A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors
Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for w...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 55; no. 1; pp. 189 - 202 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even-odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two's complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global-local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5-45.36 TOPS/W under 5-b MACV output. |
---|---|
AbstractList | Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even–odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two’s complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global–local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 [Formula Omitted] 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5–45.36 TOPS/W under 5-b MACV output. Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even-odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two's complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global-local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5-45.36 TOPS/W under 5-b MACV output. |
Author | Chiu, Yen-Cheng Sun, Xiaoyu Wu, Ssu-Yen Yu, Shimeng Liu, Ren-Shuo Wang, Jing-Hong Liu, Rui Li, Qiang Chen, Jia-Jing Huang, Wei-Hsing Wei, Wei-Chen Tang, Kea-Tiong Tu, Yung-Ning Chang, Meng-Fan Hsieh, Chih-Cheng Si, Xin |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-4993-0087 surname: Si fullname: Si, Xin email: xin.sigm@gmail.com organization: Institute of Integrated Circuits and Systems, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Jia-Jing surname: Chen fullname: Chen, Jia-Jing organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 3 givenname: Yung-Ning surname: Tu fullname: Tu, Yung-Ning organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 4 givenname: Wei-Hsing surname: Huang fullname: Huang, Wei-Hsing organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 5 givenname: Jing-Hong surname: Wang fullname: Wang, Jing-Hong organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 6 givenname: Yen-Cheng surname: Chiu fullname: Chiu, Yen-Cheng organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 7 givenname: Wei-Chen surname: Wei fullname: Wei, Wei-Chen organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 8 givenname: Ssu-Yen surname: Wu fullname: Wu, Ssu-Yen organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 9 givenname: Xiaoyu orcidid: 0000-0001-5337-5680 surname: Sun fullname: Sun, Xiaoyu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 10 givenname: Rui orcidid: 0000-0003-1642-3473 surname: Liu fullname: Liu, Rui organization: School of Electrical, Computer and Energy Engineering, Arizona State University (ASU), Tempe, AZ, USA – sequence: 11 givenname: Shimeng orcidid: 0000-0002-0068-3652 surname: Yu fullname: Yu, Shimeng organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 12 givenname: Ren-Shuo surname: Liu fullname: Liu, Ren-Shuo organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 13 givenname: Chih-Cheng orcidid: 0000-0003-4070-5059 surname: Hsieh fullname: Hsieh, Chih-Cheng organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 14 givenname: Kea-Tiong orcidid: 0000-0002-9689-1236 surname: Tang fullname: Tang, Kea-Tiong organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan – sequence: 15 givenname: Qiang orcidid: 0000-0001-9503-995X surname: Li fullname: Li, Qiang organization: Institute of Integrated Circuits and Systems, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 16 givenname: Meng-Fan orcidid: 0000-0001-6905-6350 surname: Chang fullname: Chang, Meng-Fan email: mfchang@ee.nthu.edu.tw organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan |
BookMark | eNp9kMFLwzAUxoNMcJv-AeIl4DkzadolOdYydbJNcRvoqaRpKhlbM5MU2X9vR4cHD_IOj_f4vvfxfgPQq22tAbgmeEQIFnfPy2U2ijARo0gkEWP0DPRJknBEGH3vgT7GhCMRYXwBBt5v2jGOOemDjxSuvk2N-Aou39I5zOxu3wQZjK1Ru57rnXUHuK5NQHOpnIWVdXDebIMpTIDZYoHupdclTKdwUn5q-Oqs0t5b5y_BeSW3Xl-d-hCsHyar7AnNXh6nWTpDiiYioFJTJiIpCzYWVaylTMY8xjFriyrGiRIlTUhBlNJUs0LHvCgKVuA4IpKXWNEhuO3u7p39arQP-cY2rm4j84jSiAgqhGhVpFO1P3jvdJXvndlJd8gJzo8E8yPB_EgwPxFsPeyPR5kOTXDSbP913nROo7X-TeKCJJzG9AfZAX5t |
CODEN | IJSCBC |
CitedBy_id | crossref_primary_10_1016_j_mejo_2024_106163 crossref_primary_10_1109_TCSI_2023_3296675 crossref_primary_10_1109_TCSI_2022_3192165 crossref_primary_10_1109_JSSC_2023_3309966 crossref_primary_10_1109_TCSII_2021_3067327 crossref_primary_10_1109_TCSI_2022_3168053 crossref_primary_10_1109_TCSII_2023_3323211 crossref_primary_10_1109_JXCDC_2021_3057856 crossref_primary_10_1109_ACCESS_2024_3487975 crossref_primary_10_1109_TCSII_2021_3099798 crossref_primary_10_1007_s11432_021_3234_0 crossref_primary_10_1109_TED_2024_3508666 crossref_primary_10_1109_TVLSI_2024_3469217 crossref_primary_10_1109_JSSC_2024_3399615 crossref_primary_10_1109_ACCESS_2021_3079425 crossref_primary_10_1109_TCSI_2022_3165352 crossref_primary_10_1109_JETCAS_2022_3170595 crossref_primary_10_1109_TCSI_2022_3152653 crossref_primary_10_1002_aelm_202400452 crossref_primary_10_1109_TCSI_2020_2981901 crossref_primary_10_1109_TCSII_2023_3234620 crossref_primary_10_3390_electronics13193872 crossref_primary_10_1109_TCSI_2024_3372392 crossref_primary_10_1109_TCSII_2024_3354313 crossref_primary_10_1109_TCSI_2023_3241385 crossref_primary_10_1109_JSSC_2024_3422826 crossref_primary_10_1109_TCSII_2023_3265064 crossref_primary_10_1109_TVLSI_2022_3221390 crossref_primary_10_1109_TCSI_2023_3301814 crossref_primary_10_3390_electronics13030666 crossref_primary_10_1145_3707205 crossref_primary_10_1109_JSSC_2021_3119018 crossref_primary_10_1016_j_mejo_2024_106470 crossref_primary_10_1109_TCSI_2023_3273188 crossref_primary_10_1109_TCSII_2022_3201367 crossref_primary_10_1109_JSSC_2022_3224363 crossref_primary_10_1109_TVLSI_2024_3368849 crossref_primary_10_1109_JSSC_2022_3206318 crossref_primary_10_1088_1674_4926_43_3_031401 crossref_primary_10_1109_TVLSI_2024_3418888 crossref_primary_10_1109_JSSC_2021_3056447 crossref_primary_10_1109_JSSC_2022_3211290 crossref_primary_10_1109_JSSC_2023_3303910 crossref_primary_10_1016_j_mejo_2022_105506 crossref_primary_10_1109_JSSC_2024_3375359 crossref_primary_10_1088_1361_6641_ac461f crossref_primary_10_1007_s00034_023_02481_5 crossref_primary_10_1109_TCAD_2022_3197538 crossref_primary_10_1109_TCSI_2021_3080042 crossref_primary_10_1109_TVLSI_2022_3179621 crossref_primary_10_1109_TVLSI_2023_3277517 crossref_primary_10_1109_JETCAS_2020_3014250 crossref_primary_10_1109_JETCAS_2022_3196678 crossref_primary_10_1109_TPDS_2024_3437657 crossref_primary_10_1109_TCSI_2024_3384271 crossref_primary_10_1016_j_sysarc_2021_102276 crossref_primary_10_1049_ell2_12549 crossref_primary_10_1109_TCSI_2021_3055830 crossref_primary_10_1109_TCSI_2023_3266269 crossref_primary_10_1109_TCSI_2024_3364715 crossref_primary_10_1016_j_mejo_2024_106124 crossref_primary_10_1002_admt_202200884 crossref_primary_10_1109_TCSI_2023_3334950 crossref_primary_10_1109_TCSII_2022_3168404 crossref_primary_10_1007_s11227_024_06700_x crossref_primary_10_1109_TCSII_2022_3224049 crossref_primary_10_1109_JSSC_2023_3343669 crossref_primary_10_3390_s22093491 crossref_primary_10_1109_JSSC_2020_3039206 crossref_primary_10_1109_JSSC_2024_3472115 crossref_primary_10_1109_JSSC_2024_3470215 crossref_primary_10_1109_LSSC_2021_3103759 crossref_primary_10_1109_TVLSI_2022_3148327 crossref_primary_10_7498_aps_71_20220397 crossref_primary_10_1109_TVLSI_2020_3037871 crossref_primary_10_1109_JSSC_2022_3198413 crossref_primary_10_1109_TCAD_2021_3082107 crossref_primary_10_1109_TCSII_2023_3331375 crossref_primary_10_23919_ICS_2024_3422968 crossref_primary_10_1109_TCSII_2022_3231589 crossref_primary_10_1142_S0129156424400597 crossref_primary_10_1109_TCSI_2024_3411608 crossref_primary_10_1109_JSSC_2021_3073254 crossref_primary_10_1109_JSSC_2022_3199077 crossref_primary_10_1109_LSSC_2023_3281587 crossref_primary_10_1021_acsami_2c14867 crossref_primary_10_1109_JSSC_2023_3313519 crossref_primary_10_3390_app14219749 crossref_primary_10_1109_MSSC_2022_3182935 crossref_primary_10_1109_TVLSI_2024_3519748 crossref_primary_10_1088_1741_2552_abf473 crossref_primary_10_1109_JSSC_2021_3108344 crossref_primary_10_1587_elex_20_20230152 crossref_primary_10_1109_ACCESS_2024_3358451 crossref_primary_10_1109_JSSC_2020_2987714 crossref_primary_10_1016_j_mejo_2024_106397 crossref_primary_10_1109_TCSII_2022_3162017 crossref_primary_10_1109_JETCAS_2022_3168571 |
Cites_doi | 10.1109/VLSIC.2018.8502421 10.1109/JSSC.2011.2143870 10.1109/JSSC.2018.2867275 10.1109/MSP.2012.2205597 10.1109/JSSC.2018.2878830 10.23919/VLSIC.2017.8008465 10.1109/JSSC.2017.2778702 10.1109/JSSC.2016.2642198 10.1109/CICC.2017.7993626 10.1109/JSSC.2018.2880918 10.1109/ISSCC.2018.8310400 10.1109/ISSCC.2018.8310398 10.1109/ISSCC.2017.7870354 10.1109/VLSIT.2018.8510687 10.1109/CVPR.2014.220 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298594 10.1109/ISSCC.2018.8310262 10.1109/JSSC.2016.2515510 10.1109/ISSCC.2016.7418007 10.1109/ISSCC.2018.8310401 10.1109/ISSCC.2018.8310397 10.1109/TCSI.2018.2848999 10.23919/VLSIC.2019.8778028 10.1109/JSSC.2010.2042254 10.1109/JSSC.2016.2636225 10.1109/TCSI.2019.2928043 10.1109/MSSC.2017.2745798 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSSC.2019.2952773 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-173X |
EndPage | 202 |
ExternalDocumentID | 10_1109_JSSC_2019_2952773 8915834 |
Genre | orig-research |
GrantInformation_xml | – fundername: Media Tek (MTK) – fundername: M31 Technology Corporation – fundername: Taiwan Semiconductor Research Institute (TSRI) – fundername: Taiwan Semiconductor Manufacturing Company-Joint Development Program (TSMC-JDP) – fundername: MediaTek-Joint Development Program (MTK-JDP) – fundername: Ministry of Science and Technology, Taiwan funderid: 10.13039/501100004663 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c359t-de3792aab769f4eaa56840474743c781c9d351b1cce3e7be48bbb7b0421a8d0c3 |
IEDL.DBID | RIE |
ISSN | 0018-9200 |
IngestDate | Mon Jun 30 10:19:19 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Aug 27 16:22:11 EDT 2025 Wed Aug 27 07:40:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-de3792aab769f4eaa56840474743c781c9d351b1cce3e7be48bbb7b0421a8d0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6905-6350 0000-0003-1642-3473 0000-0002-4993-0087 0000-0001-5337-5680 0000-0002-9689-1236 0000-0001-9503-995X 0000-0002-0068-3652 0000-0003-4070-5059 |
PQID | 2332193999 |
PQPubID | 85482 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_JSSC_2019_2952773 crossref_citationtrail_10_1109_JSSC_2019_2952773 ieee_primary_8915834 proquest_journals_2332193999 |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of solid-state circuits |
PublicationTitleAbbrev | JSSC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref32 ref10 ref2 horowitz (ref11) 2014 ref17 ref16 ref19 bankman (ref22) 2018 agrawal (ref18) 2018 si (ref23) 2019 liu (ref24) 2018 jeloka (ref21) 2016; 51 ref26 ref25 chang (ref27) 2015 ref20 ref28 ref29 ref8 ref7 ref9 okumura (ref31) 2019 ref4 ref3 simonyan (ref33) 2014 ref6 ref5 krizhevsky (ref1) 2012 |
References_xml | – ident: ref19 doi: 10.1109/VLSIC.2018.8502421 – ident: ref34 doi: 10.1109/JSSC.2011.2143870 – ident: ref37 doi: 10.1109/JSSC.2018.2867275 – start-page: 396 year: 2019 ident: ref23 article-title: 24.5 A Twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning publication-title: IEEE ISSCC Dig Tech Papers – year: 2014 ident: ref33 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – start-page: 248 year: 2019 ident: ref31 article-title: A ternary based bit scalable, 8.80 TOPS/W CNN accelerator with many-core processing-in-memory architecture with 896K synapses/mm2 publication-title: Proc Symp VLSI Circuits – start-page: 10 year: 2014 ident: ref11 article-title: Computing's energy problem (and what we can do about it) publication-title: IEEE ISSCC Dig Tech Papers – ident: ref2 doi: 10.1109/MSP.2012.2205597 – ident: ref35 doi: 10.1109/JSSC.2018.2878830 – ident: ref17 doi: 10.23919/VLSIC.2017.8008465 – start-page: 222 year: 2018 ident: ref22 article-title: An always-on $3.8~\mu$ J/86% CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS publication-title: IEEE ISSCC Dig Tech Papers – ident: ref10 doi: 10.1109/JSSC.2017.2778702 – ident: ref12 doi: 10.1109/JSSC.2016.2642198 – ident: ref8 doi: 10.1109/CICC.2017.7993626 – ident: ref36 doi: 10.1109/JSSC.2018.2880918 – ident: ref28 doi: 10.1109/ISSCC.2018.8310400 – year: 2018 ident: ref18 article-title: Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays publication-title: arXiv 1807 00343 – ident: ref15 doi: 10.1109/ISSCC.2018.8310398 – start-page: 1097 year: 2012 ident: ref1 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1109/ISSCC.2017.7870354 – ident: ref16 doi: 10.1109/VLSIT.2018.8510687 – ident: ref3 doi: 10.1109/CVPR.2014.220 – ident: ref29 doi: 10.1109/CVPR.2016.90 – ident: ref26 doi: 10.1109/CVPR.2015.7298594 – ident: ref25 doi: 10.1109/ISSCC.2018.8310262 – volume: 51 start-page: 1009 year: 2016 ident: ref21 article-title: A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2016.2515510 – ident: ref5 doi: 10.1109/ISSCC.2016.7418007 – ident: ref13 doi: 10.1109/ISSCC.2018.8310401 – start-page: 1 year: 2018 ident: ref24 article-title: Parallelizing SRAM Arrays with Customized Bit-Cell for Binary Neural Networks publication-title: Proc 55th ACM/ESDA/IEEE Design Automat Conf (DAC) – start-page: 314 year: 2015 ident: ref27 article-title: A 28nm 256Kb 6T-SRAM with 280mV Improvement in VMIN Using a Dual-Split-Control Assist Scheme publication-title: IEEE ISSCC Dig Tech Papers – ident: ref14 doi: 10.1109/ISSCC.2018.8310397 – ident: ref20 doi: 10.1109/TCSI.2018.2848999 – ident: ref32 doi: 10.23919/VLSIC.2019.8778028 – ident: ref30 doi: 10.1109/JSSC.2010.2042254 – ident: ref6 doi: 10.1109/JSSC.2016.2636225 – ident: ref7 doi: 10.1109/TCSI.2019.2928043 – ident: ref9 doi: 10.1109/MSSC.2017.2745798 |
SSID | ssj0014481 |
Score | 2.6279416 |
Snippet | Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 189 |
SubjectTerms | Artificial intelligence Artificial intelligence (AI) Common Information Model (computing) computation-in-memory (CIM) convolutional neural network (CNN) Energy efficiency Kernel Mapping Power demand Power efficiency Program processors Random access memory SRAM cells Static random access memory Twin 8T (T8T) |
Title | A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors |
URI | https://ieeexplore.ieee.org/document/8915834 https://www.proquest.com/docview/2332193999 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSyMxGP9QT3rwuWJ9kYMn2dTJq5Mca1FUmB5sBfc05FWRXVrRKaJ_vUlmWnQV8TaEBDL55XvlewEcUZUJ7b3BHT2SmFOdYSW5xs45Gg1o0Ul53EW_c3HDr27F7QL8nufCeO9T8Jlvx8_ky3cTO41PZSdSESEZX4TFYLjVuVpzj0EwM-rueCQQcIC-8WCSTJ1cDQa9GMSl2lQJmufsgwxKTVU-ceIkXs7XoJhtrI4q-dueVqZtX_-r2fjTna_DaqNnom59MTZgwY83YeVd9cEt-NNFw-f7MZZDNLjuFqhu8JCQwmG4iDG4LygqpbjQ4U9Q0G9RStg19xXq9fv4NIhAh7qX6MzdedTkHEwen37BzfnZsHeBm04L2DKhKuw8yxXV2uQdNeJe6whRxoOpwZnNJbHKMUEMsdYznxvPpTEmN4HgiZYus2wblsaTsd8BZGNNdynyEeGGK0uM9I5TE1gDY1Yo04JsdvalbcqQx24Y_8pkjmSqjHCVEa6ygasFx_MlD3UNju8mb8Xjn09sTr4F-zOAy4ZKn0rKWGDYQUVTu1-v2oNlGu3r9OSyD0vV49QfBCWkMofp9r0B0xPVmA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTxsxFH6icKAc2lJApEDxoacKh_GWsY9pBArL5NAECU4jb0EIlFQwUdX-emzPJKIUIW4jy5Y8_vw2vw3gG1WZ0N4b3NFjiTnVGVaSa-yco9GAFp2Ux10MOv0LfnopLpfgYJEL471PwWe-HT-TL99N7Sw-lR1KRYRk_B2sBLkvSJ2ttfAZBEOj7o9HAgkH8BsfJsnU4elw2IthXKpNlaB5zv6RQqmtyn-8OAmY449QzLdWx5XctmeVadu_z6o2vnXvn-BDo2mibn011mHJTz7D2pP6gxtw1UWj3zcTLEdo-LNboLrFQ8IKh-EiRuH-QVEtxYUOf4KChotSyq65qVBvMMA_ghB0qHuCjty1R03WwfT-YRMujo9GvT5uei1gy4SqsPMsV1Rrk3fUmHutI0gZD8YGZzaXxCrHBDHEWs98bjyXxpjcBJInWrrMsi1YnkwnfhuQjVXdpcjHhBuuLDHSO05NYA6MWaFMC7L52Ze2KUQe-2HclckgyVQZ4SojXGUDVwu-L5b8qqtwvDZ5Ix7_YmJz8i3YnQNcNnT6UFLGAssOSpr68vKqfVjtj4rz8vxkcLYD72m0ttMDzC4sV_czvxdUksp8TTfxESUT2OE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Twin-8T+SRAM+Computation-in-Memory+Unit-Macro+for+Multibit+CNN-Based+AI+Edge+Processors&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Si%2C+Xin&rft.au=Chen%2C+Jia-Jing&rft.au=Tu%2C+Yung-Ning&rft.au=Huang%2C+Wei-Hsing&rft.date=2020-01-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=55&rft.issue=1&rft.spage=189&rft.epage=202&rft_id=info:doi/10.1109%2FJSSC.2019.2952773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSSC_2019_2952773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |