-0003-2276-1938 surname: Liu fullname: Liu, Hai-Lin email: hlliu@gdut.edu.cn organization: School of automation, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Fangqing surname: Gu fullname: Gu, Fangqing email: fqgu@gdut.edu.cn organization: School of automation, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Qingfu surname: Zhang fullname: Zhang, Qingfu email: qingfu.zhang@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 5 givenname: Zhaoshui orcidid: 0000-0001-5198-7851 surname: He fullname: He, Zhaoshui email: zhshhe@gdut.edu.cn organization: School of Automation and Guangdong Engineering Center of Auto-Detection Technology for Intelligent Manufacturing, Guangdong University of Technology, Guangzhou, China |
BookMark | eNp9kM1KAzEUhYNUsK0-gLgJuJ6aZH6zLKVqoaJIK-6GTObONKVNapIW-vZmbHHhwkXIJfd8J5wzQD1tNCB0S8mIUsIfFtOPyYgRRkaMc04JuUB9yhMaEcKyXphJwaM8Lz6v0MC5NSE0SSnvIzPTB3BetcIr3WK_AvxmzQ6sV-CwafBM10oKb6zDQtfh4OnBbPZeGS3sEb8IfYxeqzVIrw6Ax5vWWOVXW7x0nV_w2qqf6R3agLhrdNmIjYOb8z1Ey8fpYvIczV-fZpPxPJJxyn3UiCata5KTjNZMZBLiuK7CC-MVhQaAVhLCkocQmZS5bBgUsihknGQ5rxsWD9H9yXdnzdc-JCzXZm91-LJkSRGztMgJDar8pJLWOGehKaXyosvmrVCbkpKya7fs2i27dstzu4Gkf8idVdvQyL_M3YlRAPCrD6uUcBZ_AygEikM |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1007_s44196_024_00627_0 crossref_primary_10_1109_TGRS_2025_3540269 crossref_primary_10_1007_s44196_024_00702_6 crossref_primary_10_1016_j_cie_2024_110151 crossref_primary_10_1016_j_ins_2022_11_002 crossref_primary_10_1016_j_ins_2020_11_008 crossref_primary_10_1016_j_engappai_2024_108153 crossref_primary_10_1109_TAI_2024_3454025 crossref_primary_10_1016_j_asoc_2024_111369 crossref_primary_10_1016_j_asoc_2024_111800 crossref_primary_10_1109_TEVC_2022_3147568 crossref_primary_10_3390_math11081911 crossref_primary_10_1016_j_swevo_2023_101372 crossref_primary_10_1109_ACCESS_2024_3486255 crossref_primary_10_1142_S0218001421590394 crossref_primary_10_1016_j_eswa_2023_122539 crossref_primary_10_32604_iasc_2024_042841 crossref_primary_10_1016_j_swevo_2023_101408 crossref_primary_10_4236_jcc_2021_96016 crossref_primary_10_1007_s40747_022_00747_0 crossref_primary_10_1109_TCYB_2022_3189684 crossref_primary_10_3934_mbe_2023878 crossref_primary_10_1016_j_eswa_2024_125068 crossref_primary_10_1007_s10489_022_03982_7 crossref_primary_10_1109_TEVC_2022_3211643 crossref_primary_10_1016_j_ins_2021_11_027 crossref_primary_10_1016_j_ins_2023_120053 crossref_primary_10_1016_j_swevo_2023_101410 crossref_primary_10_12677_AAM_2023_124165 crossref_primary_10_1016_j_ins_2021_12_103 crossref_primary_10_1016_j_swevo_2023_101411 crossref_primary_10_3390_s22124321 crossref_primary_10_1016_j_ins_2024_121837 crossref_primary_10_1016_j_ins_2021_08_054 crossref_primary_10_1016_j_swevo_2023_101392 crossref_primary_10_3934_math_2021365 crossref_primary_10_1016_j_eswa_2023_121825 crossref_primary_10_1016_j_swevo_2023_101305 crossref_primary_10_1007_s12293_023_00401_3 crossref_primary_10_1007_s10489_022_04296_4 crossref_primary_10_1016_j_swevo_2024_101601 crossref_primary_10_1007_s10489_022_03964_9 crossref_primary_10_1007_s40747_022_00670_4 crossref_primary_10_1016_j_ins_2023_118996 crossref_primary_10_1016_j_eswa_2024_124226 crossref_primary_10_1016_j_swevo_2022_101161 crossref_primary_10_1002_cpe_8196 crossref_primary_10_1016_j_ins_2022_07_180 crossref_primary_10_1007_s12293_021_00349_2 crossref_primary_10_1016_j_asoc_2024_112660 crossref_primary_10_1016_j_enconman_2022_116308 crossref_primary_10_23919_CSMS_2022_0024 crossref_primary_10_2174_2666782701666210707144755 crossref_primary_10_1016_j_comcom_2023_10_020 crossref_primary_10_1016_j_eswa_2023_122720 crossref_primary_10_1016_j_swevo_2023_101398 crossref_primary_10_1093_jcde_qwae055 crossref_primary_10_1109_TITS_2023_3296002 crossref_primary_10_1016_j_ins_2023_119977 crossref_primary_10_1007_s10489_022_03307_8 crossref_primary_10_1007_s10845_021_01865_1 crossref_primary_10_1016_j_enconman_2023_117878 crossref_primary_10_1007_s00170_023_11157_y crossref_primary_10_1016_j_swevo_2023_101449 crossref_primary_10_3390_math11020413 crossref_primary_10_1007_s00500_021_05981_1 crossref_primary_10_1007_s40747_025_01822_y crossref_primary_10_1016_j_swevo_2022_101145 crossref_primary_10_1016_j_knosys_2022_110112 crossref_primary_10_3390_math11030493 crossref_primary_10_1016_j_asoc_2023_110925 crossref_primary_10_1007_s11227_023_05725_y crossref_primary_10_1016_j_eswa_2024_125613 crossref_primary_10_1016_j_engappai_2024_108127 crossref_primary_10_1007_s12293_021_00344_7 crossref_primary_10_1007_s00500_023_08952_w crossref_primary_10_1007_s11227_024_06553_4 crossref_primary_10_1016_j_swevo_2024_101539 crossref_primary_10_1109_TETCI_2024_3359517 crossref_primary_10_1016_j_ins_2024_120940 crossref_primary_10_1049_cth2_12399 crossref_primary_10_1007_s40747_022_00714_9 crossref_primary_10_1016_j_ins_2023_119260 crossref_primary_10_1109_TCYB_2022_3185554 crossref_primary_10_1016_j_swevo_2024_101499 crossref_primary_10_1016_j_swevo_2024_101495 crossref_primary_10_1007_s40747_020_00263_z crossref_primary_10_1109_TEVC_2021_3089155 crossref_primary_10_1016_j_ins_2021_07_051 crossref_primary_10_1016_j_neucom_2024_127836 crossref_primary_10_1007_s10489_022_03883_9 crossref_primary_10_1007_s10586_024_04739_2 crossref_primary_10_1109_TASE_2024_3371940 crossref_primary_10_1109_TPDS_2023_3243634 crossref_primary_10_1016_j_swevo_2021_101020 crossref_primary_10_1016_j_eswa_2025_126675 crossref_primary_10_1109_JAS_2024_124515 crossref_primary_10_1093_jcde_qwae022 crossref_primary_10_1109_ACCESS_2021_3050552 crossref_primary_10_1016_j_swevo_2021_101026 |
Cites_doi | 10.1080/0305215X.2019.1617286 10.1109/TEVC.2017.2725902 10.1109/TEVC.2013.2262178 10.1007/978-3-319-09584-4_15 10.1016/j.artint.2012.09.005 10.1109/TEVC.2016.2587808 10.1016/j.neucom.2014.06.075 10.1109/TEVC.2016.2549267 10.1109/TEVC.2013.2281535 10.1007/s00521-017-3049-x 10.1109/TEVC.2018.2791283 10.1109/CEC.2018.8477649 10.1007/978-3-540-31880-4_5 10.1109/TEVC.2014.2350987 10.1109/CEC.2013.6557868 10.1145/3205455.3205463 10.1109/TEVC.2005.861417 10.1109/TEVC.2013.2281533 10.1162/106365605774666895 10.1109/TEVC.2016.2519378 10.1162/106365602760234108 10.1016/j.swevo.2017.11.004 10.1109/TEVC.2016.2631279 10.1109/TEVC.2016.2592479 10.1109/TCYB.2017.2779450 10.1109/CEC.2007.4424730 10.1109/4235.996017 10.1109/TCYB.2017.2679705 10.3233/ICA-180575 10.1109/TCYB.2016.2586191 10.1109/TEVC.2003.810761 10.1109/TCYB.2018.2819360 10.1007/s00521-011-0588-4 10.1007/978-3-540-30217-9_84 10.1162/evco.2007.15.1.1 10.1109/TCYB.2019.2899225 10.1109/TEVC.2007.892759 10.1109/4235.873238 10.1109/TEVC.2019.2926151 10.1109/TEVC.2017.2749619 10.1109/TEVC.2018.2848254 10.1137/S1052623496307510 10.1007/s00500-014-1570-8 10.1109/TCYB.2015.2403849 10.1109/TEVC.2009.2015575 10.1109/TCYB.2014.2367526 10.1109/TEVC.2015.2504730 10.1162/evco.2007.15.4.493 10.1109/TEVC.2003.810758 10.1109/MCI.2017.2742868 10.1007/978-3-319-10762-2_66 10.1007/1-84628-137-7_6 10.1109/4235.797969 10.1109/TEVC.2016.2600642 10.1162/EVCO_a_00009 10.1007/s40747-017-0039-7 10.1109/TEVC.2010.2041060 10.1109/TEVC.2012.2227145 10.1016/j.ejor.2006.08.008 10.1007/978-3-319-91641-5_22 10.1109/TSMC.2019.2931636 10.1016/j.ins.2016.07.009 10.1109/TEVC.2013.2281525 10.1109/TEVC.2015.2424921 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TEVC.2020.2999100 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Computer Science |
EISSN | 1941-0026 |
EndPage | 86 |
ExternalDocumentID | 10_1109_TEVC_2020_2999100 9105092 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773127; 61727810 funderid: 10.13039/501100001809 – fundername: France National Research Agency grantid: A-CityU101/16 – fundername: Natural Science Foundation of Guangdong Province grantid: 2020A1515011500 funderid: 10.13039/501100003453 – fundername: National Natural Science Foundation of China grantid: 61876163 funderid: 10.13039/501100001809 – fundername: Ten Thousand Talent Program approved in 2018 – fundername: ANR/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong – fundername: Science and Technology Planning Project of Guangdong Province grantid: 20190510 funderid: 10.13039/501100012245 – fundername: Guangdong Province Foundation grantid: 2019B1515120036 – fundername: Guangzhou Municipal Science and Technology Project; Guangzhou Science and Technology Foundation grantid: 201802010037 funderid: 10.13039/501100010256 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-faf5dd07061d2a6ce33db5dd29b1efee1bce70694516cc7cf2e8c88c34679df23 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Sun Jun 29 13:14:12 EDT 2025 Tue Jul 01 01:56:22 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Aug 27 02:30:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-faf5dd07061d2a6ce33db5dd29b1efee1bce70694516cc7cf2e8c88c34679df23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5198-7851 0000-0001-5440-3794 0000-0003-2276-1938 |
PQID | 2483258701 |
PQPubID | 85418 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2020_2999100 proquest_journals_2483258701 crossref_primary_10_1109_TEVC_2020_2999100 ieee_primary_9105092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 trautmann (ref53) 2013 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref67 ref23 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 deb (ref68) 1994; 9 ref29 deb (ref69) 1996; 26 ref60 ref62 ref61 |
References_xml | – ident: ref8 doi: 10.1080/0305215X.2019.1617286 – ident: ref21 doi: 10.1109/TEVC.2017.2725902 – ident: ref50 doi: 10.1109/TEVC.2013.2262178 – ident: ref55 doi: 10.1007/978-3-319-09584-4_15 – ident: ref36 doi: 10.1016/j.artint.2012.09.005 – ident: ref19 doi: 10.1109/TEVC.2016.2587808 – ident: ref43 doi: 10.1016/j.neucom.2014.06.075 – ident: ref48 doi: 10.1109/TEVC.2016.2549267 – ident: ref11 doi: 10.1109/TEVC.2013.2281535 – ident: ref9 doi: 10.1007/s00521-017-3049-x – ident: ref2 doi: 10.1109/TEVC.2016.2587808 – ident: ref26 doi: 10.1109/TEVC.2018.2791283 – ident: ref27 doi: 10.1109/CEC.2018.8477649 – ident: ref29 doi: 10.1007/978-3-540-31880-4_5 – ident: ref47 doi: 10.1109/TEVC.2014.2350987 – ident: ref54 doi: 10.1109/CEC.2013.6557868 – ident: ref24 doi: 10.1145/3205455.3205463 – ident: ref64 doi: 10.1109/TEVC.2005.861417 – ident: ref20 doi: 10.1109/TEVC.2013.2281533 – ident: ref44 doi: 10.1162/106365605774666895 – ident: ref60 doi: 10.1109/TEVC.2016.2519378 – ident: ref38 doi: 10.1162/106365602760234108 – ident: ref22 doi: 10.1016/j.swevo.2017.11.004 – ident: ref51 doi: 10.1109/TEVC.2016.2631279 – ident: ref16 doi: 10.1109/TEVC.2016.2592479 – ident: ref5 doi: 10.1109/TCYB.2017.2779450 – ident: ref28 doi: 10.1109/CEC.2007.4424730 – ident: ref10 doi: 10.1109/4235.996017 – ident: ref7 doi: 10.1109/TCYB.2017.2679705 – ident: ref12 doi: 10.3233/ICA-180575 – ident: ref58 doi: 10.1109/TCYB.2016.2586191 – ident: ref65 doi: 10.1109/TEVC.2003.810761 – ident: ref57 doi: 10.1109/TCYB.2018.2819360 – ident: ref41 doi: 10.1007/s00521-011-0588-4 – ident: ref39 doi: 10.1007/978-3-540-30217-9_84 – ident: ref30 doi: 10.1162/evco.2007.15.1.1 – ident: ref59 doi: 10.1109/TCYB.2019.2899225 – ident: ref15 doi: 10.1109/TEVC.2007.892759 – ident: ref49 doi: 10.1109/4235.873238 – ident: ref18 doi: 10.1109/TEVC.2019.2926151 – ident: ref25 doi: 10.1109/TEVC.2017.2749619 – volume: 26 start-page: 30 year: 1996 ident: ref69 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: J Inform Comput Sci – ident: ref3 doi: 10.1109/TEVC.2018.2848254 – ident: ref67 doi: 10.1137/S1052623496307510 – ident: ref14 doi: 10.1007/s00500-014-1570-8 – ident: ref4 doi: 10.1109/TCYB.2015.2403849 – ident: ref35 doi: 10.1109/TEVC.2009.2015575 – ident: ref6 doi: 10.1109/TCYB.2014.2367526 – ident: ref37 doi: 10.1109/TEVC.2015.2504730 – ident: ref42 doi: 10.1162/evco.2007.15.4.493 – volume: 9 start-page: 1 year: 1994 ident: ref68 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref40 doi: 10.1109/TEVC.2003.810758 – ident: ref62 doi: 10.1109/MCI.2017.2742868 – ident: ref52 doi: 10.1007/978-3-319-10762-2_66 – ident: ref63 doi: 10.1007/1-84628-137-7_6 – ident: ref66 doi: 10.1109/4235.797969 – ident: ref33 doi: 10.1109/TCYB.2014.2367526 – ident: ref1 doi: 10.1109/TEVC.2016.2600642 – ident: ref32 doi: 10.1162/EVCO_a_00009 – ident: ref61 doi: 10.1007/s40747-017-0039-7 – start-page: 70 year: 2013 ident: ref53 publication-title: R2-EMOA Focused Multiobjective Search Using R2-Indicator-Based Selection – ident: ref13 doi: 10.1109/TEVC.2010.2041060 – ident: ref46 doi: 10.1109/TEVC.2012.2227145 – ident: ref31 doi: 10.1016/j.ejor.2006.08.008 – ident: ref23 doi: 10.1007/978-3-319-91641-5_22 – ident: ref17 doi: 10.1109/TSMC.2019.2931636 – ident: ref45 doi: 10.1016/j.ins.2016.07.009 – ident: ref34 doi: 10.1109/TEVC.2013.2281525 – ident: ref56 doi: 10.1109/TEVC.2015.2424921 |
SSID | ssj0014519 |
Score | 2.6167812 |
Snippet | This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Algorithms Evolutionary algorithm Evolutionary algorithms Evolutionary computation Indicators Loss measurement many-objective optimization multiobjective optimization Multiple objective analysis Optimization Robustness Sociology Statistics Urban areas |
Title | Investigating the Properties of Indicators and an Evolutionary Many-Objective Algorithm Using Promising Regions |
URI | https://ieeexplore.ieee.org/document/9105092 https://www.proquest.com/docview/2483258701 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SnNJDk25aunkUHXIq9caS38cQNqSFTUtJyt6MJY3TvOyw8QaSX58ZWbssbSk9GISRjGFG34w0M98AHCQosSLLGmSSIDAOqzyotMIAVWYznaPNXFXa5Cw9vYi_TpPpGnxe1sIgoks-wxEPXSzftmbOV2WHZNrIvhHgvqKDW1-rtYwYME1Kn0xfkMeYT30EU4bF4fn45zGdBFU4UuwOcTHbig1yTVX-QGJnXk42YbL4sT6r5GY07_TIPP_G2fi_f74Fb7yfKY56xXgLa9gMYHPRw0H4LT2A1yuEhAPYYN-zp27ehnaFg6O5FOQpiu98dT9jDlbR1uJLw0EebtcjqsbSI8aPXpOr2ZOYEM4E3_R1D6ni6PaynV11v-6ES1Pgb5GO8egHclL0wzu4OBmfH58Gvj9DYKKk6IK6qhNrCTNSaVWVGowiq-mNKrTEGlFqgxkX1iYyNSYztcLc5LmJCJwLW6voPaw3bYMfQBiJaCzWRjIDV8xlK1mEYUZ6FKfW6iGEC4mVxpOXcw-N29IdYsKiZCGXLOTSC3kIn5ZL7nvmjn9N3mahLSd6eQ1hb6EWpd_bD6WKCQUTwjm58_dVu7ChOPPF5XbvwXo3m-M-uS6d_uh09gWfBez5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N2wPjgUEHojDADzwh0sXO9-M0depgHQh1qG9RbF_Gx0hQl07a_nruHLeqACEeIlmRHUW68-_OvrvfAbxOUGJFljXIJEFgHFZ5UGmFAarMZjpHm7mqtOl5OrmI382T-Ra8XdfCIKJLPsMRD10s37ZmyVdlh2TayL4R4O6Q3U9kX621jhkwUUqfTl-Qz5jPfQxThsXhbPz5mM6CKhwpdoi4nG3DCrm2Kn9gsTMwJ3swXf1an1fyfbTs9Mjc_cba-L___hAeeE9THPWq8Qi2sBnA3qqLg_CbegD3NygJB7DL3mdP3rwP7QYLR3MpyFcUH_nyfsEsrKKtxWnDYR5u2COqxtIjxjdel6vFrZgS0gQf9LceVMXR1WW7-Np9-SFcogJ_i7SMR5-Q06KvH8PFyXh2PAl8h4bAREnRBXVVJ9YSaqTSqio1GEVW0xtVaIk1otQGMy6tTWRqTGZqhbnJcxMRPBe2VtET2G7aBp-CMBLRWKyNZA6umAtXsgjDjDQpTq3VQwhXEiuNpy_nLhpXpTvGhEXJQi5ZyKUX8hDerJf87Lk7_jV5n4W2nujlNYSDlVqUfndflyomHEwI6eSzv696Bfcms-lZeXZ6_v457CrOg3GZ3gew3S2W-IIcmU6_dPr7Cx3c8EI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Properties+of+Indicators+and+an+Evolutionary+Many-Objective+Algorithm+Using+Promising+Regions&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yuan%2C+Jiawei&rft.au=Liu%2C+Hai-Lin&rft.au=Gu%2C+Fangqing&rft.au=Zhang%2C+Qingfu&rft.date=2021-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1109%2FTEVC.2020.2999100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2020_2999100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |