A Bi-layered Parallel Training Architecture for Large-Scale Convolutional Neural Networks
Benefitting from large-scale training datasets and the complex training network, Convolutional Neural Networks (CNNs) are widely applied in various fields with high accuracy. However, the training process of CNNs is very time-consuming, where large amounts of training samples and iterative operation...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 30; no. 5; pp. 965 - 976 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Benefitting from large-scale training datasets and the complex training network, Convolutional Neural Networks (CNNs) are widely applied in various fields with high accuracy. However, the training process of CNNs is very time-consuming, where large amounts of training samples and iterative operations are required to obtain high-quality weight parameters. In this paper, we focus on the time-consuming training process of large-scale CNNs and propose a Bi-layered Parallel Training (BPT-CNN) architecture in distributed computing environments. BPT-CNN consists of two main components: (a) an outer-layer parallel training for multiple CNN subnetworks on separate data subsets, and (b) an inner-layer parallel training for each subnetwork. In the outer-layer parallelism, we address critical issues of distributed and parallel computing, including data communication, synchronization, and workload balance. A heterogeneous-aware Incremental Data Partitioning and Allocation (IDPA) strategy is proposed, where large-scale training datasets are partitioned and allocated to the computing nodes in batches according to their computing power. To minimize the synchronization waiting during the global weight update process, an Asynchronous Global Weight Update (AGWU) strategy is proposed. In the inner-layer parallelism, we further accelerate the training process for each CNN subnetwork on each computer, where computation steps of convolutional layer and the local weight training are parallelized based on task-parallelism. We introduce task decomposition and scheduling strategies with the objectives of thread-level load balancing and minimum waiting time for critical paths. Extensive experimental results indicate that the proposed BPT-CNN effectively improves the training performance of CNNs while maintaining the accuracy. |
---|---|
AbstractList | Benefitting from large-scale training datasets and the complex training network, Convolutional Neural Networks (CNNs) are widely applied in various fields with high accuracy. However, the training process of CNNs is very time-consuming, where large amounts of training samples and iterative operations are required to obtain high-quality weight parameters. In this paper, we focus on the time-consuming training process of large-scale CNNs and propose a Bi-layered Parallel Training (BPT-CNN) architecture in distributed computing environments. BPT-CNN consists of two main components: (a) an outer-layer parallel training for multiple CNN subnetworks on separate data subsets, and (b) an inner-layer parallel training for each subnetwork. In the outer-layer parallelism, we address critical issues of distributed and parallel computing, including data communication, synchronization, and workload balance. A heterogeneous-aware Incremental Data Partitioning and Allocation (IDPA) strategy is proposed, where large-scale training datasets are partitioned and allocated to the computing nodes in batches according to their computing power. To minimize the synchronization waiting during the global weight update process, an Asynchronous Global Weight Update (AGWU) strategy is proposed. In the inner-layer parallelism, we further accelerate the training process for each CNN subnetwork on each computer, where computation steps of convolutional layer and the local weight training are parallelized based on task-parallelism. We introduce task decomposition and scheduling strategies with the objectives of thread-level load balancing and minimum waiting time for critical paths. Extensive experimental results indicate that the proposed BPT-CNN effectively improves the training performance of CNNs while maintaining the accuracy. |
Author | Li, Keqin Bilal, Kashif Li, Kenli Zhou, Xu Yu, Philip S. Chen, Jianguo |
Author_xml | – sequence: 1 givenname: Jianguo orcidid: 0000-0001-5009-578X surname: Chen fullname: Chen, Jianguo email: cccjianguo@163.com organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Kenli orcidid: 0000-0002-2635-7716 surname: Li fullname: Li, Kenli email: lkl@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Kashif orcidid: 0000-0002-4381-8094 surname: Bilal fullname: Bilal, Kashif email: kashifbilal@ciit.net.pk organization: COMSATS University Islamabad, Abbottabad, Pakistan – sequence: 4 givenname: Xu orcidid: 0000-0002-1400-8375 surname: Zhou fullname: Zhou, Xu email: happypanda2006@126.com organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 5 givenname: Keqin orcidid: 0000-0001-5224-4048 surname: Li fullname: Li, Keqin email: lik@newpaltz.edu organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 6 givenname: Philip S. surname: Yu fullname: Yu, Philip S. email: psyu@uic.edu organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA |
BookMark | eNp9kD1PwzAQhi0EEi3wAxBLJOYUX2w39ljKp1QBEmVgiq7OBVJMXJwE1H9PQisGBqa74X1O7z1Dtlv5ihg7Bj4C4OZs_nDxOEo46FGi01Qos8MGoJSOE9Bit9u5VLFJwOyzYV0vOQepuByw50l0XsYO1xQojx4woHPkonnAsiqrl2gS7GvZkG3aQFHhQzTD8ELxo0VH0dRXn961TekrdNEdteFnNF8-vNWHbK9AV9PRdh6wp6vL-fQmnt1f304ns9h2LZuYhLGoF5YAgROiztMFGDBKo5XAEcUizdHqXEgzXkiVSqmKgqMZ53mRSysO2Onm7ir4j5bqJlv6NnSF6ixJgHMh9Fh0qXSTssHXdaAis2WDffOme9VlwLPeY9Z7zHqP2dZjR8IfchXKdwzrf5mTDVMS0W9eK56ABPENO6mBNg |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1007_s00521_019_04498_x crossref_primary_10_1016_j_scs_2022_103765 crossref_primary_10_1109_ACCESS_2022_3143811 crossref_primary_10_1007_s40815_019_00697_9 crossref_primary_10_3390_app12094429 crossref_primary_10_1016_j_scs_2021_103364 crossref_primary_10_32604_iasc_2022_026934 crossref_primary_10_1109_TPDS_2023_3281931 crossref_primary_10_1016_j_eswa_2024_124828 crossref_primary_10_1088_2040_8986_abfee0 crossref_primary_10_1109_TITS_2021_3105682 crossref_primary_10_3390_coatings11101173 crossref_primary_10_1016_j_bspc_2023_105119 crossref_primary_10_3390_app10217572 crossref_primary_10_1016_j_ins_2020_05_013 crossref_primary_10_1007_s00521_019_04485_2 crossref_primary_10_1080_15325008_2022_2135051 crossref_primary_10_1142_S0218126621503011 crossref_primary_10_1109_JIOT_2021_3125530 crossref_primary_10_3390_coatings11121564 crossref_primary_10_1007_s42107_023_00834_8 crossref_primary_10_1109_JSEN_2023_3342833 crossref_primary_10_1016_j_amc_2020_125483 crossref_primary_10_1109_ACCESS_2019_2939940 crossref_primary_10_35377_saucis___1516717 crossref_primary_10_1016_j_ins_2020_04_039 crossref_primary_10_1109_TII_2024_3423457 crossref_primary_10_1016_j_egyr_2021_08_191 crossref_primary_10_1007_s00521_021_05775_4 crossref_primary_10_1007_s00521_019_04319_1 crossref_primary_10_1007_s11071_020_05687_3 crossref_primary_10_1007_s13042_023_01934_2 crossref_primary_10_1007_s00521_019_04311_9 crossref_primary_10_1007_s00521_019_04243_4 crossref_primary_10_1016_j_compbiomed_2022_105252 crossref_primary_10_1007_s00521_019_04121_z crossref_primary_10_1088_1402_4896_ac99ad crossref_primary_10_3390_coatings11121555 crossref_primary_10_32604_cmc_2022_026660 crossref_primary_10_1109_ACCESS_2019_2913280 crossref_primary_10_1007_s42107_023_00865_1 crossref_primary_10_1080_03772063_2024_2434580 crossref_primary_10_1016_j_neucom_2020_04_099 crossref_primary_10_1109_TIP_2024_3445731 crossref_primary_10_1016_j_ins_2021_03_027 crossref_primary_10_1145_3412371 crossref_primary_10_1016_j_jpdc_2019_05_001 crossref_primary_10_1016_j_heliyon_2024_e31675 crossref_primary_10_1016_j_engappai_2023_106513 crossref_primary_10_1016_j_knosys_2021_107038 crossref_primary_10_1016_j_isatra_2020_02_023 crossref_primary_10_1109_TPDS_2022_3150579 crossref_primary_10_1016_j_biortech_2023_130151 crossref_primary_10_1142_S0218001421520121 crossref_primary_10_1016_j_yofte_2024_104113 crossref_primary_10_1109_ACCESS_2021_3060154 crossref_primary_10_1007_s00521_020_05478_2 crossref_primary_10_1007_s10115_020_01495_8 crossref_primary_10_1109_TSMC_2021_3055501 crossref_primary_10_1109_TII_2023_3313641 crossref_primary_10_1155_2021_5916748 crossref_primary_10_1109_JIOT_2021_3112715 crossref_primary_10_1109_JSAC_2023_3242707 crossref_primary_10_1038_s41598_024_61412_9 crossref_primary_10_1016_j_heliyon_2024_e32650 crossref_primary_10_1109_ACCESS_2021_3115911 crossref_primary_10_1088_1674_1056_acb202 crossref_primary_10_1109_JIOT_2020_3011558 crossref_primary_10_1016_j_parco_2020_102736 crossref_primary_10_1007_s42514_019_00018_4 crossref_primary_10_1007_s00521_019_04415_2 crossref_primary_10_1016_j_ins_2020_03_043 crossref_primary_10_1016_j_egyr_2021_10_094 crossref_primary_10_1016_j_fraope_2024_100081 crossref_primary_10_1007_s00521_022_07986_9 crossref_primary_10_1109_ACCESS_2022_3176385 crossref_primary_10_1109_TII_2022_3195168 crossref_primary_10_1016_j_bspc_2024_106895 crossref_primary_10_1016_j_jpdc_2024_104978 crossref_primary_10_1016_j_knosys_2021_107046 crossref_primary_10_1115_1_4067742 crossref_primary_10_1109_TPDS_2022_3187815 crossref_primary_10_1142_S0218001421550053 crossref_primary_10_1016_j_neucom_2021_10_097 crossref_primary_10_1109_ACCESS_2021_3070012 crossref_primary_10_1016_j_ins_2020_05_057 crossref_primary_10_1016_j_neucom_2020_04_155 crossref_primary_10_1016_j_inffus_2023_102028 crossref_primary_10_1002_er_7316 crossref_primary_10_1007_s41024_024_00416_4 crossref_primary_10_1016_j_cherd_2024_04_045 crossref_primary_10_1049_rpg2_12854 crossref_primary_10_1007_s00521_022_07952_5 crossref_primary_10_1016_j_neucom_2023_126277 crossref_primary_10_1016_j_heliyon_2024_e24265 crossref_primary_10_1007_s00521_019_04374_8 crossref_primary_10_1016_j_measurement_2021_110566 crossref_primary_10_1002_aisy_202100064 crossref_primary_10_3390_a14110309 crossref_primary_10_1007_s00521_019_04149_1 crossref_primary_10_1016_j_rsase_2023_101126 crossref_primary_10_1142_S021800142253007X crossref_primary_10_1080_08839514_2024_2321552 crossref_primary_10_1109_TKDE_2020_3035685 crossref_primary_10_1016_j_sysarc_2024_103070 crossref_primary_10_1007_s00521_019_04499_w crossref_primary_10_1007_s11277_021_08763_y crossref_primary_10_1016_j_jenvman_2023_119555 crossref_primary_10_1016_j_scs_2021_103189 crossref_primary_10_1117_1_JRS_16_044517 crossref_primary_10_1016_j_bspc_2025_107801 crossref_primary_10_1515_ijcre_2021_0145 crossref_primary_10_1016_j_future_2021_09_011 crossref_primary_10_3390_electronics13214193 crossref_primary_10_1016_j_neucom_2020_07_149 crossref_primary_10_1109_ACCESS_2020_2971260 crossref_primary_10_1016_j_cnsns_2020_105390 crossref_primary_10_1007_s00521_022_07886_y crossref_primary_10_1016_j_est_2023_108675 crossref_primary_10_1007_s40815_019_00673_3 crossref_primary_10_3390_su132111606 crossref_primary_10_1109_ACCESS_2019_2940545 crossref_primary_10_1109_TPDS_2019_2955935 crossref_primary_10_1007_s10586_022_03959_8 crossref_primary_10_1109_JBHI_2024_3392531 crossref_primary_10_1016_j_jpdc_2022_09_007 crossref_primary_10_1109_JIOT_2022_3177449 crossref_primary_10_1016_j_ins_2020_09_031 crossref_primary_10_1109_OJIES_2022_3174218 crossref_primary_10_1016_j_compbiomed_2023_107399 crossref_primary_10_1364_OSAC_387075 crossref_primary_10_3390_su16031212 crossref_primary_10_1088_1612_202X_ab7a9a crossref_primary_10_1109_TSMC_2020_3006124 crossref_primary_10_1016_j_ins_2020_12_079 crossref_primary_10_1109_JIOT_2020_3029030 crossref_primary_10_3390_su132011466 |
Cites_doi | 10.1109/TPDS.2016.2626289 10.1109/PDP.2010.43 10.1016/j.ins.2016.08.003 10.1145/2742060.2743766 10.1145/2020408.2020426 10.1109/ICASSP.2013.6639348 10.1109/IPDPSW.2014.194 10.1145/2897937.2897995 10.1109/CVPR.2009.5206848 10.1016/j.procs.2013.05.198 10.1109/TPDS.2014.2357019 10.1109/TPDS.2017.2768366 10.1007/s10766-017-0535-9 10.1109/ASAP.2009.25 10.1109/JSSC.2016.2616357 10.1145/1815961.1815993 10.1007/978-3-319-16086-3_6 10.1145/2647868.2654889 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2018.2877359 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 976 |
ExternalDocumentID | 10_1109_TPDS_2018_2877359 8502141 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2016YFB0200201 – fundername: National Outstanding Youth Science Program of National Natural Science Foundation of China grantid: 61625202 – fundername: China Postdoctoral Science Foundation grantid: 2018T110829 funderid: 10.13039/501100002858 – fundername: International Postdoctoral Exchange Fellowship Program grantid: 2018024 – fundername: National Science Foundation grantid: IIS-1526499; IIS-1763325; CNS-1626432 funderid: 10.13039/100000001 – fundername: NSFC grantid: 61672313 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-e39ca8bce1a10eaa8d7b191958ac410aa3b7dac8d3496b457445ff0a96ddfd4c3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 05:14:53 EDT 2025 Tue Jul 01 03:58:38 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:44:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-e39ca8bce1a10eaa8d7b191958ac410aa3b7dac8d3496b457445ff0a96ddfd4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1400-8375 0000-0002-4381-8094 0000-0002-2635-7716 0000-0001-5224-4048 0000-0001-5009-578X |
PQID | 2210033863 |
PQPubID | 85437 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8502141 crossref_citationtrail_10_1109_TPDS_2018_2877359 proquest_journals_2210033863 crossref_primary_10_1109_TPDS_2018_2877359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 chilimbi (ref21) 2014 ref2 dean (ref14) 2012 ref17 ref19 ref18 coates (ref1) 2013 zinkevich (ref25) 2010 abadi (ref16) 2016; abs 1603 4467 ho (ref10) 2013 ref23 ref26 ref20 ref22 ref8 le (ref24) 2011 ref9 ref4 ref3 recht (ref7) 2011 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1109/TPDS.2016.2626289 – volume: abs 1603 4467 start-page: 725 year: 2016 ident: ref16 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems publication-title: CoRR – start-page: 2595 year: 2010 ident: ref25 article-title: Parallelized stochastic gradient descent publication-title: Proc 23rd Int Conf Neural Inf Process Syst - Vol 2 – start-page: 693 year: 2011 ident: ref7 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent publication-title: Proc 24th Int Conf Neural Inf Process Syst – ident: ref13 doi: 10.1109/PDP.2010.43 – ident: ref26 doi: 10.1016/j.ins.2016.08.003 – ident: ref5 doi: 10.1145/2742060.2743766 – start-page: 571 year: 2014 ident: ref21 article-title: Project adam: Building an efficient and scalable deep learning training system publication-title: Proc 11th USENIX Conf Operating Syst Des Implementation – ident: ref2 doi: 10.1145/2020408.2020426 – ident: ref4 doi: 10.1109/ICASSP.2013.6639348 – ident: ref9 doi: 10.1109/IPDPSW.2014.194 – start-page: 1 year: 2013 ident: ref10 article-title: More effective distributed ml via a stale synchronous parallel parameter server publication-title: Proc 26th Int Conf Neural Inf Process Syst - Vol 1 – ident: ref6 doi: 10.1145/2897937.2897995 – ident: ref3 doi: 10.1109/CVPR.2009.5206848 – ident: ref12 doi: 10.1016/j.procs.2013.05.198 – start-page: 1223 year: 2012 ident: ref14 article-title: Large scale distributed deep networks publication-title: Proc 25th Int Conf Neural Inf Process Syst - Vol 1 – start-page: 265 year: 2011 ident: ref24 article-title: On optimization methods for deep learning publication-title: Proc Int Conf Int Conf Mach Learn – ident: ref20 doi: 10.1109/TPDS.2014.2357019 – ident: ref17 doi: 10.1109/TPDS.2017.2768366 – ident: ref8 doi: 10.1007/s10766-017-0535-9 – ident: ref19 doi: 10.1109/ASAP.2009.25 – ident: ref22 doi: 10.1109/JSSC.2016.2616357 – ident: ref23 doi: 10.1145/1815961.1815993 – ident: ref11 doi: 10.1007/978-3-319-16086-3_6 – ident: ref15 doi: 10.1145/2647868.2654889 – start-page: 1337 year: 2013 ident: ref1 article-title: Deep learning with cots hpc systems publication-title: Proc 30th Int Conf Int Conf Mach Learn - Vol 28 |
SSID | ssj0014504 |
Score | 2.5983672 |
Snippet | Benefitting from large-scale training datasets and the complex training network, Convolutional Neural Networks (CNNs) are widely applied in various fields with... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 965 |
SubjectTerms | Acceleration Artificial neural networks bi-layered parallel computing Big data Computation Computational modeling Computer architecture Computer networks convolutional neural networks Datasets deep learning Distributed computing Distributed processing Iterative methods Neural networks Parallel processing Synchronism Task analysis Task scheduling Training Weight Weightlifting Workload |
Title | A Bi-layered Parallel Training Architecture for Large-Scale Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/8502141 https://www.proquest.com/docview/2210033863 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2YO-nB-ROnU3LwJGZL16RNj3MqQ1QEJ8xTSdIExLHJfgj615uk2Rgq4qk9JG3oS5q8fF_eAziVUZTqRGrcloxgKlSBJTcxlsZOlipNWCTdQeG7-6T3RG8GbFCB8-VZGK21Tz7TTXfrY_nFWM3dVlmLM6fwZbnOmiVu5VmtZcSAMm8VaNkFw5kdhiGCGZGs1X-4fHRJXLxp6UEaO1nSlTnIm6r8-BP76eW6BneLhpVZJa_N-Uw21ec3zcb_tnwLNsM6E3XKjrENFT3agdrCwwGFIb0DGyuChLvw3EEXL3goPpyDJ3oQE-e0MkT94COBOithB2SXu-jWJZLjRwu0Rt3x6D10ZPtmp_rhLz7NfLoHT9dX_W4PB_MFrOwXmmEdZ0pwqXQkIqKF4EUqLbfLGBeKRkSIWKaFULxwivOSspRSZgwRWVIUpqAq3ofqaDzSB4ASQ-LYqIwo3bb8iIuUSSejxiNjqBa8DmQBR66CMrkzyBjmnqGQLHcI5g7BPCBYh7NllbdSluOvwrsOkWXBAEYdGgvM8zBwp3nbUmDbWp7Eh7_XOoJ1--yszHlsQHU2metjuy6ZyRPfIb8ARorfmw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP0QPagHf4vTqTl4EjPTNWnT45zK1E0EJ-ipJGkC4thkboL-9SZpNoaKeGoPDQl9Sb-8fl_eAziSUZTqRGpcl4xgKlSBJTcxlsYGS5UmLJLuoHDnNmk90OtH9jgHJ9OzMFprX3yma-7W5_KLgRq7X2WnnDmFL8t1FmzcZ_XytNY0Z0CZNwu0_ILhzC7EkMOMSHbavTu_d2VcvGYJQho7YdKZKORtVX58i32AuVyFzmRoZV3JS208kjX1-U218b9jX4OVsNNEjXJqrMOc7m_A6sTFAYVFvQHLM5KEm_DUQGfPuCc-nIcnuhND57XSQ93gJIEaM4kHZDe8qO1KyfG9hVqj5qD_Hqay7dnpfviLLzR_24KHy4tus4WD_QJW9g2NsI4zJbhUOhIR0ULwIpWW3WWMC0UjIkQs00IoXjjNeUlZSikzhogsKQpTUBVvw3x_0Nc7gBJD4tiojChdtwyJi5RJJ6TGI2OoFrwCZAJHroI2ubPI6OWeo5AsdwjmDsE8IFiB42mT11KY46-HNx0i0wcDGBWoTjDPw9J9y-uWBNvR8iTe_b3VISy2up123r66vdmDJdtPVlZAVmF-NBzrfbtLGckDPzm_ABsb4uU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-layered+Parallel+Training+Architecture+for+Large-Scale+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Chen%2C+Jianguo&rft.au=Li%2C+Kenli&rft.au=Bilal%2C+Kashif&rft.au=Zhou%2C+Xu&rft.date=2019-05-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=30&rft.issue=5&rft.spage=965&rft.epage=976&rft_id=info:doi/10.1109%2FTPDS.2018.2877359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2018_2877359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |