Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks
This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the user...
Saved in:
Published in | IEEE internet of things journal Vol. 6; no. 2; pp. 1690 - 1703 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the users in the downlink, and the users use the harvested RF energy to send independent information to the UAV in the uplink. Unlike the conventional WPCN with fixed APs, the UAV-enabled WPCN can exploit the mobility of the UAV via trajectory design, jointly with the wireless resource allocation optimization, to maximize the system throughput. In particular, we aim to maximize the uplink common (minimum) throughput among all ground users over a finite UAV's flight period, subject to its maximum speed constraint and the users' energy neutrality constraints. The resulted problem is nonconvex and thus difficult to be solved optimally. To tackle this challenge, we first consider an ideal case without the UAV's maximum speed constraint, and obtain the optimal solution to the relaxed problem. The optimal solution shows that the UAV should successively hover above a finite number of ground locations for downlink WPT, as well as above each of the ground users for uplink communication. Next, we consider the general problem with the UAV's maximum speed constraint. Based on the above multilocation-hovering solution, we first propose an efficient successive hover-and-fly trajectory design, jointly with the downlink and uplink wireless resource allocation, and then propose a locally optimal solution by applying the techniques of alternating optimization and successive convex programming (SCP). Numerical results show that the proposed UAV-enabled WPCN achieves significant throughput gains over the conventional WPCN with fixed-location AP. |
---|---|
AbstractList | This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the users in the downlink, and the users use the harvested RF energy to send independent information to the UAV in the uplink. Unlike the conventional WPCN with fixed APs, the UAV-enabled WPCN can exploit the mobility of the UAV via trajectory design, jointly with the wireless resource allocation optimization, to maximize the system throughput. In particular, we aim to maximize the uplink common (minimum) throughput among all ground users over a finite UAV’s flight period, subject to its maximum speed constraint and the users’ energy neutrality constraints. The resulted problem is nonconvex and thus difficult to be solved optimally. To tackle this challenge, we first consider an ideal case without the UAV’s maximum speed constraint, and obtain the optimal solution to the relaxed problem. The optimal solution shows that the UAV should successively hover above a finite number of ground locations for downlink WPT, as well as above each of the ground users for uplink communication. Next, we consider the general problem with the UAV’s maximum speed constraint. Based on the above multilocation-hovering solution, we first propose an efficient successive hover-and-fly trajectory design, jointly with the downlink and uplink wireless resource allocation, and then propose a locally optimal solution by applying the techniques of alternating optimization and successive convex programming (SCP). Numerical results show that the proposed UAV-enabled WPCN achieves significant throughput gains over the conventional WPCN with fixed-location AP. |
Author | Xie, Lifeng Xu, Jie Zhang, Rui |
Author_xml | – sequence: 1 givenname: Lifeng orcidid: 0000-0001-7154-5428 surname: Xie fullname: Xie, Lifeng email: lifengxie22039@gmail.com organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: jiexu@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Rui orcidid: 0000-0002-8729-8393 surname: Zhang fullname: Zhang, Rui email: elezhang@nus.edu.sg organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore |
BookMark | eNp9kE1PwkAQhjcGExH5AcZLE8_F3W3360gIKgbFA-ix6cdUFksXd9ug_npbS4zx4F5mM3memcl7inqlKQGhc4JHhGB1dTdbLEcUEzmiUrAw5EeoTwMq_JBz2vv1P0FD5zYY40ZjRPE-WizX1tQv611deffxu97qz7jSpvRyY73V-MmflnFSQOY9awsFOOc9mj3YpjEx221d6rTDH6DaG_vqztBxHhcOhoc6QKvr6XJy688XN7PJeO6nAVOVDxxDyHJKsaBKZoJSmQHBwKkgLISEkZwzJSROJKEM8jDDPAmFUCKPBU1oMECX3dydNW81uCramNqWzcqItg8zJkRDiY5KrXHOQh6luvo-uLKxLiKCozbAqA0wagOMDgE2Jvlj7qzexvbjX-eiczQA_PAylEoRGXwBk7p8tg |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_TVT_2021_3129880 crossref_primary_10_1109_TCOMM_2022_3148364 crossref_primary_10_1016_j_phycom_2021_101392 crossref_primary_10_1016_j_comnet_2023_109644 crossref_primary_10_1109_JIOT_2019_2958975 crossref_primary_10_1109_TCCN_2024_3407096 crossref_primary_10_3390_s23062994 crossref_primary_10_1109_TVT_2020_2972133 crossref_primary_10_1109_LWC_2020_2965942 crossref_primary_10_1109_JIOT_2022_3156865 crossref_primary_10_1109_TGCN_2022_3218314 crossref_primary_10_1016_j_hcc_2024_100272 crossref_primary_10_1109_JIOT_2020_3043210 crossref_primary_10_1109_OJCOMS_2020_3042257 crossref_primary_10_1109_TCOMM_2020_3044599 crossref_primary_10_1109_JIOT_2020_3012835 crossref_primary_10_1109_TVT_2019_2935877 crossref_primary_10_1109_LCOMM_2022_3161382 crossref_primary_10_1016_j_sysarc_2022_102617 crossref_primary_10_1109_JIOT_2021_3058680 crossref_primary_10_1109_TCOMM_2019_2953641 crossref_primary_10_1109_JIOT_2024_3369069 crossref_primary_10_1109_JIOT_2021_3111641 crossref_primary_10_1109_ACCESS_2019_2961977 crossref_primary_10_1016_j_jksuci_2024_102225 crossref_primary_10_1016_j_scs_2023_104559 crossref_primary_10_1109_JIOT_2023_3301088 crossref_primary_10_1109_LCOMM_2021_3122129 crossref_primary_10_1109_TGCN_2021_3093718 crossref_primary_10_1109_TVT_2022_3231295 crossref_primary_10_1109_TWC_2022_3148996 crossref_primary_10_1109_TWC_2019_2946153 crossref_primary_10_1109_ACCESS_2019_2959637 crossref_primary_10_1109_TWC_2020_2989302 crossref_primary_10_1109_ACCESS_2020_3034917 crossref_primary_10_1109_TCCN_2024_3440920 crossref_primary_10_1109_JIOT_2019_2943147 crossref_primary_10_1049_cmu2_12646 crossref_primary_10_1109_TCYB_2020_3041261 crossref_primary_10_3390_app13116774 crossref_primary_10_1016_j_comcom_2019_12_009 crossref_primary_10_1109_JIOT_2021_3121421 crossref_primary_10_3390_fi16120433 crossref_primary_10_1016_j_micpro_2023_104875 crossref_primary_10_1007_s11235_022_00974_3 crossref_primary_10_1109_TVT_2022_3208839 crossref_primary_10_1109_JPROC_2019_2952892 crossref_primary_10_1109_TGCN_2020_3007814 crossref_primary_10_1109_ACCESS_2023_3349208 crossref_primary_10_1109_JIOT_2022_3150616 crossref_primary_10_1186_s13638_021_02051_w crossref_primary_10_3390_app12042226 crossref_primary_10_1016_j_dcan_2023_09_003 crossref_primary_10_1109_TVT_2020_3026788 crossref_primary_10_3390_rs11182144 crossref_primary_10_1109_TCOMM_2020_3011990 crossref_primary_10_1109_JIOT_2020_3026756 crossref_primary_10_1109_TVT_2021_3090849 crossref_primary_10_1109_LWC_2020_3013296 crossref_primary_10_1109_LWC_2020_3038079 crossref_primary_10_1109_JIOT_2021_3137846 crossref_primary_10_1109_TVT_2024_3461333 crossref_primary_10_1007_s11276_023_03421_6 crossref_primary_10_1016_j_adhoc_2021_102474 crossref_primary_10_1109_TVT_2020_2989455 crossref_primary_10_1109_ACCESS_2021_3065055 crossref_primary_10_1109_JIOT_2020_3005133 crossref_primary_10_1016_j_adhoc_2019_102052 crossref_primary_10_1109_JIOT_2022_3202252 crossref_primary_10_1109_JSAC_2021_3088664 crossref_primary_10_1016_j_phycom_2021_101462 crossref_primary_10_1177_15501477211069910 crossref_primary_10_1109_JIOT_2023_3274549 crossref_primary_10_3390_drones7070460 crossref_primary_10_3390_s24051599 crossref_primary_10_1109_ACCESS_2019_2954332 crossref_primary_10_3390_s20092598 crossref_primary_10_1016_j_vehcom_2023_100632 crossref_primary_10_1016_j_adhoc_2021_102466 crossref_primary_10_1109_JIOT_2021_3125566 crossref_primary_10_1109_OJVT_2022_3177253 crossref_primary_10_1109_TII_2020_2974047 crossref_primary_10_1109_JIOT_2021_3065689 crossref_primary_10_1109_JIOT_2023_3289793 crossref_primary_10_1007_s11276_022_02955_5 crossref_primary_10_1109_LWC_2019_2947430 crossref_primary_10_1007_s11432_020_3060_4 crossref_primary_10_1109_ACCESS_2024_3519598 crossref_primary_10_1109_ACCESS_2019_2918135 crossref_primary_10_1016_j_comnet_2022_108857 crossref_primary_10_1109_TCOMM_2023_3240697 crossref_primary_10_1109_TGCN_2020_3007588 crossref_primary_10_1109_ACCESS_2024_3352085 crossref_primary_10_3390_s22124520 crossref_primary_10_1109_ACCESS_2024_3506393 crossref_primary_10_1109_JIOT_2020_3041303 crossref_primary_10_1109_TWC_2021_3103739 crossref_primary_10_3390_s23020863 crossref_primary_10_1109_JSAC_2021_3088681 crossref_primary_10_1109_TVT_2023_3260826 crossref_primary_10_1007_s11276_019_02240_y crossref_primary_10_1109_TVT_2021_3096603 crossref_primary_10_1109_LCOMM_2019_2962774 crossref_primary_10_1109_TVT_2023_3275758 crossref_primary_10_1109_JIOT_2020_3031622 crossref_primary_10_1109_JIOT_2021_3103892 crossref_primary_10_1109_JIOT_2022_3160691 crossref_primary_10_1109_TGCN_2019_2926131 crossref_primary_10_1186_s13638_019_1598_7 crossref_primary_10_1109_LCOMM_2023_3252725 crossref_primary_10_1109_JSTSP_2022_3172587 crossref_primary_10_1109_TITS_2021_3082512 crossref_primary_10_1109_JIOT_2020_3019186 crossref_primary_10_1109_LCOMM_2023_3327935 crossref_primary_10_3390_s20226680 crossref_primary_10_1109_JSAC_2020_3005489 crossref_primary_10_1109_JIOT_2019_2954530 crossref_primary_10_1109_TVT_2023_3274815 crossref_primary_10_1109_ACCESS_2019_2922651 crossref_primary_10_1109_TVT_2024_3367624 crossref_primary_10_1109_JSAC_2021_3065049 crossref_primary_10_1109_TCCN_2020_3027696 crossref_primary_10_1109_TVT_2019_2917947 crossref_primary_10_1109_ACCESS_2023_3331752 crossref_primary_10_1109_ACCESS_2020_2964042 crossref_primary_10_3390_photonics10111210 crossref_primary_10_1109_ACCESS_2019_2962547 crossref_primary_10_1109_JIOT_2023_3281584 crossref_primary_10_1016_j_adhoc_2022_102844 crossref_primary_10_1109_JIOT_2021_3079448 crossref_primary_10_1109_LCOMM_2021_3106512 crossref_primary_10_1109_JIOT_2021_3126290 crossref_primary_10_1109_JIOT_2022_3190813 crossref_primary_10_1016_j_comnet_2020_107471 crossref_primary_10_1109_JSAC_2021_3088627 crossref_primary_10_1109_ACCESS_2021_3054652 crossref_primary_10_1109_TVT_2021_3112483 crossref_primary_10_1109_TCOMM_2020_2971488 crossref_primary_10_1016_j_comcom_2023_12_011 crossref_primary_10_1109_TVT_2019_2961993 crossref_primary_10_1109_TWC_2022_3169533 crossref_primary_10_3390_s22239359 crossref_primary_10_1109_JSAC_2021_3088632 crossref_primary_10_1109_LCOMM_2019_2945565 crossref_primary_10_1016_j_phycom_2020_101136 crossref_primary_10_1109_ACCESS_2022_3176362 crossref_primary_10_1109_JIOT_2023_3265507 crossref_primary_10_1109_JSTSP_2021_3098963 crossref_primary_10_1109_TVT_2023_3291174 crossref_primary_10_1109_TWC_2020_3007648 crossref_primary_10_1109_ACCESS_2020_3021672 crossref_primary_10_1109_TVT_2023_3280848 crossref_primary_10_3390_s22186859 crossref_primary_10_1002_ett_4630 crossref_primary_10_1109_TCOMM_2020_3006908 crossref_primary_10_1016_j_aej_2020_11_027 crossref_primary_10_1109_TNSM_2024_3454217 crossref_primary_10_1109_TWC_2020_2971987 crossref_primary_10_1109_TR_2022_3161336 crossref_primary_10_3390_s19204521 crossref_primary_10_1109_TCOMM_2022_3152576 crossref_primary_10_1109_ACCESS_2020_3040868 crossref_primary_10_1016_j_phycom_2025_102650 crossref_primary_10_1109_ACCESS_2019_2938679 crossref_primary_10_1109_TWC_2020_3030773 crossref_primary_10_1049_iet_com_2019_1207 crossref_primary_10_1109_JSAC_2019_2947929 crossref_primary_10_1007_s11277_024_11547_9 crossref_primary_10_1109_TWC_2020_3035425 crossref_primary_10_1109_JIOT_2019_2953691 crossref_primary_10_1007_s00607_023_01245_y crossref_primary_10_1109_MWC_001_1900656 crossref_primary_10_1109_JIOT_2022_3218674 crossref_primary_10_1109_TGCN_2021_3101200 crossref_primary_10_1016_j_phycom_2020_101234 crossref_primary_10_1109_TVT_2019_2960765 crossref_primary_10_1007_s12046_021_01678_1 crossref_primary_10_1016_j_phycom_2023_102200 crossref_primary_10_1109_ACCESS_2019_2906088 crossref_primary_10_1109_JIOT_2019_2943608 crossref_primary_10_1109_TWC_2022_3182813 crossref_primary_10_3390_drones7110672 crossref_primary_10_1109_ACCESS_2020_2971962 crossref_primary_10_1109_TVT_2022_3147567 crossref_primary_10_1109_TMC_2021_3075083 crossref_primary_10_1109_TMC_2024_3439556 crossref_primary_10_1109_TAES_2024_3447636 crossref_primary_10_1109_TVT_2021_3049835 crossref_primary_10_3390_s19132989 crossref_primary_10_1016_j_comnet_2021_108623 crossref_primary_10_1109_ACCESS_2023_3266375 crossref_primary_10_1109_TVT_2021_3096540 crossref_primary_10_1109_TNSE_2020_3029048 crossref_primary_10_3390_drones7100628 crossref_primary_10_3390_rs15215126 crossref_primary_10_1109_TVT_2021_3104279 crossref_primary_10_3390_rs13132611 crossref_primary_10_1109_TVT_2021_3065084 crossref_primary_10_1016_j_comcom_2023_05_013 crossref_primary_10_1109_TVT_2020_3015246 crossref_primary_10_1109_TMC_2023_3240763 crossref_primary_10_1016_j_cja_2021_10_038 crossref_primary_10_1109_JIOT_2021_3102185 crossref_primary_10_1109_TGCN_2020_2994513 crossref_primary_10_1049_cmu2_12175 crossref_primary_10_1109_JIOT_2022_3224533 crossref_primary_10_1002_dac_5555 crossref_primary_10_1109_TVT_2020_2969220 crossref_primary_10_1109_TCOMM_2019_2931322 crossref_primary_10_1109_TGCN_2021_3086305 crossref_primary_10_1109_JIOT_2023_3322266 crossref_primary_10_1109_TWC_2021_3116509 crossref_primary_10_1109_TWC_2020_3029225 crossref_primary_10_1109_ACCESS_2020_3046499 crossref_primary_10_1109_TITS_2023_3290619 crossref_primary_10_1109_TWC_2023_3243611 crossref_primary_10_33851_JMIS_2023_10_3_279 crossref_primary_10_1109_ACCESS_2022_3165159 crossref_primary_10_1016_j_dcan_2020_07_007 crossref_primary_10_1049_tje2_12270 crossref_primary_10_1109_TNSE_2023_3346445 crossref_primary_10_1109_TNSE_2021_3066598 crossref_primary_10_1016_j_comcom_2023_09_025 crossref_primary_10_1109_TCOMM_2024_3383113 crossref_primary_10_1109_JIOT_2020_2980328 crossref_primary_10_1109_TNSE_2023_3288990 crossref_primary_10_1016_j_pmcj_2023_101820 crossref_primary_10_1109_ACCESS_2020_3033615 |
Cites_doi | 10.1109/COMST.2015.2499783 10.1109/TSP.2015.2396009 10.1109/LCOMM.2015.2495187 10.1007/s41650-017-0013-y 10.1109/TSP.2016.2601284 10.1109/LCOMM.2015.2478460 10.1109/TSP.2016.2526965 10.1109/MWC.2016.7462480 10.1109/JIOT.2017.2772318 10.1109/TWC.2017.2785305 10.1109/TWC.2015.2503334 10.1109/ICC.2016.7510820 10.1109/LCOMM.2016.2578312 10.1109/MCOM.2015.7081084 10.1017/CBO9780511804441 10.1109/JSAC.2018.2864421 10.1109/GLOCOMW.2017.8269097 10.1109/MCOM.2016.7470933 10.1109/TWC.2018.2838134 10.1109/LWC.2017.2776922 10.1007/s41650-017-0018-6 10.1109/TWC.2013.112513.130760 10.1109/GLOCOM.2017.8254949 10.1109/MCOM.2015.7081079 10.1109/TCOMM.2016.2611512 10.1109/TCOMM.2006.877962 10.1109/TNET.2012.2185831 10.1109/GLOCOM.2014.7037009 10.1109/TSP.2014.2352604 10.1109/TCOMM.2014.2370035 10.1109/ICC.2018.8422581 10.1109/TCOMM.2017.2676103 10.1109/LCOMM.2016.2633248 10.1109/TMC.2016.2603152 10.1109/TSP.2014.2340817 10.1109/TWC.2016.2531652 10.1109/TMC.2015.2473163 10.1109/GLOCOMW.2017.8269065 10.1109/TWC.2017.2789293 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2018.2875446 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 1703 |
ExternalDocumentID | 10_1109_JIOT_2018_2875446 8489918 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871137; 61628103 funderid: 10.13039/501100001809 – fundername: National University of Singapore grantid: R-263-000-D12-114 funderid: 10.13039/501100001352 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-e60e45f2207298d7228de10e627154eb51f659780b8125ef4d06b47797fa72b23 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Sun Jun 29 15:15:43 EDT 2025 Tue Jul 01 04:07:57 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Wed Aug 27 02:49:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-e60e45f2207298d7228de10e627154eb51f659780b8125ef4d06b47797fa72b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8729-8393 0000-0002-4854-8839 0000-0001-7154-5428 |
PQID | 2222205577 |
PQPubID | 2040421 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2222205577 crossref_citationtrail_10_1109_JIOT_2018_2875446 ieee_primary_8489918 crossref_primary_10_1109_JIOT_2018_2875446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 lawler (ref40) 1985 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 xie (ref1) 2018 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/COMST.2015.2499783 – year: 1985 ident: ref40 publication-title: The Traveling Salesman Problem A Guided Tour of Combinatorial Optimization – ident: ref17 doi: 10.1109/TSP.2015.2396009 – ident: ref15 doi: 10.1109/LCOMM.2015.2495187 – ident: ref4 doi: 10.1007/s41650-017-0013-y – ident: ref37 doi: 10.1109/TSP.2016.2601284 – ident: ref36 doi: 10.1109/LCOMM.2015.2478460 – ident: ref14 doi: 10.1109/TSP.2016.2526965 – ident: ref7 doi: 10.1109/MWC.2016.7462480 – ident: ref5 doi: 10.1109/JIOT.2017.2772318 – ident: ref10 doi: 10.1109/TWC.2017.2785305 – ident: ref9 doi: 10.1109/TWC.2015.2503334 – ident: ref22 doi: 10.1109/ICC.2016.7510820 – ident: ref23 doi: 10.1109/LCOMM.2016.2578312 – ident: ref6 doi: 10.1109/MCOM.2015.7081084 – ident: ref41 doi: 10.1017/CBO9780511804441 – ident: ref25 doi: 10.1109/JSAC.2018.2864421 – ident: ref30 doi: 10.1109/GLOCOMW.2017.8269097 – ident: ref18 doi: 10.1109/MCOM.2016.7470933 – ident: ref29 doi: 10.1109/TWC.2018.2838134 – ident: ref21 doi: 10.1109/LWC.2017.2776922 – ident: ref35 doi: 10.1007/s41650-017-0018-6 – ident: ref8 doi: 10.1109/TWC.2013.112513.130760 – ident: ref31 doi: 10.1109/GLOCOM.2017.8254949 – ident: ref38 doi: 10.1109/MCOM.2015.7081079 – ident: ref19 doi: 10.1109/TCOMM.2016.2611512 – ident: ref39 doi: 10.1109/TCOMM.2006.877962 – ident: ref32 doi: 10.1109/TNET.2012.2185831 – ident: ref16 doi: 10.1109/GLOCOM.2014.7037009 – ident: ref11 doi: 10.1109/TSP.2014.2352604 – ident: ref12 doi: 10.1109/TCOMM.2014.2370035 – ident: ref26 doi: 10.1109/ICC.2018.8422581 – start-page: 1 year: 2018 ident: ref1 article-title: Throughput maximization for UAV-enabled wireless powered communication networks publication-title: Proc IEEE VTC Spring – ident: ref3 doi: 10.1109/TCOMM.2017.2676103 – ident: ref20 doi: 10.1109/LCOMM.2016.2633248 – ident: ref34 doi: 10.1109/TMC.2016.2603152 – ident: ref13 doi: 10.1109/TSP.2014.2340817 – ident: ref28 doi: 10.1109/TWC.2016.2531652 – ident: ref33 doi: 10.1109/TMC.2015.2473163 – ident: ref27 doi: 10.1109/GLOCOMW.2017.8269065 – ident: ref24 doi: 10.1109/TWC.2017.2789293 |
SSID | ssj0001105196 |
Score | 2.580422 |
Snippet | This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1690 |
SubjectTerms | Charge transfer Communication Communication networks Convexity Downlink Hovering Optimization Radio frequency Resource allocation Resource management Throughput Trajectories Trajectory trajectory optimization unmanned aerial vehicle (UAV) Unmanned aerial vehicles Uplink Wireless communication Wireless communications wireless power transfer (WPT) Wireless power transmission wireless powered communication network (WPCN) Wireless sensor networks |
Title | Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks |
URI | https://ieeexplore.ieee.org/document/8489918 https://www.proquest.com/docview/2222205577 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJy-iohFF04Mn48K2u9tuj8RgkATwAIbbhna7iRHBCCTGX29nt-Azxj01TbtpZvr4pp35BuCC6qlmVAcem0ppDZRAeXEmAk9yncVBajEIxeDk_oB3x2FvEk1KcLWNhTHG5M5nponF_C0_Xeg1XpW14tBaBzQuQ9kabkWs1sd9CkUwwt3DJfVlq3c7HKHvVty0VkEUIsT9dPTkuVR-bMD5qXJThf5mPIUzyWNzvVJN_faNqvG_A96DXQcvSbuYD_tQMvMDqG5SNxC3kmswHBX5eWw16U9fH55cOCaxGJaM2_deJ4-pSgl6x87sbkjuMJ2arfgSUUIGhRf58hDGN53RdddzuRU8HURy5RnumzDKGEPm8DgVjMWpob7hTFhQZVREMx4hO5GyCCAyWZj6XIVCSJFNBVMsOILKfDE3x0BCyYXJ7DkvkM0v4MoKW4RSIZE81TKrg78Re6Id8Tjmv5gluQHiywQ1laCmEqepOlxuuzwXrBt_Na6h5LcNndDr0NjoNnHrcpkw_JB2TJz83usUduy_ZeGb04DK6mVtzizsWKnzfL69AyW7014 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTuMwEB4hOMAFWFhEF3bxYfeClBI7iR0f9oD4UQu07KFF3ELtOBKCLYi2AvZZeBXebWcSt_xqb0ibU2TZiuIZzXxjz3wD8J3bnhXcRoHoaY0BSmSCtFBRoKUt0ihHDMKpOLnVlo1ufHCanE7Bw6QWxjlXJp-5Or2Wd_n5lR3RUdlWGmN0wFOfQnno7m8xQBv8bO6iNH8Isb_X2WkEvodAYKNEDwMnQxcnhRDEkJ3mSog0dzx0UigED84kvJAJsfAY9HSJK-I8lCZWSquip4QhWgM08DOIMxJRVYc9neBwgj_SX5XyUG8dNI87lC2W1jEOSWIC1c-cXdm95Y3JL_3Y_gI8jnegSl-5qI-Gpm7_vCKH_F-3aBHmPYBm25XGf4Ip11-ChXFzCuZt1TIcd6oORDjMWr2789--4JQhSmfd7ZNgr6wayxnl_16ivWe_qGEcDryomWHtKk9-8Bm6H_JbKzDdv-q7VWCxlsoViGQU8RVG0qBwVawNUeVzq4sahGMxZ9ZTq1OHj8usDLFCnZFmZKQZmdeMGmxOllxXvCL_mrxMkp5M9EKuwfpYlzJveQaZoIeI1dSX91dtwGyj0zrKjprtwzWYw-_oKhNpHaaHNyP3FUHW0HwrdZ3B2Udrzl_y3i13 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+for+UAV-Enabled+Wireless+Powered+Communication+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xie%2C+Lifeng&rft.au=Xu%2C+Jie&rft.au=Zhang%2C+Rui&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=6&rft.issue=2&rft.spage=1690&rft.epage=1703&rft_id=info:doi/10.1109%2FJIOT.2018.2875446&rft.externalDocID=8489918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |