Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection

This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-r...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 58; no. 6; pp. 3906 - 3915
Main Authors Sun, Weiwei, Peng, Jiangtao, Yang, Gang, Du, Qian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-rank representation (LLRR) model. The assumption ensures sufficient sampling bands in representing low-rank subspaces of all bands and improves robustness to noise. The FLLRSC first implements the Hadamard random projections to reduce spatial dimensionality and lower the computational cost. It then adopts the inexact augmented Lagrange multiplier algorithm to optimize the LLRR program and estimates sparse coefficients of all the projected bands. After that, it employs a correntropy metric to measure the similarity between pairwise bands and constructs an affinity matrix based on sparse representation. The correntropy metric could better describe the nonlinear characteristics of hyperspectral bands and enhance the block-diagonal structure of the similarity matrix for correctly clustering all subspaces. The FLLRSC conducts spectral clustering on the connected graph denoted by the affinity matrix. The bands that are closest to their separate cluster centroids form the final band subset. Experimental results on three widely used hyperspectral data sets show that the FLLRSC performs better than the classical low-rank representation methods with higher classification accuracy at a low computational cost.
AbstractList This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-rank representation (LLRR) model. The assumption ensures sufficient sampling bands in representing low-rank subspaces of all bands and improves robustness to noise. The FLLRSC first implements the Hadamard random projections to reduce spatial dimensionality and lower the computational cost. It then adopts the inexact augmented Lagrange multiplier algorithm to optimize the LLRR program and estimates sparse coefficients of all the projected bands. After that, it employs a correntropy metric to measure the similarity between pairwise bands and constructs an affinity matrix based on sparse representation. The correntropy metric could better describe the nonlinear characteristics of hyperspectral bands and enhance the block-diagonal structure of the similarity matrix for correctly clustering all subspaces. The FLLRSC conducts spectral clustering on the connected graph denoted by the affinity matrix. The bands that are closest to their separate cluster centroids form the final band subset. Experimental results on three widely used hyperspectral data sets show that the FLLRSC performs better than the classical low-rank representation methods with higher classification accuracy at a low computational cost.
Author Peng, Jiangtao
Yang, Gang
Du, Qian
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  email: nbsww@outlook.com
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China
– sequence: 2
  givenname: Jiangtao
  orcidid: 0000-0002-4759-0584
  surname: Peng
  fullname: Peng, Jiangtao
  email: pengjt1982@hubu.edu.cn
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 3
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
  email: yanggang@nbu.edu.cn
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China
– sequence: 4
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
BookMark eNp9kFFLwzAQx4NMcE4_gPhS8LkzSZO0edThNqEibPM5pOlVOmtakxTZt7dlwwcffDqO-__ujt8lmtjWAkI3BM8JwfJ-t9ps5xQTOaeSy4TRMzQlnGcxFoxN0HSYiJhmkl6gS-_3GBPGSTpFL0vtQ6RtGeU6gA1R3n7HG20_om1f-E4biBZN7wO42r5HVeui9aED5zswwekmehzRLTRDW7f2Cp1XuvFwfaoz9LZ82i3Wcf66el485LFJuAxxWRaMVYlOaSEwKQSUBccC8wxTQjXDkgtTMFxKmgAYRisqjeESSlIKoUtIZujuuLdz7VcPPqh92zs7nFSUYZFighMxpNJjyrjWeweVMnXQ45_D63WjCFajOzW6U6M7dXI3kOQP2bn6U7vDv8ztkakB4DefSSb5EPgBaJZ77w
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2022_3172112
crossref_primary_10_3390_electronics12173641
crossref_primary_10_3390_rs12203456
crossref_primary_10_1007_s10489_023_05168_1
crossref_primary_10_1016_j_neunet_2022_06_016
crossref_primary_10_1109_TGRS_2025_3527138
crossref_primary_10_1109_TCSVT_2020_3027616
crossref_primary_10_1109_TGRS_2021_3072454
crossref_primary_10_1109_TGRS_2020_3029578
crossref_primary_10_1109_TGRS_2023_3318521
crossref_primary_10_1109_JSTARS_2022_3142898
crossref_primary_10_1109_TNNLS_2022_3157711
crossref_primary_10_1109_TGRS_2021_3102246
crossref_primary_10_3390_rs14051156
crossref_primary_10_1109_LGRS_2023_3297746
crossref_primary_10_1016_j_neunet_2024_106531
crossref_primary_10_3390_rs13183602
crossref_primary_10_1016_j_ecolind_2023_110755
crossref_primary_10_1080_01431161_2022_2128925
crossref_primary_10_1109_TGRS_2021_3064708
crossref_primary_10_1080_01431161_2023_2287560
crossref_primary_10_1109_JSTARS_2023_3299731
crossref_primary_10_1109_MGRS_2021_3075491
crossref_primary_10_1109_TEVC_2022_3159253
crossref_primary_10_1016_j_dsp_2024_104552
crossref_primary_10_1080_01431161_2020_1807650
crossref_primary_10_1109_LGRS_2022_3141870
crossref_primary_10_1109_TKDE_2024_3401075
crossref_primary_10_1007_s12145_024_01312_8
crossref_primary_10_1109_TGRS_2021_3079918
crossref_primary_10_1016_j_inffus_2021_09_019
crossref_primary_10_1109_TGRS_2022_3150349
crossref_primary_10_3390_rs14215374
crossref_primary_10_1109_JSTARS_2022_3193315
crossref_primary_10_1109_TGRS_2021_3123651
crossref_primary_10_1109_TGRS_2023_3305545
crossref_primary_10_1109_TGRS_2023_3263580
crossref_primary_10_1016_j_jag_2021_102572
crossref_primary_10_1080_01431161_2024_2394231
crossref_primary_10_1109_TGRS_2022_3228638
crossref_primary_10_1016_j_infrared_2023_105053
crossref_primary_10_1109_TGRS_2022_3169018
crossref_primary_10_1109_JSTARS_2020_3041344
crossref_primary_10_1016_j_cmpb_2023_107721
crossref_primary_10_1016_j_engappai_2024_107911
crossref_primary_10_1109_JSTARS_2021_3138564
crossref_primary_10_1109_JSTARS_2024_3435846
crossref_primary_10_1109_TGRS_2024_3362994
crossref_primary_10_1109_TGRS_2021_3069476
crossref_primary_10_1016_j_infrared_2021_103948
crossref_primary_10_1109_TGRS_2021_3067096
crossref_primary_10_1109_TGRS_2021_3131773
crossref_primary_10_3390_jimaging6090087
crossref_primary_10_1109_TGRS_2022_3180685
crossref_primary_10_1109_TGRS_2021_3102422
crossref_primary_10_1109_TGRS_2021_3051056
crossref_primary_10_1080_15481603_2023_2243671
crossref_primary_10_1109_TGRS_2021_3075663
crossref_primary_10_1109_TGRS_2024_3353370
crossref_primary_10_1049_cvi2_12073
crossref_primary_10_1016_j_pce_2021_103040
crossref_primary_10_1109_TGRS_2022_3223792
crossref_primary_10_1117_1_JRS_18_038504
crossref_primary_10_3390_rs15235495
crossref_primary_10_3390_s22249790
crossref_primary_10_1109_TGRS_2023_3273776
crossref_primary_10_1016_j_ecss_2020_107111
crossref_primary_10_3390_math11020436
crossref_primary_10_1016_j_eswa_2022_118797
crossref_primary_10_3390_s20236823
crossref_primary_10_1109_TGRS_2020_3004934
crossref_primary_10_1109_TGRS_2021_3128764
crossref_primary_10_1109_LGRS_2021_3057117
crossref_primary_10_1109_TGRS_2024_3357981
crossref_primary_10_1016_j_eswa_2021_116359
crossref_primary_10_1109_ACCESS_2021_3049807
crossref_primary_10_1109_LGRS_2020_3034631
crossref_primary_10_1109_TGRS_2023_3266811
crossref_primary_10_1109_JSTARS_2021_3066508
crossref_primary_10_1109_TGRS_2022_3205178
crossref_primary_10_1109_TGRS_2022_3149780
crossref_primary_10_1109_TGRS_2024_3382638
Cites_doi 10.1080/01431161.2016.1214299
10.1080/01431161.2017.1302621
10.1109/MGRS.2019.2911100
10.1109/LGRS.2008.915930
10.1109/TGRS.2018.2828161
10.1016/j.isprsjprs.2016.12.012
10.1016/j.rse.2016.03.024
10.1080/01431160802609718
10.1109/TGRS.2017.2743110
10.1109/IGARSS.2012.6350781
10.1007/s11222-007-9033-z
10.1109/JSTARS.2013.2267204
10.1109/MGRS.2016.2616418
10.1109/ICIP.2011.6116223
10.1109/JSTARS.2016.2591004
10.1109/TGRS.2014.2326655
10.1109/TGRS.2018.2794443
10.1109/TGRS.2017.2686842
10.1109/LGRS.2008.2000619
10.1109/TGRS.2015.2450759
10.1109/ICCV.2011.6126422
10.1201/9781315140919
10.1109/JSTARS.2015.2417156
10.1016/j.isprsjprs.2013.12.003
10.1016/j.rse.2017.05.014
10.1109/JSTARS.2016.2539981
10.3390/rs8030238
10.1109/TNNLS.2015.2477537
10.1109/36.803411
10.1109/JSTARS.2017.2737400
10.1007/s12145-014-0201-3
10.1109/LGRS.2016.2581172
10.1109/TGRS.2017.2729882
10.1109/JSTARS.2019.2922201
10.1631/jzus.C1000304
10.1109/TGRS.2018.2811046
10.1109/TGRS.2007.904951
10.1016/j.sigpro.2008.07.005
10.1201/9781315120607
10.1109/TIP.2016.2617462
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2959342
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 3915
ExternalDocumentID 10_1109_TGRS_2019_2959342
8949559
Genre orig-research
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LR19D010001; LQ18D010001
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 41971296; 41671342; 41801256; U1609203; 61871177
  funderid: 10.13039/501100001809
– fundername: K. C. Wong Magna Fund in Ningbo University
  funderid: 10.13039/501100004387
– fundername: Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
  grantid: 18R05
  funderid: 10.13039/501100011297
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-ddb44f3a72b601b6edb5060580212a40956cb40d923eec42f29cc59ed1d66ade3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:12:37 EDT 2025
Tue Jul 01 01:34:17 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Aug 27 02:41:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ddb44f3a72b601b6edb5060580212a40956cb40d923eec42f29cc59ed1d66ade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8354-7500
0000-0003-3399-7858
0000-0002-4759-0584
PQID 2406701036
PQPubID 85465
PageCount 10
ParticipantIDs crossref_primary_10_1109_TGRS_2019_2959342
crossref_citationtrail_10_1109_TGRS_2019_2959342
proquest_journals_2406701036
ieee_primary_8949559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
liu (ref36) 2010
lin (ref34) 2010
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1080/01431161.2016.1214299
– ident: ref5
  doi: 10.1080/01431161.2017.1302621
– ident: ref2
  doi: 10.1109/MGRS.2019.2911100
– ident: ref23
  doi: 10.1109/LGRS.2008.915930
– ident: ref20
  doi: 10.1109/TGRS.2018.2828161
– ident: ref7
  doi: 10.1016/j.isprsjprs.2016.12.012
– ident: ref6
  doi: 10.1016/j.rse.2016.03.024
– ident: ref16
  doi: 10.1080/01431160802609718
– ident: ref38
  doi: 10.1109/TGRS.2017.2743110
– ident: ref31
  doi: 10.1109/IGARSS.2012.6350781
– ident: ref40
  doi: 10.1007/s11222-007-9033-z
– ident: ref3
  doi: 10.1109/JSTARS.2013.2267204
– ident: ref11
  doi: 10.1109/MGRS.2016.2616418
– ident: ref28
  doi: 10.1109/ICIP.2011.6116223
– ident: ref21
  doi: 10.1109/JSTARS.2016.2591004
– ident: ref15
  doi: 10.1109/TGRS.2014.2326655
– ident: ref18
  doi: 10.1109/TGRS.2018.2794443
– ident: ref9
  doi: 10.1109/TGRS.2017.2686842
– ident: ref41
  doi: 10.1109/LGRS.2008.2000619
– ident: ref19
  doi: 10.1109/TGRS.2015.2450759
– ident: ref33
  doi: 10.1109/ICCV.2011.6126422
– ident: ref39
  doi: 10.1201/9781315140919
– ident: ref25
  doi: 10.1109/JSTARS.2015.2417156
– ident: ref8
  doi: 10.1016/j.isprsjprs.2013.12.003
– ident: ref4
  doi: 10.1016/j.rse.2017.05.014
– ident: ref26
  doi: 10.1109/JSTARS.2016.2539981
– ident: ref30
  doi: 10.3390/rs8030238
– ident: ref17
  doi: 10.1109/TNNLS.2015.2477537
– ident: ref13
  doi: 10.1109/36.803411
– ident: ref12
  doi: 10.1109/JSTARS.2017.2737400
– ident: ref29
  doi: 10.1007/s12145-014-0201-3
– ident: ref37
  doi: 10.1109/LGRS.2016.2581172
– ident: ref10
  doi: 10.1109/TGRS.2017.2729882
– ident: ref24
  doi: 10.1109/JSTARS.2019.2922201
– ident: ref27
  doi: 10.1631/jzus.C1000304
– ident: ref42
  doi: 10.1109/TGRS.2018.2811046
– year: 2010
  ident: ref34
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: ArXiv 1009 5055
– ident: ref14
  doi: 10.1109/TGRS.2007.904951
– ident: ref35
  doi: 10.1016/j.sigpro.2008.07.005
– ident: ref1
  doi: 10.1201/9781315120607
– start-page: 663
  year: 2010
  ident: ref36
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proc 27th Int Conf Mach Learn (ICML-10)
– ident: ref22
  doi: 10.1109/TIP.2016.2617462
SSID ssj0014517
Score 2.5892985
Snippet This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3906
SubjectTerms Affinity
Algorithms
Band selection
Banded structure
Centroids
Clustering
Clustering algorithms
Coefficients
Computational efficiency
Computer applications
Computing costs
correntropy measure
Dictionaries
hyperspectral imagery (HSI)
Hyperspectral imaging
Lagrange multiplier
latent low-rank subspace clustering
Optimization
remote sensing
Representations
Similarity
Sparse matrices
Subspace methods
Subspaces
Title Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection
URI https://ieeexplore.ieee.org/document/8949559
https://www.proquest.com/docview/2406701036
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VJCT2wHNXWyjIB06rdUkdx42PgCgVohx4SNwiP6YXqnRFUyHx6_E4acVLK245eBTL48f32TPfABx5cqV0hucpKi61ybjNEuTCemnDCWp8rEUwulbDe3n5kD204O8yFwYRY_AZdukzvuX7qZvTVdlxriUJpq3ASiBuda7W8sVAZr0mNVrxQCJE84LZS_Tx3cXNLQVx6a4gGV4p3p1BsajKp504Hi-DTRgtOlZHlTx255XtupcPmo3f7fkWbDQ4k53UE2MbWljuwI836oM7sBajP91sF0YDM6uYKT27CtCzrNjV9JnfmPKR0b4SWDWys8mcJBWCIQswlw0Dfa2zNJ_CX07J9DZW1Alu_gn3g_O7syFv6ixwl2a64t5bKcep6Qsb6JlV6C3JDmY5yb8bSVKFzsrEByyI6KQYC-1cptH3vFLGY_oLVstpib-BkRxdrlKbYIANNkMj-4l0uRPK41ikug3JYuQL14iQUy2MSRHJSKILclZBzioaZ7Xhz9LkX63A8b_GuzT4y4bNuLehs3Bv0azRWUFYpk9lLtTe11b7sC6IXcc7lw6sVk9zPAgQpLKHce69Aukw1q8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VIgQ98GhBBAr4ABckpxuv7eweOEAhpDTpoU2l3rZ-TC6tNlWzUVV-C3-F_4bH60S8xK0Stz14drWeT_Y39sw3AK89uVI6w4scNZelUdyqDLmwXtqwgxofexGMD_TwWH45USdr8G1VC4OIMfkMu_QY7_L9zC3oqGynKCUJpqUUyn28vgoB2vzd3sfgzTdCDD5Ndoc89RDgLldlw723Uk5z0xc2hB5Wo7ckqacKkjY3kmT4nJWZDzwH0UkxFaVzqkTf81obj3l47y24HXiGEm112OqOQqpeKsbWPIQtIt2Z9rJyZ_L58IjSxsquIOFfKX7Z9WIblz_W_rihDR7A9-VUtHksZ91FY7vu628qkf_rXD2E-4lJs_ct9B_BGtabsPGTvuIm3In5rW6-BeOBmTfM1J6NArmuGzaaXfFDU58xWjkvjEO2e74g0YhgyAKRZ8MQoLd1qJfhKx_I9Cj2DApAfgzHN_JnT2C9ntX4FBgJ7hU6txkGYmQVGtnPpCuc0B6nIi87kC09Xbkks07dPs6rGG5lZUXgqAgcVQJHB96uTC5ajZF_Dd4iZ68GJj93YHsJpyqtQvOK2FqfGnnoZ3-3egV3h5PxqBrtHew_h3uCzhLiCdM2rDeXC3wRCFdjX0bcMzi9afD8APtoNNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Latent+Low-Rank+Subspace+Clustering+for+Hyperspectral+Band+Selection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Sun%2C+Weiwei&rft.au=Peng%2C+Jiangtao&rft.au=Yang%2C+Gang&rft.au=Du%2C+Qian&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=6&rft.spage=3906&rft_id=info:doi/10.1109%2FTGRS.2019.2959342&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon