Deep-Reinforcement-Learning-Based Mode Selection and Resource Allocation for Cellular V2X Communications

Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links, and high signaling overhead of centralized resource allocation approaches become bottlenecks. In this ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 7; no. 7; pp. 6380 - 6391
Main Authors Zhang, Xinran, Peng, Mugen, Yan, Shi, Sun, Yaohua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2019.2962715

Cover

Abstract Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links, and high signaling overhead of centralized resource allocation approaches become bottlenecks. In this article, we investigate a joint optimization problem of transmission mode selection and resource allocation for cellular V2X communications. In particular, the problem is formulated as a Markov decision process, and a deep reinforcement learning (DRL)-based decentralized algorithm is proposed to maximize the sum capacity of vehicle-to-infrastructure users while meeting the latency and reliability requirements of V2V pairs. Moreover, considering training limitation of local DRL models, a two-timescale federated DRL algorithm is developed to help obtain robust models. Wherein, the graph theory-based vehicle clustering algorithm is executed on a large timescale and in turn, the federated learning algorithm is conducted on a small timescale. The simulation results show that the proposed DRL-based algorithm outperforms other decentralized baselines, and validate the superiority of the two-timescale federated DRL algorithm for newly activated V2V pairs.
AbstractList Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links, and high signaling overhead of centralized resource allocation approaches become bottlenecks. In this article, we investigate a joint optimization problem of transmission mode selection and resource allocation for cellular V2X communications. In particular, the problem is formulated as a Markov decision process, and a deep reinforcement learning (DRL)-based decentralized algorithm is proposed to maximize the sum capacity of vehicle-to-infrastructure users while meeting the latency and reliability requirements of V2V pairs. Moreover, considering training limitation of local DRL models, a two-timescale federated DRL algorithm is developed to help obtain robust models. Wherein, the graph theory-based vehicle clustering algorithm is executed on a large timescale and in turn, the federated learning algorithm is conducted on a small timescale. The simulation results show that the proposed DRL-based algorithm outperforms other decentralized baselines, and validate the superiority of the two-timescale federated DRL algorithm for newly activated V2V pairs.
Author Zhang, Xinran
Peng, Mugen
Sun, Yaohua
Yan, Shi
Author_xml – sequence: 1
  givenname: Xinran
  orcidid: 0000-0002-6965-1309
  surname: Zhang
  fullname: Zhang, Xinran
  email: xrzhang819@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Mugen
  orcidid: 0000-0002-4755-7231
  surname: Peng
  fullname: Peng, Mugen
  email: pmg@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Shi
  orcidid: 0000-0002-5953-1979
  surname: Yan
  fullname: Yan, Shi
  email: yanshi01@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Yaohua
  orcidid: 0000-0002-8200-5010
  surname: Sun
  fullname: Sun, Yaohua
  email: sunyaohua@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9kMtOwzAQRS1UJErpByA2kVin2BMnjpclvIqKKpWC2EWuM4FUiV3sdMHfkz6EEAtWM5q5Z-bqnpKesQYJOWd0xBiVV4-T2WIElMkRyAQEi49IHyIQIU8S6P3qT8jQ-xWltMNiJpM--bhBXIdzrExpncYGTRtOUTlTmffwWnksgidbYPCMNeq2siZQpgjm6O2mkwfjurZa7eYdH2RY15taueAV3oLMNs3GVPu1PyPHpao9Dg91QF7ubhfZQzid3U-y8TTUUSzbEDlNyjhFYKgglZAuqYwwEWoJnAsuBSQaUCmNFGMouYp4oQVwIZZFGpcYDcjl_u7a2c8N-jZfdVZN9zIHDpylqaC0U4m9SjvrvcMy11W7M9o6VdU5o_k22XybbL5NNj8k25HsD7l2VaPc17_MxZ6pEPFHn0rOIwrRN2azhjA
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JIOT_2023_3291370
crossref_primary_10_1109_JSAC_2021_3087244
crossref_primary_10_1109_TVT_2024_3493137
crossref_primary_10_1109_ACCESS_2022_3186703
crossref_primary_10_32604_csse_2023_027833
crossref_primary_10_3390_fi16050152
crossref_primary_10_1109_TVT_2024_3399079
crossref_primary_10_1109_JIOT_2022_3153996
crossref_primary_10_3390_s20082361
crossref_primary_10_1007_s12243_021_00872_w
crossref_primary_10_1016_j_comnet_2024_110768
crossref_primary_10_1109_TCE_2024_3392435
crossref_primary_10_1109_TNSM_2024_3454758
crossref_primary_10_1109_TVT_2023_3340424
crossref_primary_10_1109_TITS_2022_3230430
crossref_primary_10_1007_s12083_023_01535_4
crossref_primary_10_1109_JIOT_2020_3021017
crossref_primary_10_1109_MVT_2024_3451191
crossref_primary_10_1109_ACCESS_2023_3279401
crossref_primary_10_1088_2631_8695_adb8a1
crossref_primary_10_3390_math11132848
crossref_primary_10_1109_TVT_2021_3101516
crossref_primary_10_1016_j_vehcom_2021_100398
crossref_primary_10_1109_JSAC_2023_3242723
crossref_primary_10_1109_JSYST_2024_3397829
crossref_primary_10_1016_j_dcan_2021_08_006
crossref_primary_10_1109_TVT_2024_3453253
crossref_primary_10_1002_ett_4501
crossref_primary_10_1016_j_vehcom_2024_100856
crossref_primary_10_3390_s23031295
crossref_primary_10_1109_TVT_2022_3146260
crossref_primary_10_1109_JIOT_2021_3075250
crossref_primary_10_1587_transinf_2020NTP0006
crossref_primary_10_1109_MVT_2021_3114651
crossref_primary_10_1109_TNET_2024_3364161
crossref_primary_10_1109_JIOT_2022_3140811
crossref_primary_10_1109_OJCOMS_2022_3153226
crossref_primary_10_1109_COMST_2021_3075439
crossref_primary_10_1109_JIOT_2023_3329893
crossref_primary_10_1109_TWC_2024_3387980
crossref_primary_10_1016_j_vehcom_2022_100543
crossref_primary_10_1109_TITS_2024_3365557
crossref_primary_10_55708_js0110008
crossref_primary_10_1016_j_ins_2024_120344
crossref_primary_10_1109_JIOT_2023_3263687
crossref_primary_10_1016_j_cja_2024_06_023
crossref_primary_10_3390_app12126283
crossref_primary_10_1109_JIOT_2021_3089823
crossref_primary_10_3390_electronics11213641
crossref_primary_10_1016_j_phycom_2024_102351
crossref_primary_10_1002_spy2_457
crossref_primary_10_1109_JBHI_2022_3183644
crossref_primary_10_1109_TITS_2022_3150756
crossref_primary_10_1109_JIOT_2023_3294279
crossref_primary_10_1016_j_dcan_2022_07_006
crossref_primary_10_1109_TCOMM_2022_3197605
crossref_primary_10_1109_JIOT_2024_3469547
crossref_primary_10_1109_TITS_2021_3131240
crossref_primary_10_1016_j_adhoc_2023_103256
crossref_primary_10_1016_j_iot_2024_101251
crossref_primary_10_1109_JIOT_2023_3285047
crossref_primary_10_1109_TVT_2023_3328988
crossref_primary_10_1109_JIOT_2020_3010861
crossref_primary_10_1109_TIV_2023_3275632
crossref_primary_10_1109_TVT_2023_3285073
crossref_primary_10_1109_JIOT_2021_3088056
crossref_primary_10_3390_electronics10233015
crossref_primary_10_1109_ACCESS_2023_3349350
crossref_primary_10_1109_JSYST_2022_3226298
crossref_primary_10_1109_TVT_2024_3424398
crossref_primary_10_1016_j_phycom_2021_101470
crossref_primary_10_3390_vehicles3030036
crossref_primary_10_1109_TVT_2021_3098854
crossref_primary_10_3390_drones8080353
crossref_primary_10_1109_TVT_2021_3103058
crossref_primary_10_1049_itr2_12257
crossref_primary_10_1016_j_dcan_2022_12_018
crossref_primary_10_1109_JIOT_2020_3026354
crossref_primary_10_1002_dac_5260
crossref_primary_10_1109_JSTSP_2021_3127796
crossref_primary_10_1186_s13677_023_00512_9
crossref_primary_10_1109_TII_2022_3164395
crossref_primary_10_1109_OJVT_2024_3466858
crossref_primary_10_1145_3664650
crossref_primary_10_3390_s21196542
crossref_primary_10_1109_TII_2023_3264289
crossref_primary_10_1109_TVT_2022_3173057
crossref_primary_10_4018_IJMCMC_320190
crossref_primary_10_1109_TVT_2024_3427814
crossref_primary_10_1109_OJCOMS_2024_3380509
crossref_primary_10_1109_TVT_2022_3189019
crossref_primary_10_1109_ACCESS_2023_3302250
crossref_primary_10_1109_TVT_2024_3452477
crossref_primary_10_1109_JIOT_2024_3485119
crossref_primary_10_1109_TMC_2024_3486728
crossref_primary_10_1109_TMC_2021_3085206
crossref_primary_10_1016_j_vehcom_2022_100532
crossref_primary_10_1109_TITS_2023_3326779
crossref_primary_10_1109_JIOT_2020_3014926
crossref_primary_10_1109_TITS_2024_3505941
crossref_primary_10_1109_OJCOMS_2024_3416808
crossref_primary_10_1016_j_vehcom_2024_100812
crossref_primary_10_1109_TVT_2023_3271613
crossref_primary_10_1155_2022_1177544
crossref_primary_10_1109_TITS_2022_3165662
crossref_primary_10_23919_JSEE_2023_000040
crossref_primary_10_1016_j_jpdc_2023_01_006
crossref_primary_10_1109_TCOMM_2022_3199018
crossref_primary_10_1109_TVT_2023_3259688
crossref_primary_10_1109_JIOT_2021_3064874
crossref_primary_10_3390_telecom6010002
crossref_primary_10_1109_TVT_2024_3444784
crossref_primary_10_1002_dac_4908
crossref_primary_10_1016_j_comcom_2025_108081
crossref_primary_10_1109_TITS_2022_3179987
crossref_primary_10_1109_JIOT_2021_3137984
crossref_primary_10_1109_TCCN_2021_3115098
crossref_primary_10_1109_JIOT_2024_3472472
crossref_primary_10_1109_TVT_2022_3192833
crossref_primary_10_1109_JIOT_2022_3188434
crossref_primary_10_1016_j_jestch_2024_101854
crossref_primary_10_3390_app112311382
crossref_primary_10_3390_math10193415
crossref_primary_10_1109_JIOT_2024_3464853
crossref_primary_10_1109_JSEN_2022_3153338
crossref_primary_10_3390_electronics13040714
crossref_primary_10_38016_jista_1189314
crossref_primary_10_1109_TVT_2023_3326877
crossref_primary_10_3390_electronics14010192
crossref_primary_10_1109_JIOT_2020_2984887
crossref_primary_10_1109_JSAC_2022_3155506
crossref_primary_10_1007_s11277_021_08561_6
crossref_primary_10_1155_2021_5530612
crossref_primary_10_1088_1402_4896_ad8cb2
crossref_primary_10_1109_JSYST_2020_3009998
crossref_primary_10_1109_JIOT_2022_3224927
crossref_primary_10_1109_TITS_2022_3182649
crossref_primary_10_1109_JSYST_2022_3163235
crossref_primary_10_3390_s22051874
crossref_primary_10_3390_s24020337
crossref_primary_10_1016_j_comcom_2024_04_023
crossref_primary_10_1109_TWC_2022_3160099
Cites_doi 10.1109/TVT.2018.2890686
10.1109/ACCESS.2019.2895626
10.1109/JIOT.2019.2940820
10.1109/TVT.2019.2919915
10.1109/COMST.2019.2924243
10.1109/TCOMM.2018.2855212
10.1109/TVT.2019.2935098
10.1109/TCOMM.2019.2939316
10.1109/TWC.2015.2509978
10.1109/JIOT.2018.2871020
10.1109/LWC.2017.2702747
10.1109/TVT.2019.2897134
10.1109/TVT.2019.2921352
10.1109/TWC.2018.2827958
10.1109/JSAC.2019.2916486
10.1038/nature14236
10.1109/ACCESS.2019.2910244
10.1109/TVT.2018.2853612
10.1109/JIOT.2014.2327587
10.1109/JIOT.2019.2903191
10.1109/TNN.1998.712192
10.1109/TVT.2018.2871606
10.1109/TITS.2018.2832219
10.1109/TMM.2016.2535722
10.1109/TWC.2014.2314115
10.1109/LCOMM.2015.2418771
10.1109/MNET.2019.1800286
10.1109/JIOT.2016.2611605
10.1109/MVT.2017.2777259
10.1007/s11222-007-9033-z
10.1109/MCOM.2017.1700523
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2019.2962715
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 6391
ExternalDocumentID 10_1109_JIOT_2019_2962715
8944302
Genre orig-research
GrantInformation_xml – fundername: HUAWEI Technical Cooperative Project
– fundername: State Major Science and Technology Special Project
  grantid: 2018ZX03001025
– fundername: National Program for Special Support of Eminent Professionals
– fundername: National Natural Science Foundation of China
  grantid: 61921003; 61925101; 61831002; 61901044
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-e406f58e21ea28928b093e67ab244749726c2eaace0e52f4a34dc72477bd85fe3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 02:11:05 EDT 2025
Tue Jul 01 04:08:01 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Wed Aug 27 02:35:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-e406f58e21ea28928b093e67ab244749726c2eaace0e52f4a34dc72477bd85fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6965-1309
0000-0002-5953-1979
0000-0002-8200-5010
0000-0002-4755-7231
PQID 2424188700
PQPubID 2040421
PageCount 12
ParticipantIDs proquest_journals_2424188700
crossref_citationtrail_10_1109_JIOT_2019_2962715
crossref_primary_10_1109_JIOT_2019_2962715
ieee_primary_8944302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref11
ref10
(ref7) 2018
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
mnih (ref27) 2015; 518
ref28
ref29
ref8
ref9
ref4
ref3
ref6
mcmahan (ref31) 2017
ref5
konecný (ref32) 2017
References_xml – ident: ref24
  doi: 10.1109/TVT.2018.2890686
– ident: ref16
  doi: 10.1109/ACCESS.2019.2895626
– ident: ref33
  doi: 10.1109/JIOT.2019.2940820
– ident: ref28
  doi: 10.1109/TVT.2019.2919915
– ident: ref18
  doi: 10.1109/COMST.2019.2924243
– ident: ref15
  doi: 10.1109/TCOMM.2018.2855212
– ident: ref29
  doi: 10.1109/TVT.2019.2935098
– ident: ref22
  doi: 10.1109/TCOMM.2019.2939316
– ident: ref8
  doi: 10.1109/TWC.2015.2509978
– ident: ref17
  doi: 10.1109/JIOT.2018.2871020
– year: 2017
  ident: ref32
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv 1610 05492
– ident: ref10
  doi: 10.1109/LWC.2017.2702747
– ident: ref12
  doi: 10.1109/TVT.2019.2897134
– ident: ref13
  doi: 10.1109/TVT.2019.2921352
– ident: ref9
  doi: 10.1109/TWC.2018.2827958
– ident: ref20
  doi: 10.1109/JSAC.2019.2916486
– volume: 518
  start-page: 529
  year: 2015
  ident: ref27
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref6
  doi: 10.1109/ACCESS.2019.2910244
– ident: ref25
  doi: 10.1109/TVT.2018.2853612
– ident: ref5
  doi: 10.1109/JIOT.2014.2327587
– ident: ref21
  doi: 10.1109/JIOT.2019.2903191
– ident: ref26
  doi: 10.1109/TNN.1998.712192
– ident: ref14
  doi: 10.1109/TVT.2018.2871606
– ident: ref19
  doi: 10.1109/TITS.2018.2832219
– ident: ref4
  doi: 10.1109/TMM.2016.2535722
– year: 2018
  ident: ref7
  article-title: Study on evaluation methodology of new Vehicle-to-Everything (V2X) use cases for LTE and NR
– ident: ref11
  doi: 10.1109/TWC.2014.2314115
– ident: ref30
  doi: 10.1109/LCOMM.2015.2418771
– ident: ref23
  doi: 10.1109/MNET.2019.1800286
– ident: ref3
  doi: 10.1109/JIOT.2016.2611605
– ident: ref1
  doi: 10.1109/MVT.2017.2777259
– ident: ref34
  doi: 10.1007/s11222-007-9033-z
– start-page: 1
  year: 2017
  ident: ref31
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc Int Conf Artif Intell Statist (AISTATS)
– ident: ref2
  doi: 10.1109/MCOM.2017.1700523
SSID ssj0001105196
Score 2.5739818
Snippet Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6380
SubjectTerms Algorithms
Cellular communication
Cellular vehicle-to-everything (V2X) communications
Clustering
Clustering algorithms
Computer simulation
deep reinforcement learning (DRL)
Graph theory
Interference
Machine learning
Markov processes
Modal choice
mode selection
Optimization
Quality of service
Reinforcement learning
Reliability
Reliability engineering
Resource allocation
Resource management
Safety critical
Time
Vehicle-to-everything
Title Deep-Reinforcement-Learning-Based Mode Selection and Resource Allocation for Cellular V2X Communications
URI https://ieeexplore.ieee.org/document/8944302
https://www.proquest.com/docview/2424188700
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jy9WrWK1yh48iUk3m83rWKulFqqgrfQWks1EwZIW21789e5sNvWJeAthBxa-ncfOzsxHyBlXdleZ_tRyQxFZIgClUtioi6425yJJZI6pgeGt3x-LwcSbbJCLdS8MAOjiM7DxU7_lZzO5wlRZO4yEcHFy5KY6ZmWv1kc-xcFgxDcPlw6L2oObuxHWbkU2R4YZJL795Ho0l8oPA6y9Sq9OhtV-ymKSF3u1TG359m1U4383vEO2TXhJO-V52CUbUOyRekXdQI0mN8jzFcDcugc9N1XqFKFlRq0-WZfKs2UUWdLog6bJUdjRpMholeunnSn6QP1fydMuTKdYzkof-YR-aTlZ7JNx73rU7VuGdMGSrhctLVAePvdC4A4k6jLGw5RFLvhBkqpAIBBRwH3JQWEIDDyei8QVmQy4CII0C70c3ANSK2YFHBKqDK0jvIyBdHGum_IKOfihp2Q9JmTiNwmr8IilmUiOxBjTWN9MWBQjhDFCGBsIm-R8LTIvx3H8tbiBkKwXGjSapFWBHhuFXcTYJeMog8vY0e9Sx2SL41VbV-q2SG35uoITFY8s01N9EN8BVmbddg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOMCFsopCAR84IVIcx85yZFVZChIU1FuUOBOQqAqi7YWvx-M6ZRXiFkUeydKz59njmXkAO8L4XeP6cy-IZeLJCM2WokJdotpSyCzTJYUG2ldh606ed1V3CvYmtTCIaJPPsEmf9i2_eNYjCpXtx4mUAXWOnDG8L9W4WusjouLTcSR0T5c-T_bPz647lL2VNAVpzJD07SfysWoqP1yw5ZXTGrSrGY3TSZ6ao2He1G_fmjX-d8oLMO8OmOxgvCIWYQr7S1CrxBuY28vL8HiM-OLdoO2cqm2Q0HPNVh-8Q8NtBSOdNHZrhXIMeizrF6yK9rODHrGg_W_s2RH2epTQyu5Fl30pOhmswN3pSeeo5TnZBU8HKhl6aDi-VDEKHzNzHRNxzpMAwyjLzVEgkkkkQi3QoIgclShlFshCR0JGUV7EqsRgFab7z31cA2ZcrS9VwVEH1NnN8EKJYayMreJSZ2EdeIVHql1PcpLG6KX2bsKTlCBMCcLUQViH3YnJy7ghx1-DlwmSyUCHRh0aFeip27KDlOpkfONyOV__3WobZlud9mV6eXZ1sQFzgi7eNm-3AdPD1xFumtPJMN-yi_IdFJTgww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Reinforcement-Learning-Based+Mode+Selection+and+Resource+Allocation+for+Cellular+V2X+Communications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Xinran&rft.au=Peng%2C+Mugen&rft.au=Yan%2C+Shi&rft.au=Sun%2C+Yaohua&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=7&rft.issue=7&rft.spage=6380&rft.epage=6391&rft_id=info:doi/10.1109%2FJIOT.2019.2962715&rft.externalDocID=8944302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon