Deep-Reinforcement-Learning-Based Mode Selection and Resource Allocation for Cellular V2X Communications
Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links, and high signaling overhead of centralized resource allocation approaches become bottlenecks. In this ar...
Saved in:
Published in | IEEE internet of things journal Vol. 7; no. 7; pp. 6380 - 6391 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2019.2962715 |
Cover
Abstract | Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links, and high signaling overhead of centralized resource allocation approaches become bottlenecks. In this article, we investigate a joint optimization problem of transmission mode selection and resource allocation for cellular V2X communications. In particular, the problem is formulated as a Markov decision process, and a deep reinforcement learning (DRL)-based decentralized algorithm is proposed to maximize the sum capacity of vehicle-to-infrastructure users while meeting the latency and reliability requirements of V2V pairs. Moreover, considering training limitation of local DRL models, a two-timescale federated DRL algorithm is developed to help obtain robust models. Wherein, the graph theory-based vehicle clustering algorithm is executed on a large timescale and in turn, the federated learning algorithm is conducted on a small timescale. The simulation results show that the proposed DRL-based algorithm outperforms other decentralized baselines, and validate the superiority of the two-timescale federated DRL algorithm for newly activated V2V pairs. |
---|---|
AbstractList | Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links, and high signaling overhead of centralized resource allocation approaches become bottlenecks. In this article, we investigate a joint optimization problem of transmission mode selection and resource allocation for cellular V2X communications. In particular, the problem is formulated as a Markov decision process, and a deep reinforcement learning (DRL)-based decentralized algorithm is proposed to maximize the sum capacity of vehicle-to-infrastructure users while meeting the latency and reliability requirements of V2V pairs. Moreover, considering training limitation of local DRL models, a two-timescale federated DRL algorithm is developed to help obtain robust models. Wherein, the graph theory-based vehicle clustering algorithm is executed on a large timescale and in turn, the federated learning algorithm is conducted on a small timescale. The simulation results show that the proposed DRL-based algorithm outperforms other decentralized baselines, and validate the superiority of the two-timescale federated DRL algorithm for newly activated V2V pairs. |
Author | Zhang, Xinran Peng, Mugen Sun, Yaohua Yan, Shi |
Author_xml | – sequence: 1 givenname: Xinran orcidid: 0000-0002-6965-1309 surname: Zhang fullname: Zhang, Xinran email: xrzhang819@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Mugen orcidid: 0000-0002-4755-7231 surname: Peng fullname: Peng, Mugen email: pmg@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Shi orcidid: 0000-0002-5953-1979 surname: Yan fullname: Yan, Shi email: yanshi01@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Yaohua orcidid: 0000-0002-8200-5010 surname: Sun fullname: Sun, Yaohua email: sunyaohua@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China |
BookMark | eNp9kMtOwzAQRS1UJErpByA2kVin2BMnjpclvIqKKpWC2EWuM4FUiV3sdMHfkz6EEAtWM5q5Z-bqnpKesQYJOWd0xBiVV4-T2WIElMkRyAQEi49IHyIQIU8S6P3qT8jQ-xWltMNiJpM--bhBXIdzrExpncYGTRtOUTlTmffwWnksgidbYPCMNeq2siZQpgjm6O2mkwfjurZa7eYdH2RY15taueAV3oLMNs3GVPu1PyPHpao9Dg91QF7ubhfZQzid3U-y8TTUUSzbEDlNyjhFYKgglZAuqYwwEWoJnAsuBSQaUCmNFGMouYp4oQVwIZZFGpcYDcjl_u7a2c8N-jZfdVZN9zIHDpylqaC0U4m9SjvrvcMy11W7M9o6VdU5o_k22XybbL5NNj8k25HsD7l2VaPc17_MxZ6pEPFHn0rOIwrRN2azhjA |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_JIOT_2023_3291370 crossref_primary_10_1109_JSAC_2021_3087244 crossref_primary_10_1109_TVT_2024_3493137 crossref_primary_10_1109_ACCESS_2022_3186703 crossref_primary_10_32604_csse_2023_027833 crossref_primary_10_3390_fi16050152 crossref_primary_10_1109_TVT_2024_3399079 crossref_primary_10_1109_JIOT_2022_3153996 crossref_primary_10_3390_s20082361 crossref_primary_10_1007_s12243_021_00872_w crossref_primary_10_1016_j_comnet_2024_110768 crossref_primary_10_1109_TCE_2024_3392435 crossref_primary_10_1109_TNSM_2024_3454758 crossref_primary_10_1109_TVT_2023_3340424 crossref_primary_10_1109_TITS_2022_3230430 crossref_primary_10_1007_s12083_023_01535_4 crossref_primary_10_1109_JIOT_2020_3021017 crossref_primary_10_1109_MVT_2024_3451191 crossref_primary_10_1109_ACCESS_2023_3279401 crossref_primary_10_1088_2631_8695_adb8a1 crossref_primary_10_3390_math11132848 crossref_primary_10_1109_TVT_2021_3101516 crossref_primary_10_1016_j_vehcom_2021_100398 crossref_primary_10_1109_JSAC_2023_3242723 crossref_primary_10_1109_JSYST_2024_3397829 crossref_primary_10_1016_j_dcan_2021_08_006 crossref_primary_10_1109_TVT_2024_3453253 crossref_primary_10_1002_ett_4501 crossref_primary_10_1016_j_vehcom_2024_100856 crossref_primary_10_3390_s23031295 crossref_primary_10_1109_TVT_2022_3146260 crossref_primary_10_1109_JIOT_2021_3075250 crossref_primary_10_1587_transinf_2020NTP0006 crossref_primary_10_1109_MVT_2021_3114651 crossref_primary_10_1109_TNET_2024_3364161 crossref_primary_10_1109_JIOT_2022_3140811 crossref_primary_10_1109_OJCOMS_2022_3153226 crossref_primary_10_1109_COMST_2021_3075439 crossref_primary_10_1109_JIOT_2023_3329893 crossref_primary_10_1109_TWC_2024_3387980 crossref_primary_10_1016_j_vehcom_2022_100543 crossref_primary_10_1109_TITS_2024_3365557 crossref_primary_10_55708_js0110008 crossref_primary_10_1016_j_ins_2024_120344 crossref_primary_10_1109_JIOT_2023_3263687 crossref_primary_10_1016_j_cja_2024_06_023 crossref_primary_10_3390_app12126283 crossref_primary_10_1109_JIOT_2021_3089823 crossref_primary_10_3390_electronics11213641 crossref_primary_10_1016_j_phycom_2024_102351 crossref_primary_10_1002_spy2_457 crossref_primary_10_1109_JBHI_2022_3183644 crossref_primary_10_1109_TITS_2022_3150756 crossref_primary_10_1109_JIOT_2023_3294279 crossref_primary_10_1016_j_dcan_2022_07_006 crossref_primary_10_1109_TCOMM_2022_3197605 crossref_primary_10_1109_JIOT_2024_3469547 crossref_primary_10_1109_TITS_2021_3131240 crossref_primary_10_1016_j_adhoc_2023_103256 crossref_primary_10_1016_j_iot_2024_101251 crossref_primary_10_1109_JIOT_2023_3285047 crossref_primary_10_1109_TVT_2023_3328988 crossref_primary_10_1109_JIOT_2020_3010861 crossref_primary_10_1109_TIV_2023_3275632 crossref_primary_10_1109_TVT_2023_3285073 crossref_primary_10_1109_JIOT_2021_3088056 crossref_primary_10_3390_electronics10233015 crossref_primary_10_1109_ACCESS_2023_3349350 crossref_primary_10_1109_JSYST_2022_3226298 crossref_primary_10_1109_TVT_2024_3424398 crossref_primary_10_1016_j_phycom_2021_101470 crossref_primary_10_3390_vehicles3030036 crossref_primary_10_1109_TVT_2021_3098854 crossref_primary_10_3390_drones8080353 crossref_primary_10_1109_TVT_2021_3103058 crossref_primary_10_1049_itr2_12257 crossref_primary_10_1016_j_dcan_2022_12_018 crossref_primary_10_1109_JIOT_2020_3026354 crossref_primary_10_1002_dac_5260 crossref_primary_10_1109_JSTSP_2021_3127796 crossref_primary_10_1186_s13677_023_00512_9 crossref_primary_10_1109_TII_2022_3164395 crossref_primary_10_1109_OJVT_2024_3466858 crossref_primary_10_1145_3664650 crossref_primary_10_3390_s21196542 crossref_primary_10_1109_TII_2023_3264289 crossref_primary_10_1109_TVT_2022_3173057 crossref_primary_10_4018_IJMCMC_320190 crossref_primary_10_1109_TVT_2024_3427814 crossref_primary_10_1109_OJCOMS_2024_3380509 crossref_primary_10_1109_TVT_2022_3189019 crossref_primary_10_1109_ACCESS_2023_3302250 crossref_primary_10_1109_TVT_2024_3452477 crossref_primary_10_1109_JIOT_2024_3485119 crossref_primary_10_1109_TMC_2024_3486728 crossref_primary_10_1109_TMC_2021_3085206 crossref_primary_10_1016_j_vehcom_2022_100532 crossref_primary_10_1109_TITS_2023_3326779 crossref_primary_10_1109_JIOT_2020_3014926 crossref_primary_10_1109_TITS_2024_3505941 crossref_primary_10_1109_OJCOMS_2024_3416808 crossref_primary_10_1016_j_vehcom_2024_100812 crossref_primary_10_1109_TVT_2023_3271613 crossref_primary_10_1155_2022_1177544 crossref_primary_10_1109_TITS_2022_3165662 crossref_primary_10_23919_JSEE_2023_000040 crossref_primary_10_1016_j_jpdc_2023_01_006 crossref_primary_10_1109_TCOMM_2022_3199018 crossref_primary_10_1109_TVT_2023_3259688 crossref_primary_10_1109_JIOT_2021_3064874 crossref_primary_10_3390_telecom6010002 crossref_primary_10_1109_TVT_2024_3444784 crossref_primary_10_1002_dac_4908 crossref_primary_10_1016_j_comcom_2025_108081 crossref_primary_10_1109_TITS_2022_3179987 crossref_primary_10_1109_JIOT_2021_3137984 crossref_primary_10_1109_TCCN_2021_3115098 crossref_primary_10_1109_JIOT_2024_3472472 crossref_primary_10_1109_TVT_2022_3192833 crossref_primary_10_1109_JIOT_2022_3188434 crossref_primary_10_1016_j_jestch_2024_101854 crossref_primary_10_3390_app112311382 crossref_primary_10_3390_math10193415 crossref_primary_10_1109_JIOT_2024_3464853 crossref_primary_10_1109_JSEN_2022_3153338 crossref_primary_10_3390_electronics13040714 crossref_primary_10_38016_jista_1189314 crossref_primary_10_1109_TVT_2023_3326877 crossref_primary_10_3390_electronics14010192 crossref_primary_10_1109_JIOT_2020_2984887 crossref_primary_10_1109_JSAC_2022_3155506 crossref_primary_10_1007_s11277_021_08561_6 crossref_primary_10_1155_2021_5530612 crossref_primary_10_1088_1402_4896_ad8cb2 crossref_primary_10_1109_JSYST_2020_3009998 crossref_primary_10_1109_JIOT_2022_3224927 crossref_primary_10_1109_TITS_2022_3182649 crossref_primary_10_1109_JSYST_2022_3163235 crossref_primary_10_3390_s22051874 crossref_primary_10_3390_s24020337 crossref_primary_10_1016_j_comcom_2024_04_023 crossref_primary_10_1109_TWC_2022_3160099 |
Cites_doi | 10.1109/TVT.2018.2890686 10.1109/ACCESS.2019.2895626 10.1109/JIOT.2019.2940820 10.1109/TVT.2019.2919915 10.1109/COMST.2019.2924243 10.1109/TCOMM.2018.2855212 10.1109/TVT.2019.2935098 10.1109/TCOMM.2019.2939316 10.1109/TWC.2015.2509978 10.1109/JIOT.2018.2871020 10.1109/LWC.2017.2702747 10.1109/TVT.2019.2897134 10.1109/TVT.2019.2921352 10.1109/TWC.2018.2827958 10.1109/JSAC.2019.2916486 10.1038/nature14236 10.1109/ACCESS.2019.2910244 10.1109/TVT.2018.2853612 10.1109/JIOT.2014.2327587 10.1109/JIOT.2019.2903191 10.1109/TNN.1998.712192 10.1109/TVT.2018.2871606 10.1109/TITS.2018.2832219 10.1109/TMM.2016.2535722 10.1109/TWC.2014.2314115 10.1109/LCOMM.2015.2418771 10.1109/MNET.2019.1800286 10.1109/JIOT.2016.2611605 10.1109/MVT.2017.2777259 10.1007/s11222-007-9033-z 10.1109/MCOM.2017.1700523 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2019.2962715 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 6391 |
ExternalDocumentID | 10_1109_JIOT_2019_2962715 8944302 |
Genre | orig-research |
GrantInformation_xml | – fundername: HUAWEI Technical Cooperative Project – fundername: State Major Science and Technology Special Project grantid: 2018ZX03001025 – fundername: National Program for Special Support of Eminent Professionals – fundername: National Natural Science Foundation of China grantid: 61921003; 61925101; 61831002; 61901044 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-e406f58e21ea28928b093e67ab244749726c2eaace0e52f4a34dc72477bd85fe3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 02:11:05 EDT 2025 Tue Jul 01 04:08:01 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Wed Aug 27 02:35:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-e406f58e21ea28928b093e67ab244749726c2eaace0e52f4a34dc72477bd85fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6965-1309 0000-0002-5953-1979 0000-0002-8200-5010 0000-0002-4755-7231 |
PQID | 2424188700 |
PQPubID | 2040421 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2424188700 crossref_citationtrail_10_1109_JIOT_2019_2962715 crossref_primary_10_1109_JIOT_2019_2962715 ieee_primary_8944302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref30 ref33 ref11 ref10 (ref7) 2018 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 mnih (ref27) 2015; 518 ref28 ref29 ref8 ref9 ref4 ref3 ref6 mcmahan (ref31) 2017 ref5 konecný (ref32) 2017 |
References_xml | – ident: ref24 doi: 10.1109/TVT.2018.2890686 – ident: ref16 doi: 10.1109/ACCESS.2019.2895626 – ident: ref33 doi: 10.1109/JIOT.2019.2940820 – ident: ref28 doi: 10.1109/TVT.2019.2919915 – ident: ref18 doi: 10.1109/COMST.2019.2924243 – ident: ref15 doi: 10.1109/TCOMM.2018.2855212 – ident: ref29 doi: 10.1109/TVT.2019.2935098 – ident: ref22 doi: 10.1109/TCOMM.2019.2939316 – ident: ref8 doi: 10.1109/TWC.2015.2509978 – ident: ref17 doi: 10.1109/JIOT.2018.2871020 – year: 2017 ident: ref32 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv 1610 05492 – ident: ref10 doi: 10.1109/LWC.2017.2702747 – ident: ref12 doi: 10.1109/TVT.2019.2897134 – ident: ref13 doi: 10.1109/TVT.2019.2921352 – ident: ref9 doi: 10.1109/TWC.2018.2827958 – ident: ref20 doi: 10.1109/JSAC.2019.2916486 – volume: 518 start-page: 529 year: 2015 ident: ref27 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref6 doi: 10.1109/ACCESS.2019.2910244 – ident: ref25 doi: 10.1109/TVT.2018.2853612 – ident: ref5 doi: 10.1109/JIOT.2014.2327587 – ident: ref21 doi: 10.1109/JIOT.2019.2903191 – ident: ref26 doi: 10.1109/TNN.1998.712192 – ident: ref14 doi: 10.1109/TVT.2018.2871606 – ident: ref19 doi: 10.1109/TITS.2018.2832219 – ident: ref4 doi: 10.1109/TMM.2016.2535722 – year: 2018 ident: ref7 article-title: Study on evaluation methodology of new Vehicle-to-Everything (V2X) use cases for LTE and NR – ident: ref11 doi: 10.1109/TWC.2014.2314115 – ident: ref30 doi: 10.1109/LCOMM.2015.2418771 – ident: ref23 doi: 10.1109/MNET.2019.1800286 – ident: ref3 doi: 10.1109/JIOT.2016.2611605 – ident: ref1 doi: 10.1109/MVT.2017.2777259 – ident: ref34 doi: 10.1007/s11222-007-9033-z – start-page: 1 year: 2017 ident: ref31 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc Int Conf Artif Intell Statist (AISTATS) – ident: ref2 doi: 10.1109/MCOM.2017.1700523 |
SSID | ssj0001105196 |
Score | 2.5739818 |
Snippet | Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6380 |
SubjectTerms | Algorithms Cellular communication Cellular vehicle-to-everything (V2X) communications Clustering Clustering algorithms Computer simulation deep reinforcement learning (DRL) Graph theory Interference Machine learning Markov processes Modal choice mode selection Optimization Quality of service Reinforcement learning Reliability Reliability engineering Resource allocation Resource management Safety critical Time Vehicle-to-everything |
Title | Deep-Reinforcement-Learning-Based Mode Selection and Resource Allocation for Cellular V2X Communications |
URI | https://ieeexplore.ieee.org/document/8944302 https://www.proquest.com/docview/2424188700 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jy9WrWK1yh48iUk3m83rWKulFqqgrfQWks1EwZIW21789e5sNvWJeAthBxa-ncfOzsxHyBlXdleZ_tRyQxFZIgClUtioi6425yJJZI6pgeGt3x-LwcSbbJCLdS8MAOjiM7DxU7_lZzO5wlRZO4yEcHFy5KY6ZmWv1kc-xcFgxDcPlw6L2oObuxHWbkU2R4YZJL795Ho0l8oPA6y9Sq9OhtV-ymKSF3u1TG359m1U4383vEO2TXhJO-V52CUbUOyRekXdQI0mN8jzFcDcugc9N1XqFKFlRq0-WZfKs2UUWdLog6bJUdjRpMholeunnSn6QP1fydMuTKdYzkof-YR-aTlZ7JNx73rU7VuGdMGSrhctLVAePvdC4A4k6jLGw5RFLvhBkqpAIBBRwH3JQWEIDDyei8QVmQy4CII0C70c3ANSK2YFHBKqDK0jvIyBdHGum_IKOfihp2Q9JmTiNwmr8IilmUiOxBjTWN9MWBQjhDFCGBsIm-R8LTIvx3H8tbiBkKwXGjSapFWBHhuFXcTYJeMog8vY0e9Sx2SL41VbV-q2SG35uoITFY8s01N9EN8BVmbddg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOMCFsopCAR84IVIcx85yZFVZChIU1FuUOBOQqAqi7YWvx-M6ZRXiFkUeydKz59njmXkAO8L4XeP6cy-IZeLJCM2WokJdotpSyCzTJYUG2ldh606ed1V3CvYmtTCIaJPPsEmf9i2_eNYjCpXtx4mUAXWOnDG8L9W4WusjouLTcSR0T5c-T_bPz647lL2VNAVpzJD07SfysWoqP1yw5ZXTGrSrGY3TSZ6ao2He1G_fmjX-d8oLMO8OmOxgvCIWYQr7S1CrxBuY28vL8HiM-OLdoO2cqm2Q0HPNVh-8Q8NtBSOdNHZrhXIMeizrF6yK9rODHrGg_W_s2RH2epTQyu5Fl30pOhmswN3pSeeo5TnZBU8HKhl6aDi-VDEKHzNzHRNxzpMAwyjLzVEgkkkkQi3QoIgclShlFshCR0JGUV7EqsRgFab7z31cA2ZcrS9VwVEH1NnN8EKJYayMreJSZ2EdeIVHql1PcpLG6KX2bsKTlCBMCcLUQViH3YnJy7ghx1-DlwmSyUCHRh0aFeip27KDlOpkfONyOV__3WobZlud9mV6eXZ1sQFzgi7eNm-3AdPD1xFumtPJMN-yi_IdFJTgww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Reinforcement-Learning-Based+Mode+Selection+and+Resource+Allocation+for+Cellular+V2X+Communications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Xinran&rft.au=Peng%2C+Mugen&rft.au=Yan%2C+Shi&rft.au=Sun%2C+Yaohua&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=7&rft.issue=7&rft.spage=6380&rft.epage=6391&rft_id=info:doi/10.1109%2FJIOT.2019.2962715&rft.externalDocID=8944302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |