DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning
This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to su...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading. |
---|---|
AbstractList | This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The pre-processing methods include the UV irradiation area pointing, which accurately detects the inspection area as a UV-irradiated port. Additionally, the Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies such as SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading. This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading. |
Author | Lee, Jongha Lee, Han Na Yoo, Sangwook Lee, Cheolwon |
Author_xml | – sequence: 1 givenname: Cheolwon orcidid: 0000-0002-2778-2562 surname: Lee fullname: Lee, Cheolwon organization: AI R&D center of Lulu-Lab, Seoul, Republic of Korea – sequence: 2 givenname: Sangwook surname: Yoo fullname: Yoo, Sangwook organization: AI R&D center of Lulu-Lab, Seoul, Republic of Korea – sequence: 3 givenname: Han Na surname: Lee fullname: Lee, Han Na organization: Solar Light Research Center of Global Medical Research Center, Seoul, Republic of Korea – sequence: 4 givenname: Jongha surname: Lee fullname: Lee, Jongha organization: AI R&D center of Lulu-Lab, Seoul, Republic of Korea |
BookMark | eNpNkU9rGzEQxUVJoWmaT9AeBD3b0Z_dldSb2TqtwSUBJ72K2d2RvcaRXK221N8-cjaUzEXD0_zeSLyP5MIHj4R85mzOOTM3i7pebjZzwYScS6ELbcQ7cil4ZWaylNXFm_4DuR6GPculs1SqS2K_Ix6X8ZR2-ATf6IJu0tidaPA0K7QOfuiHhD7R5V84jJD6fPML0y50NDj6-Jtu7m_pynf4LwMxjNsdPTvSNUL0vd9-Iu8dHAa8fj2vyOPt8qH-OVvf_VjVi_WslaVJM-RlI3TDmBFam7ZsC1EW2rFWgBSmaRyXUJmmAjSgXdd0CgGR8fyzRlUK5RVZTb5dgL09xv4J4skG6O2LEOLWQkx9e0BrWpCQaQfQFCWTpnMCKsUkcqU6p7PX18nrGMOfEYdk92GMPj_fCi0VL5iozlNymmpjGIaI7v9Wzuw5GDsFY8_B2NdgMvVlonpEfEPwQikt5TMn7YsF |
CODEN | IAECCG |
Cites_doi | 10.1109/82.486465 10.1109/GTSD50082.2020.9303084 10.1007/978-3-030-59725-2_26 10.1109/ACCESS.2022.3222788 10.3403/30174289 10.1109/CCECE.2019.8861848 10.5107/sccj.26.207 10.1007/b11963 10.1002/1097-0142(19950115)75:2+<684::AID-CNCR2820751411>3.0.CO;2-B 10.1109/TBME.2013.2297622 10.1007/978-3-319-67558-9_28 10.1145/3065386 10.1177/074171367802800202 10.1007/978-3-319-24574-4_28 10.1109/51.45955 10.1111/j.1600-0846.2012.00636.x 10.1109/TBME.2013.2283803 10.1109/CVPR.2015.7298594 10.1109/icdar.2003.1227801 10.1109/CVPR52688.2022.01167 10.1162/neco.1989.1.4.541 10.1590/S1516-93322004000300014 10.1109/CVPR.2016.90 10.1016/j.compbiomed.2023.106624 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3284892 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_9ca3aaeefaab45039df2a6703e177df8 10_1109_ACCESS_2023_3284892 10147783 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and ICT, South Korea funderid: 10.13039/501100014188 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:08:57 EDT 2025 Mon Jun 30 04:37:11 EDT 2025 Tue Jul 01 02:49:01 EDT 2025 Wed Aug 27 02:25:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2778-2562 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10147783 |
PQID | 2837140268 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2837140268 ieee_primary_10147783 crossref_primary_10_1109_ACCESS_2023_3284892 doaj_primary_oai_doaj_org_article_9ca3aaeefaab45039df2a6703e177df8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref15 ref14 ref36 ref31 ref30 ref10 ref1 ref17 ref16 ref19 Rod (ref2) 2006 ref18 Tan (ref26) (ref11) 2015 (ref9) 2012 Iakubovskii (ref37) 2019 ref24 Lee (ref32) 2008; 11 ref25 Kim (ref12) 2021; 47 ref22 ref21 (ref3) 2021 Behnke (ref20) 2003; 2766 ref28 (ref7) 2023 ref27 ref29 (ref8) 2013 Simonyan (ref23) 2014 ref4 ref6 ref5 Klambauer (ref33); 30 |
References_xml | – ident: ref5 doi: 10.1109/82.486465 – volume: 47 start-page: 193 issue: 3 year: 2021 ident: ref12 article-title: Comparative analysis of UV protection factor measurement methods for each country and factors affecting UV protection factor publication-title: J. Soc. Cosmetic Scientists Korea – volume-title: Regulations for Examination of Functional Cosmetics year: 2021 ident: ref3 – ident: ref13 doi: 10.1109/GTSD50082.2020.9303084 – volume-title: CFR—Code of Federal Regulations Title 21 year: 2023 ident: ref7 – ident: ref34 doi: 10.1007/978-3-030-59725-2_26 – ident: ref31 doi: 10.1109/ACCESS.2022.3222788 – volume: 11 start-page: 610 issue: 5 year: 2008 ident: ref32 article-title: Comparisons of color spaces for shadow elimination publication-title: J. Korea Multimedia Soc. – ident: ref6 doi: 10.3403/30174289 – ident: ref29 doi: 10.1109/CCECE.2019.8861848 – volume-title: Segmentation Models Pytorch year: 2019 ident: ref37 – start-page: 6105 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref26 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – ident: ref10 doi: 10.5107/sccj.26.207 – volume: 2766 volume-title: Hierarchical Neural Networks for Image Interpretation year: 2003 ident: ref20 doi: 10.1007/b11963 – volume-title: Cosmetics Europe Recommendation, no. 25 Use of Appropriate Validated Methods for Evaluating Sun Product Protection, Ce year: 2013 ident: ref8 – ident: ref14 doi: 10.1002/1097-0142(19950115)75:2+<684::AID-CNCR2820751411>3.0.CO;2-B – ident: ref18 doi: 10.1109/TBME.2013.2297622 – ident: ref35 doi: 10.1007/978-3-319-67558-9_28 – ident: ref22 doi: 10.1145/3065386 – ident: ref36 doi: 10.1177/074171367802800202 – ident: ref28 doi: 10.1007/978-3-319-24574-4_28 – volume: 30 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref33 article-title: Self-normalizing neural networks – volume-title: Chinese Cosmetics Safety Technical Code year: 2015 ident: ref11 – ident: ref15 doi: 10.1109/51.45955 – ident: ref16 doi: 10.1111/j.1600-0846.2012.00636.x – ident: ref17 doi: 10.1109/TBME.2013.2283803 – volume-title: Sunscreen Products-Evaluation and Classification year: 2012 ident: ref9 – ident: ref24 doi: 10.1109/CVPR.2015.7298594 – ident: ref4 doi: 10.3403/30174289 – ident: ref21 doi: 10.1109/icdar.2003.1227801 – ident: ref27 doi: 10.1109/CVPR52688.2022.01167 – volume-title: Anatomy & Physiology year: 2006 ident: ref2 – year: 2014 ident: ref23 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref19 doi: 10.1162/neco.1989.1.4.541 – ident: ref1 doi: 10.1590/S1516-93322004000300014 – ident: ref25 doi: 10.1109/CVPR.2016.90 – ident: ref30 doi: 10.1016/j.compbiomed.2023.106624 |
SSID | ssj0000816957 |
Score | 2.2650075 |
Snippet | This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computer Vision Deep Learning Digital imaging Erythema Feature extraction Image segmentation Inspection Irradiation Reduction Semantic Segmentation Specific gravity Ultraviolet radiation UV SPF Index |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NT8MgGMaJ8aQH48eM02k4eLRbKS3weptzyzSZMXEzuxFowVu3zHrYfy_Qbpnx4MUraUp5Xj4L_B6EbkELKPwma2YLG6UqNZFWFiJLiMmJEjQPdP7JCxvP0ud5Nt-x-vJnwmo8cC1cD3JFlTLGKqXTLKZQ2EQxV08N4byw4ZqvG_N2FlOhDxaEQcYbzBCJodcfDFyJut4tvEtdnywg-TEUBWJ_Y7Hyq18Og83oGB01s0Tcr7_uBO2Z8hQd7rADz5B8NGY5XK0DdfUe97E_EbjGixK7FBx8OF0AywoPtzxvPAl20Xhh8ewdv72O8JNnJeJp7dWD_RtxA1z9aKHZaDgdjKPGLSHKaQZVZEimE6E9REkIyLPctcZU2DhPFE1Aa0uoYqCZMqCELXTBjZPVI92Y5owbeo72y0VpLhD2sGIbc61yYVMFmQa_DQBxYQ1lIoY2utsIJ5c1FEOGxUQMstZZep1lo3MbPXhxt496onVIcHGWTZzlX3Fuo5YPzU5-JOVc0DbqbGIlm-b3KT3Sx60cEyYu_yPvK3Tgy1P_eemg_Wr1Za7dXKTSN6HafQNUv9rF priority: 102 providerName: Directory of Open Access Journals |
Title | DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning |
URI | https://ieeexplore.ieee.org/document/10147783 https://www.proquest.com/docview/2837140268 https://doaj.org/article/9ca3aaeefaab45039df2a6703e177df8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwFIWtwoou-gCqDqXIC5ZNSOIk9u1uOp0RRQJVKlOxs2znugukDILMgv76-jqeEW1VqbvIysPJ8SPXj-8wdgpWQUeTrI3vfFabGjNrPGS-LNGVRgkX6fyXV-35sr64aW7SZvW4FwYR4-IzzOkwzuV3K7emobIz8pWVUokdthMit3Gz1nZAhRwkoJGJLFQWcDadzcJL5GQQnovQDCuofut9IqQ_uar81RTH_mXxkl1tcjYuK7nN14PN3c8_oI3_nfVX7EX60-TTsWi8Zs-w32fPn_AHD5j-jHg3v3-M5NaPfMppVeEjX_U8pPDo5RkKQT_w-ZYJzi-j5TRfeb78zr99XfAvxFvkye-H0x15grb-OGTLxfx6dp4lx4XMiQaGDMvGVsoSiEkpcI0LNbpWvnCVERVY60thWrCtQTDKd7aTaBAJC9da2UoUb9huv-rxLeMEPPaFtMYpXxtoLNBUAhSdR9GqAibsw0YJfTeCNXQMSArQo3CahNNJuAn7RGptTyUqdkwIX1mnSqbBGWFChrwxtm4KAZ2vTBvaNCyl7LyasENS5snzRlEm7Hgjvk5V-EETFihEn1Wrjv5x2Tu2R1kcB2SO2e5wv8b34RdlsCcxtD-JBfQXfy_kWQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Nb9MwGMYtGAfgwPjYRGEDHziSLInj2OZWulYdrBUSK9rNsp3XHJDSaaSH8dfj13GrMYTELbLy8SaPP-Kv30PIO2WlanGSlfvWZ7WpIbPGq8yXJbjSSOYinX-xbOar-tMlv0yb1eNeGACIi88gx8M4l9-u3QaHyk7QV1YIye6TB6Hh59WwXWs3pIIeEoqLxBYqC3UynkzCa-RoEZ6zUBFLVf3R_kRMf_JV-asyji3MbJ8st7ENC0t-5Jve5u7XHWzjfwf_lDxJ_5p0PGSOZ-QedM_J41sEwhdEnwJcTa9vIrv1Ax1TXFd4Q9cdDSk0unmGbND1dLqjgtNFNJ2ma09X3-jXLzN6hsRFmhx_KN6RJmzr9wOymk0vJvMseS5kjnHVZ1ByW0mLKCYpleMulOla-sJVhlXKWl8y0yjbGFBG-ta2AgwAguEaKxoB7JDsdesOXhKKyGNfCGuc9LVR3CqcTFBF64E1slAj8n6rhL4a0Bo6dkkKpQfhNAqnk3Aj8hHV2p2KXOyYEL6yTsVMK2eYCQF5Y2zNC6ZaX5km1GpQCtF6OSIHqMyt5w2ijMjRVnydCvFPjWCg0P-sGvnqH5e9JQ_nF4tzfX62_PyaPMJwh-GZI7LXX2_gOPyw9PZNzKa_AS8O5q4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepErythema%3A+A+Study+on+the+Consistent+Evaluation+Method+of+UV+SPF+Index+Through+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Lee%2C+Cheolwon&rft.au=Yoo%2C+Sangwook&rft.au=Han+Na+Lee&rft.au=Lee%2C+Jongha&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=69046&rft_id=info:doi/10.1109%2FACCESS.2023.3284892&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |