State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries
State-of-health (SOH) estimation is necessary for lithium ion batteries due to ineluctable battery ageing. Existing SOH estimation methods mainly focus on voltage characteristics without considering temperature variation in the process of health degradation. In this article, we propose a novel SOH e...
Saved in:
Published in | IEEE transactions on power electronics Vol. 35; no. 10; pp. 10363 - 10373 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | State-of-health (SOH) estimation is necessary for lithium ion batteries due to ineluctable battery ageing. Existing SOH estimation methods mainly focus on voltage characteristics without considering temperature variation in the process of health degradation. In this article, we propose a novel SOH estimation method based on battery surface temperature. The differential temperature curves during constant charging are analyzed and found to be strongly related to SOH. Part of the differential temperature curves in a voltage range is adopted to establish a relationship with SOH using support vector regression. The influence of battery discrepancy, voltage range, and sampling step are systematically discussed and the best combination of voltage range and sampling step is determined using leave-one-out validation. The proposed method is then validated and compared with an incremental capacity analysis (ICA)-based SOH estimation method using the Oxford and NASA datasets, which were collected from different cells under different conditions, respectively. The results show that the proposed method is capable of estimating SOH with the root-mean-square error less than 3.62% and 2.49%, respectively. In addition, the proposed method can improve the overall SOH estimation accuracy and robustness by combining with the ICA-based method with little computational burden. |
---|---|
AbstractList | State-of-health (SOH) estimation is necessary for lithium ion batteries due to ineluctable battery ageing. Existing SOH estimation methods mainly focus on voltage characteristics without considering temperature variation in the process of health degradation. In this article, we propose a novel SOH estimation method based on battery surface temperature. The differential temperature curves during constant charging are analyzed and found to be strongly related to SOH. Part of the differential temperature curves in a voltage range is adopted to establish a relationship with SOH using support vector regression. The influence of battery discrepancy, voltage range, and sampling step are systematically discussed and the best combination of voltage range and sampling step is determined using leave-one-out validation. The proposed method is then validated and compared with an incremental capacity analysis (ICA)-based SOH estimation method using the Oxford and NASA datasets, which were collected from different cells under different conditions, respectively. The results show that the proposed method is capable of estimating SOH with the root-mean-square error less than 3.62% and 2.49%, respectively. In addition, the proposed method can improve the overall SOH estimation accuracy and robustness by combining with the ICA-based method with little computational burden. |
Author | Shen, Weixiang Xiong, Rui Tian, Jinpeng |
Author_xml | – sequence: 1 givenname: Jinpeng surname: Tian fullname: Tian, Jinpeng email: jtian@swin.edu.au organization: Department of Vehicle Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Rui orcidid: 0000-0003-4608-7597 surname: Xiong fullname: Xiong, Rui email: rxiong@bit.edu.cn organization: Department of Vehicle Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Weixiang orcidid: 0000-0002-4666-5126 surname: Shen fullname: Shen, Weixiang email: wshen@swin.edu.au organization: Engineering and Technology, Faculty of Science, Swinburne University of Technology, Melbourne, VIC, Australia |
BookMark | eNp9kE1PwzAMhiM0JLbBD0BcKnHucJKmTY4wBptUCSQG1yh0jpapa0eSHvj3dB_iwIGTLet9bPkZkUHTNkjINYUJpaDulq-zcsKAwYSpQmaKn5EhVRlNgUIxIEOQUqRSKX5BRiFsAGgmgA7Jx1s0EdPWpnM0dVwnsxDd1kTXNsmDCbhK-ubRWYsem-hMnSxxu0NvYucxsa1PShfXrtsmiwMRI3qH4ZKcW1MHvDrVMXl_mi2n87R8eV5M78u04kLF1ArGGXLICimYFPbTKCsQZc7UKrdSmMIaWvGCZSqzlisw_dxUuQRpK2SKj8ntce_Ot18dhqg3beeb_qRmWf-_yimwPlUcU5VvQ_BodeXi4cfojas1Bb2XqPcS9V6iPknsSfqH3Plej__-l7k5Mg4Rf_MKmABR8B-DgH7q |
CODEN | ITPEE8 |
CitedBy_id | crossref_primary_10_3390_en18020251 crossref_primary_10_1016_j_apenergy_2021_117346 crossref_primary_10_1016_j_apenergy_2022_120516 crossref_primary_10_1016_j_ymssp_2024_111140 crossref_primary_10_1016_j_apenergy_2021_116812 crossref_primary_10_1016_j_engappai_2024_108666 crossref_primary_10_1016_j_jechem_2023_11_040 crossref_primary_10_1016_j_jpowsour_2024_234781 crossref_primary_10_1155_2024_6488186 crossref_primary_10_1016_j_est_2025_115952 crossref_primary_10_1088_1742_6596_1885_4_042046 crossref_primary_10_1016_j_est_2025_115713 crossref_primary_10_1016_j_apenergy_2024_123632 crossref_primary_10_1016_j_est_2025_115714 crossref_primary_10_3390_en16093687 crossref_primary_10_1016_j_etran_2023_100227 crossref_primary_10_1002_er_7230 crossref_primary_10_1016_j_est_2024_114294 crossref_primary_10_1016_j_est_2023_108732 crossref_primary_10_3390_en15145053 crossref_primary_10_1149_1945_7111_ad4397 crossref_primary_10_32604_cmc_2024_056061 crossref_primary_10_1016_j_est_2022_105511 crossref_primary_10_1109_TEC_2024_3407136 crossref_primary_10_3390_en14154617 crossref_primary_10_1016_j_energy_2023_129575 crossref_primary_10_3390_batteries10100371 crossref_primary_10_2139_ssrn_4018988 crossref_primary_10_2139_ssrn_4108842 crossref_primary_10_1016_j_est_2025_116136 crossref_primary_10_1016_j_energy_2023_127033 crossref_primary_10_1016_j_est_2025_115567 crossref_primary_10_1016_j_ifacol_2025_01_048 crossref_primary_10_1109_TIE_2024_3379664 crossref_primary_10_1016_j_est_2023_109010 crossref_primary_10_3390_batteries8110229 crossref_primary_10_1038_s41598_024_63160_2 crossref_primary_10_1080_02533839_2023_2298983 crossref_primary_10_1016_j_isci_2021_103265 crossref_primary_10_1109_TVT_2021_3087004 crossref_primary_10_20964_2022_06_54 crossref_primary_10_1016_j_egyai_2023_100233 crossref_primary_10_1115_1_4052274 crossref_primary_10_3390_batteries8100151 crossref_primary_10_1016_j_energy_2022_123404 crossref_primary_10_1109_JAS_2022_105599 crossref_primary_10_1016_j_est_2022_106258 crossref_primary_10_1109_TTE_2023_3322696 crossref_primary_10_1016_j_ifacol_2023_10_710 crossref_primary_10_1016_j_ensm_2021_02_018 crossref_primary_10_1016_j_est_2025_115453 crossref_primary_10_1016_j_ensm_2024_103270 crossref_primary_10_3390_ma18010145 crossref_primary_10_1002_ente_202100767 crossref_primary_10_1016_j_etran_2023_100245 crossref_primary_10_1109_TTE_2021_3084196 crossref_primary_10_1016_j_est_2024_114112 crossref_primary_10_1007_s11708_023_0891_7 crossref_primary_10_1016_j_ress_2022_109066 crossref_primary_10_1016_j_energy_2021_122206 crossref_primary_10_1016_j_energy_2025_135332 crossref_primary_10_1109_ACCESS_2020_3029276 crossref_primary_10_1109_ACCESS_2022_3221137 crossref_primary_10_1016_j_energy_2023_126726 crossref_primary_10_1016_j_est_2023_108628 crossref_primary_10_1109_ACCESS_2022_3143107 crossref_primary_10_1007_s42154_022_00181_5 crossref_primary_10_1007_s42835_023_01524_w crossref_primary_10_1016_j_ijoes_2024_100719 crossref_primary_10_1109_TPEL_2021_3104723 crossref_primary_10_3389_fenrg_2024_1494473 crossref_primary_10_1109_ACCESS_2024_3406424 crossref_primary_10_3390_wevj12040256 crossref_primary_10_1016_j_energy_2024_130828 crossref_primary_10_1109_JESTPE_2021_3098836 crossref_primary_10_1016_j_electacta_2020_137101 crossref_primary_10_1016_j_ress_2023_109913 crossref_primary_10_1021_acs_est_3c08331 crossref_primary_10_1007_s43236_021_00307_8 crossref_primary_10_1016_j_jpowsour_2023_233474 crossref_primary_10_3390_app14083153 crossref_primary_10_1016_j_est_2023_108587 crossref_primary_10_1016_j_est_2023_109797 crossref_primary_10_1109_TPEL_2023_3280576 crossref_primary_10_1007_s44291_024_00031_0 crossref_primary_10_1016_j_est_2023_108863 crossref_primary_10_1016_j_ejor_2022_05_012 crossref_primary_10_1016_j_inoche_2024_113219 crossref_primary_10_1016_j_energy_2023_128739 crossref_primary_10_1016_j_electacta_2025_145988 crossref_primary_10_1016_j_energy_2024_133881 crossref_primary_10_1016_j_est_2022_105260 crossref_primary_10_1016_j_est_2024_112357 crossref_primary_10_1002_ente_202200151 crossref_primary_10_1109_TPEL_2024_3512516 crossref_primary_10_1002_ente_202401019 crossref_primary_10_1016_j_energy_2022_123556 crossref_primary_10_1016_j_est_2021_103804 crossref_primary_10_1016_j_energy_2022_125210 crossref_primary_10_1016_j_est_2024_114134 crossref_primary_10_1016_j_jpowsour_2021_230892 crossref_primary_10_1016_j_est_2022_105708 crossref_primary_10_1016_j_energy_2023_128445 crossref_primary_10_23919_PCMP_2023_000234 crossref_primary_10_1016_j_jpowsour_2021_230774 crossref_primary_10_1002_er_6502 crossref_primary_10_3390_en17174309 crossref_primary_10_1016_j_jechem_2023_11_009 crossref_primary_10_1016_j_est_2021_103528 crossref_primary_10_1016_j_energy_2023_126706 crossref_primary_10_1016_j_apenergy_2021_117386 crossref_primary_10_1016_j_est_2021_103644 crossref_primary_10_1016_j_est_2023_107965 crossref_primary_10_1109_TPEL_2021_3075517 crossref_primary_10_1080_15435075_2023_2264959 crossref_primary_10_1109_TPEL_2022_3144504 crossref_primary_10_1109_TTE_2024_3423469 crossref_primary_10_1016_j_est_2021_103076 crossref_primary_10_1016_j_est_2024_114309 crossref_primary_10_1109_TEC_2021_3137423 crossref_primary_10_1007_s43236_021_00253_5 crossref_primary_10_1002_eom2_12345 crossref_primary_10_3390_automation5040028 crossref_primary_10_1016_j_est_2023_109690 crossref_primary_10_1016_j_cej_2024_153001 crossref_primary_10_1016_j_ensm_2023_102967 crossref_primary_10_1016_j_apenergy_2024_123542 crossref_primary_10_1016_j_jclepro_2022_132742 crossref_primary_10_1016_j_rser_2023_113728 crossref_primary_10_1109_TTE_2022_3160021 crossref_primary_10_1016_j_energy_2022_124812 crossref_primary_10_1016_j_est_2023_108647 crossref_primary_10_1016_j_energy_2024_130594 crossref_primary_10_1016_j_jechem_2024_01_055 crossref_primary_10_1016_j_infrared_2024_105414 crossref_primary_10_1007_s11431_021_2029_y crossref_primary_10_1016_j_jclepro_2021_128015 crossref_primary_10_3390_wevj14010014 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_1016_j_energy_2022_124270 crossref_primary_10_1016_j_jpowsour_2024_234161 crossref_primary_10_1149_1945_7111_ac6bc4 crossref_primary_10_3390_batteries11030085 crossref_primary_10_3390_electronics10151859 crossref_primary_10_1016_j_apenergy_2024_124624 crossref_primary_10_1016_j_energy_2022_125872 crossref_primary_10_1109_JSYST_2023_3285147 crossref_primary_10_1109_TTE_2021_3074638 crossref_primary_10_3390_en16227581 crossref_primary_10_1088_1742_6596_2276_1_012023 crossref_primary_10_1016_j_energy_2020_119682 crossref_primary_10_1016_j_egyr_2024_02_034 crossref_primary_10_5796_electrochemistry_24_00042 crossref_primary_10_1016_j_est_2022_103987 crossref_primary_10_1038_s41598_022_16692_4 crossref_primary_10_1002_ente_202300861 crossref_primary_10_1002_er_6719 crossref_primary_10_1016_j_energy_2024_131154 crossref_primary_10_1007_s11431_022_2220_y crossref_primary_10_1016_j_apenergy_2024_124290 crossref_primary_10_1016_j_rser_2025_115408 crossref_primary_10_1016_j_est_2022_104560 crossref_primary_10_1109_TIE_2022_3187596 crossref_primary_10_1109_TPEL_2021_3117788 crossref_primary_10_1016_j_energy_2022_126064 crossref_primary_10_1016_j_isatra_2022_10_003 crossref_primary_10_1016_j_est_2023_110222 crossref_primary_10_1016_j_measurement_2024_114758 crossref_primary_10_1016_j_apenergy_2024_123122 crossref_primary_10_1016_j_est_2025_116117 crossref_primary_10_1109_ACCESS_2024_3370847 crossref_primary_10_1016_j_rser_2025_115522 crossref_primary_10_1016_j_etran_2022_100156 crossref_primary_10_1109_TTE_2021_3125932 crossref_primary_10_3390_batteries10120414 crossref_primary_10_1109_TPEL_2021_3134701 crossref_primary_10_1016_j_apenergy_2023_120751 crossref_primary_10_1016_j_energy_2022_123222 crossref_primary_10_1016_j_energy_2024_134031 crossref_primary_10_1016_j_est_2021_103857 crossref_primary_10_1016_j_applthermaleng_2025_125430 crossref_primary_10_1016_j_ins_2024_120435 crossref_primary_10_1016_j_est_2023_108667 crossref_primary_10_1016_j_est_2024_114280 crossref_primary_10_1016_j_est_2023_107734 crossref_primary_10_1109_TII_2023_3246124 crossref_primary_10_1016_j_energy_2021_122879 crossref_primary_10_1016_j_ijepes_2022_108020 |
Cites_doi | 10.1126/science.1253292 10.1109/TVT.2018.2880085 10.1149/1.2221767 10.1149/2.0511608jes 10.1016/j.electacta.2012.11.057 10.1016/j.jpowsour.2013.03.158 10.1109/TCST.2012.2217143 10.1109/TPEL.2011.2158553 10.1016/j.electacta.2005.02.148 10.1109/TPEL.2019.2893622 10.1016/j.jpowsour.2018.11.087 10.1016/j.measurement.2017.11.016 10.1016/j.jpowsour.2017.10.092 10.1016/j.etran.2019.100011 10.1109/TPEL.2017.2670081 10.1016/j.rser.2016.05.033 10.1016/j.jpowsour.2014.02.019 10.1016/j.jpowsour.2013.02.012 10.1016/j.etran.2019.100028 10.1016/j.jpowsour.2015.03.008 10.1109/TIE.2018.2798606 10.1109/TIE.2018.2880703 10.1016/j.microrel.2018.07.025 10.1016/j.electacta.2018.04.203 10.1109/TIE.2015.2509916 10.1016/j.scitotenv.2004.04.070 10.1016/j.jpowsour.2015.07.100 10.1038/srep12967 10.1109/TVT.2016.2583478 10.1016/j.jpowsour.2017.11.094 10.1109/TII.2018.2794997 10.1016/j.jpowsour.2014.09.127 10.1016/j.est.2017.03.008 10.1109/VSS.2014.6881140 10.1016/j.jpowsour.2013.08.053 10.1016/j.joule.2018.03.016 10.1109/TIE.2015.2461523 10.1016/j.jpowsour.2018.06.036 10.1109/TIE.2018.2795521 10.1016/j.apenergy.2017.05.124 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
DOI | 10.1109/TPEL.2020.2978493 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0107 |
EndPage | 10373 |
ExternalDocumentID | 10_1109_TPEL_2020_2978493 9025057 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51877009 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
ID | FETCH-LOGICAL-c359t-f5232e304785285fba9f5ee8629d6f85a7fa1c372494ff390a9d6ac6808fce293 |
IEDL.DBID | RIE |
ISSN | 0885-8993 |
IngestDate | Mon Jun 30 07:00:10 EDT 2025 Tue Jul 01 02:39:13 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Wed Aug 27 02:37:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-f5232e304785285fba9f5ee8629d6f85a7fa1c372494ff390a9d6ac6808fce293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4608-7597 0000-0002-4666-5126 |
PQID | 2419496102 |
PQPubID | 37080 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9025057 crossref_citationtrail_10_1109_TPEL_2020_2978493 crossref_primary_10_1109_TPEL_2020_2978493 proquest_journals_2419496102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power electronics |
PublicationTitleAbbrev | TPEL |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 Birkl (ref30) 2017 ref11 ref10 ref32 Saha (ref33) 2007 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 Birkl (ref31) 2017 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref1 doi: 10.1126/science.1253292 – ident: ref40 doi: 10.1109/TVT.2018.2880085 – ident: ref15 doi: 10.1149/1.2221767 – ident: ref21 doi: 10.1149/2.0511608jes – ident: ref35 doi: 10.1016/j.electacta.2012.11.057 – ident: ref9 doi: 10.1016/j.jpowsour.2013.03.158 – ident: ref23 doi: 10.1109/TCST.2012.2217143 – ident: ref39 doi: 10.1109/TPEL.2011.2158553 – ident: ref5 doi: 10.1016/j.electacta.2005.02.148 – ident: ref42 doi: 10.1109/TPEL.2019.2893622 – ident: ref6 doi: 10.1016/j.jpowsour.2018.11.087 – ident: ref7 doi: 10.1016/j.measurement.2017.11.016 – ident: ref17 doi: 10.1016/j.jpowsour.2017.10.092 – year: 2017 ident: ref30 article-title: Oxford battery degradation dataset 1 – ident: ref14 doi: 10.1016/j.etran.2019.100011 – ident: ref41 doi: 10.1109/TPEL.2017.2670081 – ident: ref43 doi: 10.1016/j.rser.2016.05.033 – ident: ref4 doi: 10.1016/j.jpowsour.2014.02.019 – ident: ref16 doi: 10.1016/j.jpowsour.2013.02.012 – ident: ref13 doi: 10.1016/j.etran.2019.100028 – ident: ref26 doi: 10.1016/j.jpowsour.2015.03.008 – ident: ref11 doi: 10.1109/TIE.2018.2798606 – ident: ref36 doi: 10.1109/TIE.2018.2880703 – ident: ref37 doi: 10.1016/j.microrel.2018.07.025 – ident: ref20 doi: 10.1016/j.electacta.2018.04.203 – ident: ref29 doi: 10.1109/TIE.2015.2509916 – ident: ref32 doi: 10.1016/j.scitotenv.2004.04.070 – ident: ref24 doi: 10.1016/j.jpowsour.2015.07.100 – year: 2017 ident: ref31 article-title: Diagnosis and prognosis of degradation in lithium-ion batteries – ident: ref25 doi: 10.1038/srep12967 – ident: ref28 doi: 10.1109/TVT.2016.2583478 – ident: ref2 doi: 10.1016/j.jpowsour.2017.11.094 – ident: ref38 doi: 10.1109/TII.2018.2794997 – ident: ref19 doi: 10.1016/j.jpowsour.2014.09.127 – ident: ref27 doi: 10.1016/j.est.2017.03.008 – ident: ref10 doi: 10.1109/VSS.2014.6881140 – ident: ref34 doi: 10.1016/j.jpowsour.2013.08.053 – ident: ref22 doi: 10.1016/j.joule.2018.03.016 – ident: ref12 doi: 10.1109/TIE.2015.2461523 – year: 2007 ident: ref33 article-title: Battery data set – ident: ref18 doi: 10.1016/j.jpowsour.2018.06.036 – ident: ref3 doi: 10.1109/TIE.2018.2795521 – ident: ref8 doi: 10.1016/j.apenergy.2017.05.124 |
SSID | ssj0014501 |
Score | 2.6682498 |
Snippet | State-of-health (SOH) estimation is necessary for lithium ion batteries due to ineluctable battery ageing. Existing SOH estimation methods mainly focus on... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10363 |
SubjectTerms | Aging Batteries Battery ageing battery management Degradation differential temperature Differential thermal analysis Electric potential Estimation Ions Lithium lithium ion battery Lithium-ion batteries Rechargeable batteries Regression analysis Robustness (mathematics) Sampling state-of-health Support vector machines Temperature measurement Voltage |
Title | State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries |
URI | https://ieeexplore.ieee.org/document/9025057 https://www.proquest.com/docview/2419496102 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz34QiOKpgdPxsLS7qtHHxA0YDyA4bbpdttIRDC6XPz1TrsL8RXjrdm0TdPpdL5vpzMDcCqUynikDVWxYNS3KpUanlIljeAekxFzuTsHd2Fv5N-Og3EFzlexMFpr9_hMN23T-fKzuVrYX2Ut4Qx2tAZrSNyKWK2Vx8APXKljVJqAIofgpQez7YnW8L7TRybIvCZDzuQL_sUGuaIqP25iZ166WzBYLqx4VfLUXORpU71_y9n435Vvw2aJM8lFcTB2oKJnu7DxKftgDR4c0KRzQ4tYJNJBdS8iGcklGreMYOO6LKCCF8GUDDWC7CIJM0GwS_qT_HGyeCY3boSNC0LevQejbmd41aNlmQWqeCByapCLMm3db3HA4sCkUphAa6Q6IgtNHMjIyLbiERI13xguPInfpbI1O4zSCBf2oTqbz_QBEBGmeCKUNoprX8Qyll7EMhMpP2wrHYZ18JYbn6gyB7kthTFNHBfxRGJllVhZJaWs6nC2GvJSJOD4q3PN7v2qY7ntdWgspZuUKvqWIHQRvkD0yA5_H3UE63bu4uVeA6r560IfIwLJ0xN39D4A4OnXrA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH-axmFwAMZAFMbwAS5I7lI7TuIDB9g6taybOHRot-A4z6JiayeaCsFn4avw3Xh23GqDabdJ3KzIVhS_n5_fL-8fwCttbS1zdNwWWvDUH6nKyYpb47RMhMlFqN15dJwNTtIPp-p0DX6tcmEQMQSfYdcPgy-_ntmF_1W2q8OFnccQykP88Z0I2vztcJ-k-VqIg_54b8BjDwFupdINd0S0BHrfUqFEoVxltFOIZMfrOnOFMrkzPStzYiGpc1Inhp4b6xtSOIvCl1oiBX-H7Awl2uywlY8iVaG5Mh1TxYm1yOgz7SV6d_yxPyLuKZKuIJaWannl1gttXP7R_eFCO3gAv5db0caxfO0umqprf_5VJfJ_3auHcD9a0uxdC_1NWMPpI7h3qb7iFnwKpjSfOd5mW7E-KbQ2V5O9p-u7ZjTYjy1iSNWdsTESjWjLTDMy59lo0nyZLM7ZMKzwmU8TnD-Gk1v5sCewPp1N8SkwnVWEeYvOSkx1YQqT5KJ2uU2znsUs60CyFHRpY5V13-zjrAxsK9Glx0bpsVFGbHTgzWrJRVti5KbJW17Wq4lRzB3YXqKpjEpoXpJxplNN9rF4dv2ql7AxGB-NytHw-PA53PXvaeMUt2G9-bbAF2RvNdVOgD2Dz7eNnT8qQjTd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-Health+Estimation+Based+on+Differential+Temperature+for+Lithium+Ion+Batteries&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Tian%2C+Jinpeng&rft.au=Xiong%2C+Rui&rft.au=Shen%2C+Weixiang&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=35&rft.issue=10&rft.spage=10363&rft_id=info:doi/10.1109%2FTPEL.2020.2978493&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |