DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning

This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to su...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Lee, Cheolwon, Yoo, Sangwook, Lee, Han Na, Lee, Jongha
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.
AbstractList This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The pre-processing methods include the UV irradiation area pointing, which accurately detects the inspection area as a UV-irradiated port. Additionally, the Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies such as SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.
This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.
Author Lee, Jongha
Lee, Han Na
Yoo, Sangwook
Lee, Cheolwon
Author_xml – sequence: 1
  givenname: Cheolwon
  orcidid: 0000-0002-2778-2562
  surname: Lee
  fullname: Lee, Cheolwon
  organization: AI R&D center of Lulu-Lab, Seoul, Republic of Korea
– sequence: 2
  givenname: Sangwook
  surname: Yoo
  fullname: Yoo, Sangwook
  organization: AI R&D center of Lulu-Lab, Seoul, Republic of Korea
– sequence: 3
  givenname: Han Na
  surname: Lee
  fullname: Lee, Han Na
  organization: Solar Light Research Center of Global Medical Research Center, Seoul, Republic of Korea
– sequence: 4
  givenname: Jongha
  surname: Lee
  fullname: Lee, Jongha
  organization: AI R&D center of Lulu-Lab, Seoul, Republic of Korea
BookMark eNpNkU9rGzEQxUVJoWmaT9AeBD3b0Z_dldSb2TqtwSUBJ72K2d2RvcaRXK221N8-cjaUzEXD0_zeSLyP5MIHj4R85mzOOTM3i7pebjZzwYScS6ELbcQ7cil4ZWaylNXFm_4DuR6GPculs1SqS2K_Ix6X8ZR2-ATf6IJu0tidaPA0K7QOfuiHhD7R5V84jJD6fPML0y50NDj6-Jtu7m_pynf4LwMxjNsdPTvSNUL0vd9-Iu8dHAa8fj2vyOPt8qH-OVvf_VjVi_WslaVJM-RlI3TDmBFam7ZsC1EW2rFWgBSmaRyXUJmmAjSgXdd0CgGR8fyzRlUK5RVZTb5dgL09xv4J4skG6O2LEOLWQkx9e0BrWpCQaQfQFCWTpnMCKsUkcqU6p7PX18nrGMOfEYdk92GMPj_fCi0VL5iozlNymmpjGIaI7v9Wzuw5GDsFY8_B2NdgMvVlonpEfEPwQikt5TMn7YsF
CODEN IAECCG
Cites_doi 10.1109/82.486465
10.1109/GTSD50082.2020.9303084
10.1007/978-3-030-59725-2_26
10.1109/ACCESS.2022.3222788
10.3403/30174289
10.1109/CCECE.2019.8861848
10.5107/sccj.26.207
10.1007/b11963
10.1002/1097-0142(19950115)75:2+<684::AID-CNCR2820751411>3.0.CO;2-B
10.1109/TBME.2013.2297622
10.1007/978-3-319-67558-9_28
10.1145/3065386
10.1177/074171367802800202
10.1007/978-3-319-24574-4_28
10.1109/51.45955
10.1111/j.1600-0846.2012.00636.x
10.1109/TBME.2013.2283803
10.1109/CVPR.2015.7298594
10.1109/icdar.2003.1227801
10.1109/CVPR52688.2022.01167
10.1162/neco.1989.1.4.541
10.1590/S1516-93322004000300014
10.1109/CVPR.2016.90
10.1016/j.compbiomed.2023.106624
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3284892
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_9ca3aaeefaab45039df2a6703e177df8
10_1109_ACCESS_2023_3284892
10147783
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and ICT, South Korea
  funderid: 10.13039/501100014188
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:08:57 EDT 2025
Mon Jun 30 04:37:11 EDT 2025
Tue Jul 01 02:49:01 EDT 2025
Wed Aug 27 02:25:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2778-2562
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10147783
PQID 2837140268
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2837140268
ieee_primary_10147783
crossref_primary_10_1109_ACCESS_2023_3284892
doaj_primary_oai_doaj_org_article_9ca3aaeefaab45039df2a6703e177df8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref14
ref36
ref31
ref30
ref10
ref1
ref17
ref16
ref19
Rod (ref2) 2006
ref18
Tan (ref26)
(ref11) 2015
(ref9) 2012
Iakubovskii (ref37) 2019
ref24
Lee (ref32) 2008; 11
ref25
Kim (ref12) 2021; 47
ref22
ref21
(ref3) 2021
Behnke (ref20) 2003; 2766
ref28
(ref7) 2023
ref27
ref29
(ref8) 2013
Simonyan (ref23) 2014
ref4
ref6
ref5
Klambauer (ref33); 30
References_xml – ident: ref5
  doi: 10.1109/82.486465
– volume: 47
  start-page: 193
  issue: 3
  year: 2021
  ident: ref12
  article-title: Comparative analysis of UV protection factor measurement methods for each country and factors affecting UV protection factor
  publication-title: J. Soc. Cosmetic Scientists Korea
– volume-title: Regulations for Examination of Functional Cosmetics
  year: 2021
  ident: ref3
– ident: ref13
  doi: 10.1109/GTSD50082.2020.9303084
– volume-title: CFR—Code of Federal Regulations Title 21
  year: 2023
  ident: ref7
– ident: ref34
  doi: 10.1007/978-3-030-59725-2_26
– ident: ref31
  doi: 10.1109/ACCESS.2022.3222788
– volume: 11
  start-page: 610
  issue: 5
  year: 2008
  ident: ref32
  article-title: Comparisons of color spaces for shadow elimination
  publication-title: J. Korea Multimedia Soc.
– ident: ref6
  doi: 10.3403/30174289
– ident: ref29
  doi: 10.1109/CCECE.2019.8861848
– volume-title: Segmentation Models Pytorch
  year: 2019
  ident: ref37
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref10
  doi: 10.5107/sccj.26.207
– volume: 2766
  volume-title: Hierarchical Neural Networks for Image Interpretation
  year: 2003
  ident: ref20
  doi: 10.1007/b11963
– volume-title: Cosmetics Europe Recommendation, no. 25 Use of Appropriate Validated Methods for Evaluating Sun Product Protection, Ce
  year: 2013
  ident: ref8
– ident: ref14
  doi: 10.1002/1097-0142(19950115)75:2+<684::AID-CNCR2820751411>3.0.CO;2-B
– ident: ref18
  doi: 10.1109/TBME.2013.2297622
– ident: ref35
  doi: 10.1007/978-3-319-67558-9_28
– ident: ref22
  doi: 10.1145/3065386
– ident: ref36
  doi: 10.1177/074171367802800202
– ident: ref28
  doi: 10.1007/978-3-319-24574-4_28
– volume: 30
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Self-normalizing neural networks
– volume-title: Chinese Cosmetics Safety Technical Code
  year: 2015
  ident: ref11
– ident: ref15
  doi: 10.1109/51.45955
– ident: ref16
  doi: 10.1111/j.1600-0846.2012.00636.x
– ident: ref17
  doi: 10.1109/TBME.2013.2283803
– volume-title: Sunscreen Products-Evaluation and Classification
  year: 2012
  ident: ref9
– ident: ref24
  doi: 10.1109/CVPR.2015.7298594
– ident: ref4
  doi: 10.3403/30174289
– ident: ref21
  doi: 10.1109/icdar.2003.1227801
– ident: ref27
  doi: 10.1109/CVPR52688.2022.01167
– volume-title: Anatomy & Physiology
  year: 2006
  ident: ref2
– year: 2014
  ident: ref23
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref19
  doi: 10.1162/neco.1989.1.4.541
– ident: ref1
  doi: 10.1590/S1516-93322004000300014
– ident: ref25
  doi: 10.1109/CVPR.2016.90
– ident: ref30
  doi: 10.1016/j.compbiomed.2023.106624
SSID ssj0000816957
Score 2.2650075
Snippet This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Computer Vision
Deep Learning
Digital imaging
Erythema
Feature extraction
Image segmentation
Inspection
Irradiation
Reduction
Semantic Segmentation
Specific gravity
Ultraviolet radiation
UV SPF Index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NT8MgGMaJ8aQH48eM02k4eLRbKS3weptzyzSZMXEzuxFowVu3zHrYfy_Qbpnx4MUraUp5Xj4L_B6EbkELKPwma2YLG6UqNZFWFiJLiMmJEjQPdP7JCxvP0ud5Nt-x-vJnwmo8cC1cD3JFlTLGKqXTLKZQ2EQxV08N4byw4ZqvG_N2FlOhDxaEQcYbzBCJodcfDFyJut4tvEtdnywg-TEUBWJ_Y7Hyq18Og83oGB01s0Tcr7_uBO2Z8hQd7rADz5B8NGY5XK0DdfUe97E_EbjGixK7FBx8OF0AywoPtzxvPAl20Xhh8ewdv72O8JNnJeJp7dWD_RtxA1z9aKHZaDgdjKPGLSHKaQZVZEimE6E9REkIyLPctcZU2DhPFE1Aa0uoYqCZMqCELXTBjZPVI92Y5owbeo72y0VpLhD2sGIbc61yYVMFmQa_DQBxYQ1lIoY2utsIJ5c1FEOGxUQMstZZep1lo3MbPXhxt496onVIcHGWTZzlX3Fuo5YPzU5-JOVc0DbqbGIlm-b3KT3Sx60cEyYu_yPvK3Tgy1P_eemg_Wr1Za7dXKTSN6HafQNUv9rF
  priority: 102
  providerName: Directory of Open Access Journals
Title DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning
URI https://ieeexplore.ieee.org/document/10147783
https://www.proquest.com/docview/2837140268
https://doaj.org/article/9ca3aaeefaab45039df2a6703e177df8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwFIWtwoou-gCqDqXIC5ZNSOIk9u1uOp0RRQJVKlOxs2znugukDILMgv76-jqeEW1VqbvIysPJ8SPXj-8wdgpWQUeTrI3vfFabGjNrPGS-LNGVRgkX6fyXV-35sr64aW7SZvW4FwYR4-IzzOkwzuV3K7emobIz8pWVUokdthMit3Gz1nZAhRwkoJGJLFQWcDadzcJL5GQQnovQDCuofut9IqQ_uar81RTH_mXxkl1tcjYuK7nN14PN3c8_oI3_nfVX7EX60-TTsWi8Zs-w32fPn_AHD5j-jHg3v3-M5NaPfMppVeEjX_U8pPDo5RkKQT_w-ZYJzi-j5TRfeb78zr99XfAvxFvkye-H0x15grb-OGTLxfx6dp4lx4XMiQaGDMvGVsoSiEkpcI0LNbpWvnCVERVY60thWrCtQTDKd7aTaBAJC9da2UoUb9huv-rxLeMEPPaFtMYpXxtoLNBUAhSdR9GqAibsw0YJfTeCNXQMSArQo3CahNNJuAn7RGptTyUqdkwIX1mnSqbBGWFChrwxtm4KAZ2vTBvaNCyl7LyasENS5snzRlEm7Hgjvk5V-EETFihEn1Wrjv5x2Tu2R1kcB2SO2e5wv8b34RdlsCcxtD-JBfQXfy_kWQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Nb9MwGMYtGAfgwPjYRGEDHziSLInj2OZWulYdrBUSK9rNsp3XHJDSaaSH8dfj13GrMYTELbLy8SaPP-Kv30PIO2WlanGSlfvWZ7WpIbPGq8yXJbjSSOYinX-xbOar-tMlv0yb1eNeGACIi88gx8M4l9-u3QaHyk7QV1YIye6TB6Hh59WwXWs3pIIeEoqLxBYqC3UynkzCa-RoEZ6zUBFLVf3R_kRMf_JV-asyji3MbJ8st7ENC0t-5Jve5u7XHWzjfwf_lDxJ_5p0PGSOZ-QedM_J41sEwhdEnwJcTa9vIrv1Ax1TXFd4Q9cdDSk0unmGbND1dLqjgtNFNJ2ma09X3-jXLzN6hsRFmhx_KN6RJmzr9wOymk0vJvMseS5kjnHVZ1ByW0mLKCYpleMulOla-sJVhlXKWl8y0yjbGFBG-ta2AgwAguEaKxoB7JDsdesOXhKKyGNfCGuc9LVR3CqcTFBF64E1slAj8n6rhL4a0Bo6dkkKpQfhNAqnk3Aj8hHV2p2KXOyYEL6yTsVMK2eYCQF5Y2zNC6ZaX5km1GpQCtF6OSIHqMyt5w2ijMjRVnydCvFPjWCg0P-sGvnqH5e9JQ_nF4tzfX62_PyaPMJwh-GZI7LXX2_gOPyw9PZNzKa_AS8O5q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepErythema%3A+A+Study+on+the+Consistent+Evaluation+Method+of+UV+SPF+Index+Through+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Lee%2C+Cheolwon&rft.au=Yoo%2C+Sangwook&rft.au=Han+Na+Lee&rft.au=Lee%2C+Jongha&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=69046&rft_id=info:doi/10.1109%2FACCESS.2023.3284892&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon