Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks

This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the user...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 6; no. 2; pp. 1690 - 1703
Main Authors Xie, Lifeng, Xu, Jie, Zhang, Rui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the users in the downlink, and the users use the harvested RF energy to send independent information to the UAV in the uplink. Unlike the conventional WPCN with fixed APs, the UAV-enabled WPCN can exploit the mobility of the UAV via trajectory design, jointly with the wireless resource allocation optimization, to maximize the system throughput. In particular, we aim to maximize the uplink common (minimum) throughput among all ground users over a finite UAV's flight period, subject to its maximum speed constraint and the users' energy neutrality constraints. The resulted problem is nonconvex and thus difficult to be solved optimally. To tackle this challenge, we first consider an ideal case without the UAV's maximum speed constraint, and obtain the optimal solution to the relaxed problem. The optimal solution shows that the UAV should successively hover above a finite number of ground locations for downlink WPT, as well as above each of the ground users for uplink communication. Next, we consider the general problem with the UAV's maximum speed constraint. Based on the above multilocation-hovering solution, we first propose an efficient successive hover-and-fly trajectory design, jointly with the downlink and uplink wireless resource allocation, and then propose a locally optimal solution by applying the techniques of alternating optimization and successive convex programming (SCP). Numerical results show that the proposed UAV-enabled WPCN achieves significant throughput gains over the conventional WPCN with fixed-location AP.
AbstractList This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the users in the downlink, and the users use the harvested RF energy to send independent information to the UAV in the uplink. Unlike the conventional WPCN with fixed APs, the UAV-enabled WPCN can exploit the mobility of the UAV via trajectory design, jointly with the wireless resource allocation optimization, to maximize the system throughput. In particular, we aim to maximize the uplink common (minimum) throughput among all ground users over a finite UAV’s flight period, subject to its maximum speed constraint and the users’ energy neutrality constraints. The resulted problem is nonconvex and thus difficult to be solved optimally. To tackle this challenge, we first consider an ideal case without the UAV’s maximum speed constraint, and obtain the optimal solution to the relaxed problem. The optimal solution shows that the UAV should successively hover above a finite number of ground locations for downlink WPT, as well as above each of the ground users for uplink communication. Next, we consider the general problem with the UAV’s maximum speed constraint. Based on the above multilocation-hovering solution, we first propose an efficient successive hover-and-fly trajectory design, jointly with the downlink and uplink wireless resource allocation, and then propose a locally optimal solution by applying the techniques of alternating optimization and successive convex programming (SCP). Numerical results show that the proposed UAV-enabled WPCN achieves significant throughput gains over the conventional WPCN with fixed-location AP.
Author Xie, Lifeng
Xu, Jie
Zhang, Rui
Author_xml – sequence: 1
  givenname: Lifeng
  orcidid: 0000-0001-7154-5428
  surname: Xie
  fullname: Xie, Lifeng
  email: lifengxie22039@gmail.com
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-4854-8839
  surname: Xu
  fullname: Xu, Jie
  email: jiexu@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Rui
  orcidid: 0000-0002-8729-8393
  surname: Zhang
  fullname: Zhang, Rui
  email: elezhang@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
BookMark eNp9kE1PwkAQhjcGExH5AcZLE8_F3W3360gIKgbFA-ix6cdUFksXd9ug_npbS4zx4F5mM3memcl7inqlKQGhc4JHhGB1dTdbLEcUEzmiUrAw5EeoTwMq_JBz2vv1P0FD5zYY40ZjRPE-WizX1tQv611deffxu97qz7jSpvRyY73V-MmflnFSQOY9awsFOOc9mj3YpjEx221d6rTDH6DaG_vqztBxHhcOhoc6QKvr6XJy688XN7PJeO6nAVOVDxxDyHJKsaBKZoJSmQHBwKkgLISEkZwzJSROJKEM8jDDPAmFUCKPBU1oMECX3dydNW81uCramNqWzcqItg8zJkRDiY5KrXHOQh6luvo-uLKxLiKCozbAqA0wagOMDgE2Jvlj7qzexvbjX-eiczQA_PAylEoRGXwBk7p8tg
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TVT_2021_3129880
crossref_primary_10_1109_TCOMM_2022_3148364
crossref_primary_10_1016_j_phycom_2021_101392
crossref_primary_10_1016_j_comnet_2023_109644
crossref_primary_10_1109_JIOT_2019_2958975
crossref_primary_10_1109_TCCN_2024_3407096
crossref_primary_10_3390_s23062994
crossref_primary_10_1109_TVT_2020_2972133
crossref_primary_10_1109_LWC_2020_2965942
crossref_primary_10_1109_JIOT_2022_3156865
crossref_primary_10_1109_TGCN_2022_3218314
crossref_primary_10_1016_j_hcc_2024_100272
crossref_primary_10_1109_JIOT_2020_3043210
crossref_primary_10_1109_OJCOMS_2020_3042257
crossref_primary_10_1109_TCOMM_2020_3044599
crossref_primary_10_1109_JIOT_2020_3012835
crossref_primary_10_1109_TVT_2019_2935877
crossref_primary_10_1109_LCOMM_2022_3161382
crossref_primary_10_1016_j_sysarc_2022_102617
crossref_primary_10_1109_JIOT_2021_3058680
crossref_primary_10_1109_TCOMM_2019_2953641
crossref_primary_10_1109_JIOT_2024_3369069
crossref_primary_10_1109_JIOT_2021_3111641
crossref_primary_10_1109_ACCESS_2019_2961977
crossref_primary_10_1016_j_jksuci_2024_102225
crossref_primary_10_1016_j_scs_2023_104559
crossref_primary_10_1109_JIOT_2023_3301088
crossref_primary_10_1109_LCOMM_2021_3122129
crossref_primary_10_1109_TGCN_2021_3093718
crossref_primary_10_1109_TVT_2022_3231295
crossref_primary_10_1109_TWC_2022_3148996
crossref_primary_10_1109_TWC_2019_2946153
crossref_primary_10_1109_ACCESS_2019_2959637
crossref_primary_10_1109_TWC_2020_2989302
crossref_primary_10_1109_ACCESS_2020_3034917
crossref_primary_10_1109_TCCN_2024_3440920
crossref_primary_10_1109_JIOT_2019_2943147
crossref_primary_10_1049_cmu2_12646
crossref_primary_10_1109_TCYB_2020_3041261
crossref_primary_10_3390_app13116774
crossref_primary_10_1016_j_comcom_2019_12_009
crossref_primary_10_1109_JIOT_2021_3121421
crossref_primary_10_3390_fi16120433
crossref_primary_10_1016_j_micpro_2023_104875
crossref_primary_10_1007_s11235_022_00974_3
crossref_primary_10_1109_TVT_2022_3208839
crossref_primary_10_1109_JPROC_2019_2952892
crossref_primary_10_1109_TGCN_2020_3007814
crossref_primary_10_1109_ACCESS_2023_3349208
crossref_primary_10_1109_JIOT_2022_3150616
crossref_primary_10_1186_s13638_021_02051_w
crossref_primary_10_3390_app12042226
crossref_primary_10_1016_j_dcan_2023_09_003
crossref_primary_10_1109_TVT_2020_3026788
crossref_primary_10_3390_rs11182144
crossref_primary_10_1109_TCOMM_2020_3011990
crossref_primary_10_1109_JIOT_2020_3026756
crossref_primary_10_1109_TVT_2021_3090849
crossref_primary_10_1109_LWC_2020_3013296
crossref_primary_10_1109_LWC_2020_3038079
crossref_primary_10_1109_JIOT_2021_3137846
crossref_primary_10_1109_TVT_2024_3461333
crossref_primary_10_1007_s11276_023_03421_6
crossref_primary_10_1016_j_adhoc_2021_102474
crossref_primary_10_1109_TVT_2020_2989455
crossref_primary_10_1109_ACCESS_2021_3065055
crossref_primary_10_1109_JIOT_2020_3005133
crossref_primary_10_1016_j_adhoc_2019_102052
crossref_primary_10_1109_JIOT_2022_3202252
crossref_primary_10_1109_JSAC_2021_3088664
crossref_primary_10_1016_j_phycom_2021_101462
crossref_primary_10_1177_15501477211069910
crossref_primary_10_1109_JIOT_2023_3274549
crossref_primary_10_3390_drones7070460
crossref_primary_10_3390_s24051599
crossref_primary_10_1109_ACCESS_2019_2954332
crossref_primary_10_3390_s20092598
crossref_primary_10_1016_j_vehcom_2023_100632
crossref_primary_10_1016_j_adhoc_2021_102466
crossref_primary_10_1109_JIOT_2021_3125566
crossref_primary_10_1109_OJVT_2022_3177253
crossref_primary_10_1109_TII_2020_2974047
crossref_primary_10_1109_JIOT_2021_3065689
crossref_primary_10_1109_JIOT_2023_3289793
crossref_primary_10_1007_s11276_022_02955_5
crossref_primary_10_1109_LWC_2019_2947430
crossref_primary_10_1007_s11432_020_3060_4
crossref_primary_10_1109_ACCESS_2024_3519598
crossref_primary_10_1109_ACCESS_2019_2918135
crossref_primary_10_1016_j_comnet_2022_108857
crossref_primary_10_1109_TCOMM_2023_3240697
crossref_primary_10_1109_TGCN_2020_3007588
crossref_primary_10_1109_ACCESS_2024_3352085
crossref_primary_10_3390_s22124520
crossref_primary_10_1109_ACCESS_2024_3506393
crossref_primary_10_1109_JIOT_2020_3041303
crossref_primary_10_1109_TWC_2021_3103739
crossref_primary_10_3390_s23020863
crossref_primary_10_1109_JSAC_2021_3088681
crossref_primary_10_1109_TVT_2023_3260826
crossref_primary_10_1007_s11276_019_02240_y
crossref_primary_10_1109_TVT_2021_3096603
crossref_primary_10_1109_LCOMM_2019_2962774
crossref_primary_10_1109_TVT_2023_3275758
crossref_primary_10_1109_JIOT_2020_3031622
crossref_primary_10_1109_JIOT_2021_3103892
crossref_primary_10_1109_JIOT_2022_3160691
crossref_primary_10_1109_TGCN_2019_2926131
crossref_primary_10_1186_s13638_019_1598_7
crossref_primary_10_1109_LCOMM_2023_3252725
crossref_primary_10_1109_JSTSP_2022_3172587
crossref_primary_10_1109_TITS_2021_3082512
crossref_primary_10_1109_JIOT_2020_3019186
crossref_primary_10_1109_LCOMM_2023_3327935
crossref_primary_10_3390_s20226680
crossref_primary_10_1109_JSAC_2020_3005489
crossref_primary_10_1109_JIOT_2019_2954530
crossref_primary_10_1109_TVT_2023_3274815
crossref_primary_10_1109_ACCESS_2019_2922651
crossref_primary_10_1109_TVT_2024_3367624
crossref_primary_10_1109_JSAC_2021_3065049
crossref_primary_10_1109_TCCN_2020_3027696
crossref_primary_10_1109_TVT_2019_2917947
crossref_primary_10_1109_ACCESS_2023_3331752
crossref_primary_10_1109_ACCESS_2020_2964042
crossref_primary_10_3390_photonics10111210
crossref_primary_10_1109_ACCESS_2019_2962547
crossref_primary_10_1109_JIOT_2023_3281584
crossref_primary_10_1016_j_adhoc_2022_102844
crossref_primary_10_1109_JIOT_2021_3079448
crossref_primary_10_1109_LCOMM_2021_3106512
crossref_primary_10_1109_JIOT_2021_3126290
crossref_primary_10_1109_JIOT_2022_3190813
crossref_primary_10_1016_j_comnet_2020_107471
crossref_primary_10_1109_JSAC_2021_3088627
crossref_primary_10_1109_ACCESS_2021_3054652
crossref_primary_10_1109_TVT_2021_3112483
crossref_primary_10_1109_TCOMM_2020_2971488
crossref_primary_10_1016_j_comcom_2023_12_011
crossref_primary_10_1109_TVT_2019_2961993
crossref_primary_10_1109_TWC_2022_3169533
crossref_primary_10_3390_s22239359
crossref_primary_10_1109_JSAC_2021_3088632
crossref_primary_10_1109_LCOMM_2019_2945565
crossref_primary_10_1016_j_phycom_2020_101136
crossref_primary_10_1109_ACCESS_2022_3176362
crossref_primary_10_1109_JIOT_2023_3265507
crossref_primary_10_1109_JSTSP_2021_3098963
crossref_primary_10_1109_TVT_2023_3291174
crossref_primary_10_1109_TWC_2020_3007648
crossref_primary_10_1109_ACCESS_2020_3021672
crossref_primary_10_1109_TVT_2023_3280848
crossref_primary_10_3390_s22186859
crossref_primary_10_1002_ett_4630
crossref_primary_10_1109_TCOMM_2020_3006908
crossref_primary_10_1016_j_aej_2020_11_027
crossref_primary_10_1109_TNSM_2024_3454217
crossref_primary_10_1109_TWC_2020_2971987
crossref_primary_10_1109_TR_2022_3161336
crossref_primary_10_3390_s19204521
crossref_primary_10_1109_TCOMM_2022_3152576
crossref_primary_10_1109_ACCESS_2020_3040868
crossref_primary_10_1016_j_phycom_2025_102650
crossref_primary_10_1109_ACCESS_2019_2938679
crossref_primary_10_1109_TWC_2020_3030773
crossref_primary_10_1049_iet_com_2019_1207
crossref_primary_10_1109_JSAC_2019_2947929
crossref_primary_10_1007_s11277_024_11547_9
crossref_primary_10_1109_TWC_2020_3035425
crossref_primary_10_1109_JIOT_2019_2953691
crossref_primary_10_1007_s00607_023_01245_y
crossref_primary_10_1109_MWC_001_1900656
crossref_primary_10_1109_JIOT_2022_3218674
crossref_primary_10_1109_TGCN_2021_3101200
crossref_primary_10_1016_j_phycom_2020_101234
crossref_primary_10_1109_TVT_2019_2960765
crossref_primary_10_1007_s12046_021_01678_1
crossref_primary_10_1016_j_phycom_2023_102200
crossref_primary_10_1109_ACCESS_2019_2906088
crossref_primary_10_1109_JIOT_2019_2943608
crossref_primary_10_1109_TWC_2022_3182813
crossref_primary_10_3390_drones7110672
crossref_primary_10_1109_ACCESS_2020_2971962
crossref_primary_10_1109_TVT_2022_3147567
crossref_primary_10_1109_TMC_2021_3075083
crossref_primary_10_1109_TMC_2024_3439556
crossref_primary_10_1109_TAES_2024_3447636
crossref_primary_10_1109_TVT_2021_3049835
crossref_primary_10_3390_s19132989
crossref_primary_10_1016_j_comnet_2021_108623
crossref_primary_10_1109_ACCESS_2023_3266375
crossref_primary_10_1109_TVT_2021_3096540
crossref_primary_10_1109_TNSE_2020_3029048
crossref_primary_10_3390_drones7100628
crossref_primary_10_3390_rs15215126
crossref_primary_10_1109_TVT_2021_3104279
crossref_primary_10_3390_rs13132611
crossref_primary_10_1109_TVT_2021_3065084
crossref_primary_10_1016_j_comcom_2023_05_013
crossref_primary_10_1109_TVT_2020_3015246
crossref_primary_10_1109_TMC_2023_3240763
crossref_primary_10_1016_j_cja_2021_10_038
crossref_primary_10_1109_JIOT_2021_3102185
crossref_primary_10_1109_TGCN_2020_2994513
crossref_primary_10_1049_cmu2_12175
crossref_primary_10_1109_JIOT_2022_3224533
crossref_primary_10_1002_dac_5555
crossref_primary_10_1109_TVT_2020_2969220
crossref_primary_10_1109_TCOMM_2019_2931322
crossref_primary_10_1109_TGCN_2021_3086305
crossref_primary_10_1109_JIOT_2023_3322266
crossref_primary_10_1109_TWC_2021_3116509
crossref_primary_10_1109_TWC_2020_3029225
crossref_primary_10_1109_ACCESS_2020_3046499
crossref_primary_10_1109_TITS_2023_3290619
crossref_primary_10_1109_TWC_2023_3243611
crossref_primary_10_33851_JMIS_2023_10_3_279
crossref_primary_10_1109_ACCESS_2022_3165159
crossref_primary_10_1016_j_dcan_2020_07_007
crossref_primary_10_1049_tje2_12270
crossref_primary_10_1109_TNSE_2023_3346445
crossref_primary_10_1109_TNSE_2021_3066598
crossref_primary_10_1016_j_comcom_2023_09_025
crossref_primary_10_1109_TCOMM_2024_3383113
crossref_primary_10_1109_JIOT_2020_2980328
crossref_primary_10_1109_TNSE_2023_3288990
crossref_primary_10_1016_j_pmcj_2023_101820
crossref_primary_10_1109_ACCESS_2020_3033615
Cites_doi 10.1109/COMST.2015.2499783
10.1109/TSP.2015.2396009
10.1109/LCOMM.2015.2495187
10.1007/s41650-017-0013-y
10.1109/TSP.2016.2601284
10.1109/LCOMM.2015.2478460
10.1109/TSP.2016.2526965
10.1109/MWC.2016.7462480
10.1109/JIOT.2017.2772318
10.1109/TWC.2017.2785305
10.1109/TWC.2015.2503334
10.1109/ICC.2016.7510820
10.1109/LCOMM.2016.2578312
10.1109/MCOM.2015.7081084
10.1017/CBO9780511804441
10.1109/JSAC.2018.2864421
10.1109/GLOCOMW.2017.8269097
10.1109/MCOM.2016.7470933
10.1109/TWC.2018.2838134
10.1109/LWC.2017.2776922
10.1007/s41650-017-0018-6
10.1109/TWC.2013.112513.130760
10.1109/GLOCOM.2017.8254949
10.1109/MCOM.2015.7081079
10.1109/TCOMM.2016.2611512
10.1109/TCOMM.2006.877962
10.1109/TNET.2012.2185831
10.1109/GLOCOM.2014.7037009
10.1109/TSP.2014.2352604
10.1109/TCOMM.2014.2370035
10.1109/ICC.2018.8422581
10.1109/TCOMM.2017.2676103
10.1109/LCOMM.2016.2633248
10.1109/TMC.2016.2603152
10.1109/TSP.2014.2340817
10.1109/TWC.2016.2531652
10.1109/TMC.2015.2473163
10.1109/GLOCOMW.2017.8269065
10.1109/TWC.2017.2789293
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2018.2875446
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1703
ExternalDocumentID 10_1109_JIOT_2018_2875446
8489918
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871137; 61628103
  funderid: 10.13039/501100001809
– fundername: National University of Singapore
  grantid: R-263-000-D12-114
  funderid: 10.13039/501100001352
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-e60e45f2207298d7228de10e627154eb51f659780b8125ef4d06b47797fa72b23
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Jun 29 15:15:43 EDT 2025
Tue Jul 01 04:07:57 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Wed Aug 27 02:49:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-e60e45f2207298d7228de10e627154eb51f659780b8125ef4d06b47797fa72b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8729-8393
0000-0002-4854-8839
0000-0001-7154-5428
PQID 2222205577
PQPubID 2040421
PageCount 14
ParticipantIDs proquest_journals_2222205577
crossref_citationtrail_10_1109_JIOT_2018_2875446
ieee_primary_8489918
crossref_primary_10_1109_JIOT_2018_2875446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
lawler (ref40) 1985
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
xie (ref1) 2018
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/COMST.2015.2499783
– year: 1985
  ident: ref40
  publication-title: The Traveling Salesman Problem A Guided Tour of Combinatorial Optimization
– ident: ref17
  doi: 10.1109/TSP.2015.2396009
– ident: ref15
  doi: 10.1109/LCOMM.2015.2495187
– ident: ref4
  doi: 10.1007/s41650-017-0013-y
– ident: ref37
  doi: 10.1109/TSP.2016.2601284
– ident: ref36
  doi: 10.1109/LCOMM.2015.2478460
– ident: ref14
  doi: 10.1109/TSP.2016.2526965
– ident: ref7
  doi: 10.1109/MWC.2016.7462480
– ident: ref5
  doi: 10.1109/JIOT.2017.2772318
– ident: ref10
  doi: 10.1109/TWC.2017.2785305
– ident: ref9
  doi: 10.1109/TWC.2015.2503334
– ident: ref22
  doi: 10.1109/ICC.2016.7510820
– ident: ref23
  doi: 10.1109/LCOMM.2016.2578312
– ident: ref6
  doi: 10.1109/MCOM.2015.7081084
– ident: ref41
  doi: 10.1017/CBO9780511804441
– ident: ref25
  doi: 10.1109/JSAC.2018.2864421
– ident: ref30
  doi: 10.1109/GLOCOMW.2017.8269097
– ident: ref18
  doi: 10.1109/MCOM.2016.7470933
– ident: ref29
  doi: 10.1109/TWC.2018.2838134
– ident: ref21
  doi: 10.1109/LWC.2017.2776922
– ident: ref35
  doi: 10.1007/s41650-017-0018-6
– ident: ref8
  doi: 10.1109/TWC.2013.112513.130760
– ident: ref31
  doi: 10.1109/GLOCOM.2017.8254949
– ident: ref38
  doi: 10.1109/MCOM.2015.7081079
– ident: ref19
  doi: 10.1109/TCOMM.2016.2611512
– ident: ref39
  doi: 10.1109/TCOMM.2006.877962
– ident: ref32
  doi: 10.1109/TNET.2012.2185831
– ident: ref16
  doi: 10.1109/GLOCOM.2014.7037009
– ident: ref11
  doi: 10.1109/TSP.2014.2352604
– ident: ref12
  doi: 10.1109/TCOMM.2014.2370035
– ident: ref26
  doi: 10.1109/ICC.2018.8422581
– start-page: 1
  year: 2018
  ident: ref1
  article-title: Throughput maximization for UAV-enabled wireless powered communication networks
  publication-title: Proc IEEE VTC Spring
– ident: ref3
  doi: 10.1109/TCOMM.2017.2676103
– ident: ref20
  doi: 10.1109/LCOMM.2016.2633248
– ident: ref34
  doi: 10.1109/TMC.2016.2603152
– ident: ref13
  doi: 10.1109/TSP.2014.2340817
– ident: ref28
  doi: 10.1109/TWC.2016.2531652
– ident: ref33
  doi: 10.1109/TMC.2015.2473163
– ident: ref27
  doi: 10.1109/GLOCOMW.2017.8269065
– ident: ref24
  doi: 10.1109/TWC.2017.2789293
SSID ssj0001105196
Score 2.580422
Snippet This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1690
SubjectTerms Charge transfer
Communication
Communication networks
Convexity
Downlink
Hovering
Optimization
Radio frequency
Resource allocation
Resource management
Throughput
Trajectories
Trajectory
trajectory optimization
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Uplink
Wireless communication
Wireless communications
wireless power transfer (WPT)
Wireless power transmission
wireless powered communication network (WPCN)
Wireless sensor networks
Title Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks
URI https://ieeexplore.ieee.org/document/8489918
https://www.proquest.com/docview/2222205577
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJy-iohFF04Mn48K2u9tuj8RgkATwAIbbhna7iRHBCCTGX29nt-Azxj01TbtpZvr4pp35BuCC6qlmVAcem0ppDZRAeXEmAk9yncVBajEIxeDk_oB3x2FvEk1KcLWNhTHG5M5nponF_C0_Xeg1XpW14tBaBzQuQ9kabkWs1sd9CkUwwt3DJfVlq3c7HKHvVty0VkEUIsT9dPTkuVR-bMD5qXJThf5mPIUzyWNzvVJN_faNqvG_A96DXQcvSbuYD_tQMvMDqG5SNxC3kmswHBX5eWw16U9fH55cOCaxGJaM2_deJ4-pSgl6x87sbkjuMJ2arfgSUUIGhRf58hDGN53RdddzuRU8HURy5RnumzDKGEPm8DgVjMWpob7hTFhQZVREMx4hO5GyCCAyWZj6XIVCSJFNBVMsOILKfDE3x0BCyYXJ7DkvkM0v4MoKW4RSIZE81TKrg78Re6Id8Tjmv5gluQHiywQ1laCmEqepOlxuuzwXrBt_Na6h5LcNndDr0NjoNnHrcpkw_JB2TJz83usUduy_ZeGb04DK6mVtzizsWKnzfL69AyW7014
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTuMwEB4hOMAFWFhEF3bxYfeClBI7iR0f9oD4UQu07KFF3ELtOBKCLYi2AvZZeBXebWcSt_xqb0ibU2TZiuIZzXxjz3wD8J3bnhXcRoHoaY0BSmSCtFBRoKUt0ihHDMKpOLnVlo1ufHCanE7Bw6QWxjlXJp-5Or2Wd_n5lR3RUdlWGmN0wFOfQnno7m8xQBv8bO6iNH8Isb_X2WkEvodAYKNEDwMnQxcnhRDEkJ3mSog0dzx0UigED84kvJAJsfAY9HSJK-I8lCZWSquip4QhWgM08DOIMxJRVYc9neBwgj_SX5XyUG8dNI87lC2W1jEOSWIC1c-cXdm95Y3JL_3Y_gI8jnegSl-5qI-Gpm7_vCKH_F-3aBHmPYBm25XGf4Ip11-ChXFzCuZt1TIcd6oORDjMWr2789--4JQhSmfd7ZNgr6wayxnl_16ivWe_qGEcDryomWHtKk9-8Bm6H_JbKzDdv-q7VWCxlsoViGQU8RVG0qBwVawNUeVzq4sahGMxZ9ZTq1OHj8usDLFCnZFmZKQZmdeMGmxOllxXvCL_mrxMkp5M9EKuwfpYlzJveQaZoIeI1dSX91dtwGyj0zrKjprtwzWYw-_oKhNpHaaHNyP3FUHW0HwrdZ3B2Udrzl_y3i13
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+for+UAV-Enabled+Wireless+Powered+Communication+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xie%2C+Lifeng&rft.au=Xu%2C+Jie&rft.au=Zhang%2C+Rui&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=6&rft.issue=2&rft.spage=1690&rft.epage=1703&rft_id=info:doi/10.1109%2FJIOT.2018.2875446&rft.externalDocID=8489918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon