A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors

Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for w...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 55; no. 1; pp. 189 - 202
Main Authors Si, Xin, Chen, Jia-Jing, Tu, Yung-Ning, Huang, Wei-Hsing, Wang, Jing-Hong, Chiu, Yen-Cheng, Wei, Wei-Chen, Wu, Ssu-Yen, Sun, Xiaoyu, Liu, Rui, Yu, Shimeng, Liu, Ren-Shuo, Hsieh, Chih-Cheng, Tang, Kea-Tiong, Li, Qiang, Chang, Meng-Fan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even-odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two's complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global-local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5-45.36 TOPS/W under 5-b MACV output.
AbstractList Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even–odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two’s complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global–local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 [Formula Omitted] 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5–45.36 TOPS/W under 5-b MACV output.
Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even-odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two's complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global-local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5-45.36 TOPS/W under 5-b MACV output.
Author Chiu, Yen-Cheng
Sun, Xiaoyu
Wu, Ssu-Yen
Yu, Shimeng
Liu, Ren-Shuo
Wang, Jing-Hong
Liu, Rui
Li, Qiang
Chen, Jia-Jing
Huang, Wei-Hsing
Wei, Wei-Chen
Tang, Kea-Tiong
Tu, Yung-Ning
Chang, Meng-Fan
Hsieh, Chih-Cheng
Si, Xin
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-4993-0087
  surname: Si
  fullname: Si, Xin
  email: xin.sigm@gmail.com
  organization: Institute of Integrated Circuits and Systems, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Jia-Jing
  surname: Chen
  fullname: Chen, Jia-Jing
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 3
  givenname: Yung-Ning
  surname: Tu
  fullname: Tu, Yung-Ning
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 4
  givenname: Wei-Hsing
  surname: Huang
  fullname: Huang, Wei-Hsing
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 5
  givenname: Jing-Hong
  surname: Wang
  fullname: Wang, Jing-Hong
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 6
  givenname: Yen-Cheng
  surname: Chiu
  fullname: Chiu, Yen-Cheng
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 7
  givenname: Wei-Chen
  surname: Wei
  fullname: Wei, Wei-Chen
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 8
  givenname: Ssu-Yen
  surname: Wu
  fullname: Wu, Ssu-Yen
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 9
  givenname: Xiaoyu
  orcidid: 0000-0001-5337-5680
  surname: Sun
  fullname: Sun, Xiaoyu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 10
  givenname: Rui
  orcidid: 0000-0003-1642-3473
  surname: Liu
  fullname: Liu, Rui
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University (ASU), Tempe, AZ, USA
– sequence: 11
  givenname: Shimeng
  orcidid: 0000-0002-0068-3652
  surname: Yu
  fullname: Yu, Shimeng
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 12
  givenname: Ren-Shuo
  surname: Liu
  fullname: Liu, Ren-Shuo
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 13
  givenname: Chih-Cheng
  orcidid: 0000-0003-4070-5059
  surname: Hsieh
  fullname: Hsieh, Chih-Cheng
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 14
  givenname: Kea-Tiong
  orcidid: 0000-0002-9689-1236
  surname: Tang
  fullname: Tang, Kea-Tiong
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
– sequence: 15
  givenname: Qiang
  orcidid: 0000-0001-9503-995X
  surname: Li
  fullname: Li, Qiang
  organization: Institute of Integrated Circuits and Systems, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 16
  givenname: Meng-Fan
  orcidid: 0000-0001-6905-6350
  surname: Chang
  fullname: Chang, Meng-Fan
  email: mfchang@ee.nthu.edu.tw
  organization: Department of Electrical Engineering, National Tsing Hua University (NTHU), Hsinchu, Taiwan
BookMark eNp9kMFLwzAUxoNMcJv-AeIl4DkzadolOdYydbJNcRvoqaRpKhlbM5MU2X9vR4cHD_IOj_f4vvfxfgPQq22tAbgmeEQIFnfPy2U2ijARo0gkEWP0DPRJknBEGH3vgT7GhCMRYXwBBt5v2jGOOemDjxSuvk2N-Aou39I5zOxu3wQZjK1Ru57rnXUHuK5NQHOpnIWVdXDebIMpTIDZYoHupdclTKdwUn5q-Oqs0t5b5y_BeSW3Xl-d-hCsHyar7AnNXh6nWTpDiiYioFJTJiIpCzYWVaylTMY8xjFriyrGiRIlTUhBlNJUs0LHvCgKVuA4IpKXWNEhuO3u7p39arQP-cY2rm4j84jSiAgqhGhVpFO1P3jvdJXvndlJd8gJzo8E8yPB_EgwPxFsPeyPR5kOTXDSbP913nROo7X-TeKCJJzG9AfZAX5t
CODEN IJSCBC
CitedBy_id crossref_primary_10_1016_j_mejo_2024_106163
crossref_primary_10_1109_TCSI_2023_3296675
crossref_primary_10_1109_TCSI_2022_3192165
crossref_primary_10_1109_JSSC_2023_3309966
crossref_primary_10_1109_TCSII_2021_3067327
crossref_primary_10_1109_TCSI_2022_3168053
crossref_primary_10_1109_TCSII_2023_3323211
crossref_primary_10_1109_JXCDC_2021_3057856
crossref_primary_10_1109_ACCESS_2024_3487975
crossref_primary_10_1109_TCSII_2021_3099798
crossref_primary_10_1007_s11432_021_3234_0
crossref_primary_10_1109_TED_2024_3508666
crossref_primary_10_1109_TVLSI_2024_3469217
crossref_primary_10_1109_JSSC_2024_3399615
crossref_primary_10_1109_ACCESS_2021_3079425
crossref_primary_10_1109_TCSI_2022_3165352
crossref_primary_10_1109_JETCAS_2022_3170595
crossref_primary_10_1109_TCSI_2022_3152653
crossref_primary_10_1002_aelm_202400452
crossref_primary_10_1109_TCSI_2020_2981901
crossref_primary_10_1109_TCSII_2023_3234620
crossref_primary_10_3390_electronics13193872
crossref_primary_10_1109_TCSI_2024_3372392
crossref_primary_10_1109_TCSII_2024_3354313
crossref_primary_10_1109_TCSI_2023_3241385
crossref_primary_10_1109_JSSC_2024_3422826
crossref_primary_10_1109_TCSII_2023_3265064
crossref_primary_10_1109_TVLSI_2022_3221390
crossref_primary_10_1109_TCSI_2023_3301814
crossref_primary_10_3390_electronics13030666
crossref_primary_10_1145_3707205
crossref_primary_10_1109_JSSC_2021_3119018
crossref_primary_10_1016_j_mejo_2024_106470
crossref_primary_10_1109_TCSI_2023_3273188
crossref_primary_10_1109_TCSII_2022_3201367
crossref_primary_10_1109_JSSC_2022_3224363
crossref_primary_10_1109_TVLSI_2024_3368849
crossref_primary_10_1109_JSSC_2022_3206318
crossref_primary_10_1088_1674_4926_43_3_031401
crossref_primary_10_1109_TVLSI_2024_3418888
crossref_primary_10_1109_JSSC_2021_3056447
crossref_primary_10_1109_JSSC_2022_3211290
crossref_primary_10_1109_JSSC_2023_3303910
crossref_primary_10_1016_j_mejo_2022_105506
crossref_primary_10_1109_JSSC_2024_3375359
crossref_primary_10_1088_1361_6641_ac461f
crossref_primary_10_1007_s00034_023_02481_5
crossref_primary_10_1109_TCAD_2022_3197538
crossref_primary_10_1109_TCSI_2021_3080042
crossref_primary_10_1109_TVLSI_2022_3179621
crossref_primary_10_1109_TVLSI_2023_3277517
crossref_primary_10_1109_JETCAS_2020_3014250
crossref_primary_10_1109_JETCAS_2022_3196678
crossref_primary_10_1109_TPDS_2024_3437657
crossref_primary_10_1109_TCSI_2024_3384271
crossref_primary_10_1016_j_sysarc_2021_102276
crossref_primary_10_1049_ell2_12549
crossref_primary_10_1109_TCSI_2021_3055830
crossref_primary_10_1109_TCSI_2023_3266269
crossref_primary_10_1109_TCSI_2024_3364715
crossref_primary_10_1016_j_mejo_2024_106124
crossref_primary_10_1002_admt_202200884
crossref_primary_10_1109_TCSI_2023_3334950
crossref_primary_10_1109_TCSII_2022_3168404
crossref_primary_10_1007_s11227_024_06700_x
crossref_primary_10_1109_TCSII_2022_3224049
crossref_primary_10_1109_JSSC_2023_3343669
crossref_primary_10_3390_s22093491
crossref_primary_10_1109_JSSC_2020_3039206
crossref_primary_10_1109_JSSC_2024_3472115
crossref_primary_10_1109_JSSC_2024_3470215
crossref_primary_10_1109_LSSC_2021_3103759
crossref_primary_10_1109_TVLSI_2022_3148327
crossref_primary_10_7498_aps_71_20220397
crossref_primary_10_1109_TVLSI_2020_3037871
crossref_primary_10_1109_JSSC_2022_3198413
crossref_primary_10_1109_TCAD_2021_3082107
crossref_primary_10_1109_TCSII_2023_3331375
crossref_primary_10_23919_ICS_2024_3422968
crossref_primary_10_1109_TCSII_2022_3231589
crossref_primary_10_1142_S0129156424400597
crossref_primary_10_1109_TCSI_2024_3411608
crossref_primary_10_1109_JSSC_2021_3073254
crossref_primary_10_1109_JSSC_2022_3199077
crossref_primary_10_1109_LSSC_2023_3281587
crossref_primary_10_1021_acsami_2c14867
crossref_primary_10_1109_JSSC_2023_3313519
crossref_primary_10_3390_app14219749
crossref_primary_10_1109_MSSC_2022_3182935
crossref_primary_10_1109_TVLSI_2024_3519748
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_1109_JSSC_2021_3108344
crossref_primary_10_1587_elex_20_20230152
crossref_primary_10_1109_ACCESS_2024_3358451
crossref_primary_10_1109_JSSC_2020_2987714
crossref_primary_10_1016_j_mejo_2024_106397
crossref_primary_10_1109_TCSII_2022_3162017
crossref_primary_10_1109_JETCAS_2022_3168571
Cites_doi 10.1109/VLSIC.2018.8502421
10.1109/JSSC.2011.2143870
10.1109/JSSC.2018.2867275
10.1109/MSP.2012.2205597
10.1109/JSSC.2018.2878830
10.23919/VLSIC.2017.8008465
10.1109/JSSC.2017.2778702
10.1109/JSSC.2016.2642198
10.1109/CICC.2017.7993626
10.1109/JSSC.2018.2880918
10.1109/ISSCC.2018.8310400
10.1109/ISSCC.2018.8310398
10.1109/ISSCC.2017.7870354
10.1109/VLSIT.2018.8510687
10.1109/CVPR.2014.220
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298594
10.1109/ISSCC.2018.8310262
10.1109/JSSC.2016.2515510
10.1109/ISSCC.2016.7418007
10.1109/ISSCC.2018.8310401
10.1109/ISSCC.2018.8310397
10.1109/TCSI.2018.2848999
10.23919/VLSIC.2019.8778028
10.1109/JSSC.2010.2042254
10.1109/JSSC.2016.2636225
10.1109/TCSI.2019.2928043
10.1109/MSSC.2017.2745798
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2019.2952773
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 202
ExternalDocumentID 10_1109_JSSC_2019_2952773
8915834
Genre orig-research
GrantInformation_xml – fundername: Media Tek (MTK)
– fundername: M31 Technology Corporation
– fundername: Taiwan Semiconductor Research Institute (TSRI)
– fundername: Taiwan Semiconductor Manufacturing Company-Joint Development Program (TSMC-JDP)
– fundername: MediaTek-Joint Development Program (MTK-JDP)
– fundername: Ministry of Science and Technology, Taiwan
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-de3792aab769f4eaa56840474743c781c9d351b1cce3e7be48bbb7b0421a8d0c3
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Mon Jun 30 10:19:19 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Aug 27 16:22:11 EDT 2025
Wed Aug 27 07:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-de3792aab769f4eaa56840474743c781c9d351b1cce3e7be48bbb7b0421a8d0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6905-6350
0000-0003-1642-3473
0000-0002-4993-0087
0000-0001-5337-5680
0000-0002-9689-1236
0000-0001-9503-995X
0000-0002-0068-3652
0000-0003-4070-5059
PQID 2332193999
PQPubID 85482
PageCount 14
ParticipantIDs crossref_primary_10_1109_JSSC_2019_2952773
crossref_citationtrail_10_1109_JSSC_2019_2952773
ieee_primary_8915834
proquest_journals_2332193999
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref32
ref10
ref2
horowitz (ref11) 2014
ref17
ref16
ref19
bankman (ref22) 2018
agrawal (ref18) 2018
si (ref23) 2019
liu (ref24) 2018
jeloka (ref21) 2016; 51
ref26
ref25
chang (ref27) 2015
ref20
ref28
ref29
ref8
ref7
ref9
okumura (ref31) 2019
ref4
ref3
simonyan (ref33) 2014
ref6
ref5
krizhevsky (ref1) 2012
References_xml – ident: ref19
  doi: 10.1109/VLSIC.2018.8502421
– ident: ref34
  doi: 10.1109/JSSC.2011.2143870
– ident: ref37
  doi: 10.1109/JSSC.2018.2867275
– start-page: 396
  year: 2019
  ident: ref23
  article-title: 24.5 A Twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning
  publication-title: IEEE ISSCC Dig Tech Papers
– year: 2014
  ident: ref33
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– start-page: 248
  year: 2019
  ident: ref31
  article-title: A ternary based bit scalable, 8.80 TOPS/W CNN accelerator with many-core processing-in-memory architecture with 896K synapses/mm2
  publication-title: Proc Symp VLSI Circuits
– start-page: 10
  year: 2014
  ident: ref11
  article-title: Computing's energy problem (and what we can do about it)
  publication-title: IEEE ISSCC Dig Tech Papers
– ident: ref2
  doi: 10.1109/MSP.2012.2205597
– ident: ref35
  doi: 10.1109/JSSC.2018.2878830
– ident: ref17
  doi: 10.23919/VLSIC.2017.8008465
– start-page: 222
  year: 2018
  ident: ref22
  article-title: An always-on $3.8~\mu$ J/86% CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS
  publication-title: IEEE ISSCC Dig Tech Papers
– ident: ref10
  doi: 10.1109/JSSC.2017.2778702
– ident: ref12
  doi: 10.1109/JSSC.2016.2642198
– ident: ref8
  doi: 10.1109/CICC.2017.7993626
– ident: ref36
  doi: 10.1109/JSSC.2018.2880918
– ident: ref28
  doi: 10.1109/ISSCC.2018.8310400
– year: 2018
  ident: ref18
  article-title: Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays
  publication-title: arXiv 1807 00343
– ident: ref15
  doi: 10.1109/ISSCC.2018.8310398
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/ISSCC.2017.7870354
– ident: ref16
  doi: 10.1109/VLSIT.2018.8510687
– ident: ref3
  doi: 10.1109/CVPR.2014.220
– ident: ref29
  doi: 10.1109/CVPR.2016.90
– ident: ref26
  doi: 10.1109/CVPR.2015.7298594
– ident: ref25
  doi: 10.1109/ISSCC.2018.8310262
– volume: 51
  start-page: 1009
  year: 2016
  ident: ref21
  article-title: A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2016.2515510
– ident: ref5
  doi: 10.1109/ISSCC.2016.7418007
– ident: ref13
  doi: 10.1109/ISSCC.2018.8310401
– start-page: 1
  year: 2018
  ident: ref24
  article-title: Parallelizing SRAM Arrays with Customized Bit-Cell for Binary Neural Networks
  publication-title: Proc 55th ACM/ESDA/IEEE Design Automat Conf (DAC)
– start-page: 314
  year: 2015
  ident: ref27
  article-title: A 28nm 256Kb 6T-SRAM with 280mV Improvement in VMIN Using a Dual-Split-Control Assist Scheme
  publication-title: IEEE ISSCC Dig Tech Papers
– ident: ref14
  doi: 10.1109/ISSCC.2018.8310397
– ident: ref20
  doi: 10.1109/TCSI.2018.2848999
– ident: ref32
  doi: 10.23919/VLSIC.2019.8778028
– ident: ref30
  doi: 10.1109/JSSC.2010.2042254
– ident: ref6
  doi: 10.1109/JSSC.2016.2636225
– ident: ref7
  doi: 10.1109/TCSI.2019.2928043
– ident: ref9
  doi: 10.1109/MSSC.2017.2745798
SSID ssj0014481
Score 2.6279416
Snippet Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Artificial intelligence
Artificial intelligence (AI)
Common Information Model (computing)
computation-in-memory (CIM)
convolutional neural network (CNN)
Energy efficiency
Kernel
Mapping
Power demand
Power efficiency
Program processors
Random access memory
SRAM cells
Static random access memory
Twin 8T (T8T)
Title A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors
URI https://ieeexplore.ieee.org/document/8915834
https://www.proquest.com/docview/2332193999
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSyMxGP9QT3rwuWJ9kYMn2dTJq5Mca1FUmB5sBfc05FWRXVrRKaJ_vUlmWnQV8TaEBDL55XvlewEcUZUJ7b3BHT2SmFOdYSW5xs45Gg1o0Ul53EW_c3HDr27F7QL8nufCeO9T8Jlvx8_ky3cTO41PZSdSESEZX4TFYLjVuVpzj0EwM-rueCQQcIC-8WCSTJ1cDQa9GMSl2lQJmufsgwxKTVU-ceIkXs7XoJhtrI4q-dueVqZtX_-r2fjTna_DaqNnom59MTZgwY83YeVd9cEt-NNFw-f7MZZDNLjuFqhu8JCQwmG4iDG4LygqpbjQ4U9Q0G9RStg19xXq9fv4NIhAh7qX6MzdedTkHEwen37BzfnZsHeBm04L2DKhKuw8yxXV2uQdNeJe6whRxoOpwZnNJbHKMUEMsdYznxvPpTEmN4HgiZYus2wblsaTsd8BZGNNdynyEeGGK0uM9I5TE1gDY1Yo04JsdvalbcqQx24Y_8pkjmSqjHCVEa6ygasFx_MlD3UNju8mb8Xjn09sTr4F-zOAy4ZKn0rKWGDYQUVTu1-v2oNlGu3r9OSyD0vV49QfBCWkMofp9r0B0xPVmA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTxsxFH6icKAc2lJApEDxoacKh_GWsY9pBArL5NAECU4jb0EIlFQwUdX-emzPJKIUIW4jy5Y8_vw2vw3gG1WZ0N4b3NFjiTnVGVaSa-yco9GAFp2Ux10MOv0LfnopLpfgYJEL471PwWe-HT-TL99N7Sw-lR1KRYRk_B2sBLkvSJ2ttfAZBEOj7o9HAgkH8BsfJsnU4elw2IthXKpNlaB5zv6RQqmtyn-8OAmY449QzLdWx5XctmeVadu_z6o2vnXvn-BDo2mibn011mHJTz7D2pP6gxtw1UWj3zcTLEdo-LNboLrFQ8IKh-EiRuH-QVEtxYUOf4KChotSyq65qVBvMMA_ghB0qHuCjty1R03WwfT-YRMujo9GvT5uei1gy4SqsPMsV1Rrk3fUmHutI0gZD8YGZzaXxCrHBDHEWs98bjyXxpjcBJInWrrMsi1YnkwnfhuQjVXdpcjHhBuuLDHSO05NYA6MWaFMC7L52Ze2KUQe-2HclckgyVQZ4SojXGUDVwu-L5b8qqtwvDZ5Ix7_YmJz8i3YnQNcNnT6UFLGAssOSpr68vKqfVjtj4rz8vxkcLYD72m0ttMDzC4sV_czvxdUksp8TTfxESUT2OE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Twin-8T+SRAM+Computation-in-Memory+Unit-Macro+for+Multibit+CNN-Based+AI+Edge+Processors&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Si%2C+Xin&rft.au=Chen%2C+Jia-Jing&rft.au=Tu%2C+Yung-Ning&rft.au=Huang%2C+Wei-Hsing&rft.date=2020-01-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=55&rft.issue=1&rft.spage=189&rft.epage=202&rft_id=info:doi/10.1109%2FJSSC.2019.2952773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSSC_2019_2952773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon