Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection
This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-r...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 58; no. 6; pp. 3906 - 3915 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-rank representation (LLRR) model. The assumption ensures sufficient sampling bands in representing low-rank subspaces of all bands and improves robustness to noise. The FLLRSC first implements the Hadamard random projections to reduce spatial dimensionality and lower the computational cost. It then adopts the inexact augmented Lagrange multiplier algorithm to optimize the LLRR program and estimates sparse coefficients of all the projected bands. After that, it employs a correntropy metric to measure the similarity between pairwise bands and constructs an affinity matrix based on sparse representation. The correntropy metric could better describe the nonlinear characteristics of hyperspectral bands and enhance the block-diagonal structure of the similarity matrix for correctly clustering all subspaces. The FLLRSC conducts spectral clustering on the connected graph denoted by the affinity matrix. The bands that are closest to their separate cluster centroids form the final band subset. Experimental results on three widely used hyperspectral data sets show that the FLLRSC performs better than the classical low-rank representation methods with higher classification accuracy at a low computational cost. |
---|---|
AbstractList | This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are sampled from a union of latent low-rank independent subspaces and formulates the self-representation property of all bands into a latent low-rank representation (LLRR) model. The assumption ensures sufficient sampling bands in representing low-rank subspaces of all bands and improves robustness to noise. The FLLRSC first implements the Hadamard random projections to reduce spatial dimensionality and lower the computational cost. It then adopts the inexact augmented Lagrange multiplier algorithm to optimize the LLRR program and estimates sparse coefficients of all the projected bands. After that, it employs a correntropy metric to measure the similarity between pairwise bands and constructs an affinity matrix based on sparse representation. The correntropy metric could better describe the nonlinear characteristics of hyperspectral bands and enhance the block-diagonal structure of the similarity matrix for correctly clustering all subspaces. The FLLRSC conducts spectral clustering on the connected graph denoted by the affinity matrix. The bands that are closest to their separate cluster centroids form the final band subset. Experimental results on three widely used hyperspectral data sets show that the FLLRSC performs better than the classical low-rank representation methods with higher classification accuracy at a low computational cost. |
Author | Peng, Jiangtao Yang, Gang Du, Qian Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Weiwei orcidid: 0000-0003-3399-7858 surname: Sun fullname: Sun, Weiwei email: nbsww@outlook.com organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China – sequence: 2 givenname: Jiangtao orcidid: 0000-0002-4759-0584 surname: Peng fullname: Peng, Jiangtao email: pengjt1982@hubu.edu.cn organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 3 givenname: Gang surname: Yang fullname: Yang, Gang email: yanggang@nbu.edu.cn organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China – sequence: 4 givenname: Qian orcidid: 0000-0001-8354-7500 surname: Du fullname: Du, Qian email: du@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA |
BookMark | eNp9kFFLwzAQx4NMcE4_gPhS8LkzSZO0edThNqEibPM5pOlVOmtakxTZt7dlwwcffDqO-__ujt8lmtjWAkI3BM8JwfJ-t9ps5xQTOaeSy4TRMzQlnGcxFoxN0HSYiJhmkl6gS-_3GBPGSTpFL0vtQ6RtGeU6gA1R3n7HG20_om1f-E4biBZN7wO42r5HVeui9aED5zswwekmehzRLTRDW7f2Cp1XuvFwfaoz9LZ82i3Wcf66el485LFJuAxxWRaMVYlOaSEwKQSUBccC8wxTQjXDkgtTMFxKmgAYRisqjeESSlIKoUtIZujuuLdz7VcPPqh92zs7nFSUYZFighMxpNJjyrjWeweVMnXQ45_D63WjCFajOzW6U6M7dXI3kOQP2bn6U7vDv8ztkakB4DefSSb5EPgBaJZ77w |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3172112 crossref_primary_10_3390_electronics12173641 crossref_primary_10_3390_rs12203456 crossref_primary_10_1007_s10489_023_05168_1 crossref_primary_10_1016_j_neunet_2022_06_016 crossref_primary_10_1109_TGRS_2025_3527138 crossref_primary_10_1109_TCSVT_2020_3027616 crossref_primary_10_1109_TGRS_2021_3072454 crossref_primary_10_1109_TGRS_2020_3029578 crossref_primary_10_1109_TGRS_2023_3318521 crossref_primary_10_1109_JSTARS_2022_3142898 crossref_primary_10_1109_TNNLS_2022_3157711 crossref_primary_10_1109_TGRS_2021_3102246 crossref_primary_10_3390_rs14051156 crossref_primary_10_1109_LGRS_2023_3297746 crossref_primary_10_1016_j_neunet_2024_106531 crossref_primary_10_3390_rs13183602 crossref_primary_10_1016_j_ecolind_2023_110755 crossref_primary_10_1080_01431161_2022_2128925 crossref_primary_10_1109_TGRS_2021_3064708 crossref_primary_10_1080_01431161_2023_2287560 crossref_primary_10_1109_JSTARS_2023_3299731 crossref_primary_10_1109_MGRS_2021_3075491 crossref_primary_10_1109_TEVC_2022_3159253 crossref_primary_10_1016_j_dsp_2024_104552 crossref_primary_10_1080_01431161_2020_1807650 crossref_primary_10_1109_LGRS_2022_3141870 crossref_primary_10_1109_TKDE_2024_3401075 crossref_primary_10_1007_s12145_024_01312_8 crossref_primary_10_1109_TGRS_2021_3079918 crossref_primary_10_1016_j_inffus_2021_09_019 crossref_primary_10_1109_TGRS_2022_3150349 crossref_primary_10_3390_rs14215374 crossref_primary_10_1109_JSTARS_2022_3193315 crossref_primary_10_1109_TGRS_2021_3123651 crossref_primary_10_1109_TGRS_2023_3305545 crossref_primary_10_1109_TGRS_2023_3263580 crossref_primary_10_1016_j_jag_2021_102572 crossref_primary_10_1080_01431161_2024_2394231 crossref_primary_10_1109_TGRS_2022_3228638 crossref_primary_10_1016_j_infrared_2023_105053 crossref_primary_10_1109_TGRS_2022_3169018 crossref_primary_10_1109_JSTARS_2020_3041344 crossref_primary_10_1016_j_cmpb_2023_107721 crossref_primary_10_1016_j_engappai_2024_107911 crossref_primary_10_1109_JSTARS_2021_3138564 crossref_primary_10_1109_JSTARS_2024_3435846 crossref_primary_10_1109_TGRS_2024_3362994 crossref_primary_10_1109_TGRS_2021_3069476 crossref_primary_10_1016_j_infrared_2021_103948 crossref_primary_10_1109_TGRS_2021_3067096 crossref_primary_10_1109_TGRS_2021_3131773 crossref_primary_10_3390_jimaging6090087 crossref_primary_10_1109_TGRS_2022_3180685 crossref_primary_10_1109_TGRS_2021_3102422 crossref_primary_10_1109_TGRS_2021_3051056 crossref_primary_10_1080_15481603_2023_2243671 crossref_primary_10_1109_TGRS_2021_3075663 crossref_primary_10_1109_TGRS_2024_3353370 crossref_primary_10_1049_cvi2_12073 crossref_primary_10_1016_j_pce_2021_103040 crossref_primary_10_1109_TGRS_2022_3223792 crossref_primary_10_1117_1_JRS_18_038504 crossref_primary_10_3390_rs15235495 crossref_primary_10_3390_s22249790 crossref_primary_10_1109_TGRS_2023_3273776 crossref_primary_10_1016_j_ecss_2020_107111 crossref_primary_10_3390_math11020436 crossref_primary_10_1016_j_eswa_2022_118797 crossref_primary_10_3390_s20236823 crossref_primary_10_1109_TGRS_2020_3004934 crossref_primary_10_1109_TGRS_2021_3128764 crossref_primary_10_1109_LGRS_2021_3057117 crossref_primary_10_1109_TGRS_2024_3357981 crossref_primary_10_1016_j_eswa_2021_116359 crossref_primary_10_1109_ACCESS_2021_3049807 crossref_primary_10_1109_LGRS_2020_3034631 crossref_primary_10_1109_TGRS_2023_3266811 crossref_primary_10_1109_JSTARS_2021_3066508 crossref_primary_10_1109_TGRS_2022_3205178 crossref_primary_10_1109_TGRS_2022_3149780 crossref_primary_10_1109_TGRS_2024_3382638 |
Cites_doi | 10.1080/01431161.2016.1214299 10.1080/01431161.2017.1302621 10.1109/MGRS.2019.2911100 10.1109/LGRS.2008.915930 10.1109/TGRS.2018.2828161 10.1016/j.isprsjprs.2016.12.012 10.1016/j.rse.2016.03.024 10.1080/01431160802609718 10.1109/TGRS.2017.2743110 10.1109/IGARSS.2012.6350781 10.1007/s11222-007-9033-z 10.1109/JSTARS.2013.2267204 10.1109/MGRS.2016.2616418 10.1109/ICIP.2011.6116223 10.1109/JSTARS.2016.2591004 10.1109/TGRS.2014.2326655 10.1109/TGRS.2018.2794443 10.1109/TGRS.2017.2686842 10.1109/LGRS.2008.2000619 10.1109/TGRS.2015.2450759 10.1109/ICCV.2011.6126422 10.1201/9781315140919 10.1109/JSTARS.2015.2417156 10.1016/j.isprsjprs.2013.12.003 10.1016/j.rse.2017.05.014 10.1109/JSTARS.2016.2539981 10.3390/rs8030238 10.1109/TNNLS.2015.2477537 10.1109/36.803411 10.1109/JSTARS.2017.2737400 10.1007/s12145-014-0201-3 10.1109/LGRS.2016.2581172 10.1109/TGRS.2017.2729882 10.1109/JSTARS.2019.2922201 10.1631/jzus.C1000304 10.1109/TGRS.2018.2811046 10.1109/TGRS.2007.904951 10.1016/j.sigpro.2008.07.005 10.1201/9781315120607 10.1109/TIP.2016.2617462 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2019.2959342 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 3915 |
ExternalDocumentID | 10_1109_TGRS_2019_2959342 8949559 |
Genre | orig-research |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LR19D010001; LQ18D010001 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 41971296; 41671342; 41801256; U1609203; 61871177 funderid: 10.13039/501100001809 – fundername: K. C. Wong Magna Fund in Ningbo University funderid: 10.13039/501100004387 – fundername: Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University grantid: 18R05 funderid: 10.13039/501100011297 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-ddb44f3a72b601b6edb5060580212a40956cb40d923eec42f29cc59ed1d66ade3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:12:37 EDT 2025 Tue Jul 01 01:34:17 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Aug 27 02:41:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-ddb44f3a72b601b6edb5060580212a40956cb40d923eec42f29cc59ed1d66ade3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8354-7500 0000-0003-3399-7858 0000-0002-4759-0584 |
PQID | 2406701036 |
PQPubID | 85465 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2019_2959342 crossref_citationtrail_10_1109_TGRS_2019_2959342 proquest_journals_2406701036 ieee_primary_8949559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 liu (ref36) 2010 lin (ref34) 2010 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref32 doi: 10.1080/01431161.2016.1214299 – ident: ref5 doi: 10.1080/01431161.2017.1302621 – ident: ref2 doi: 10.1109/MGRS.2019.2911100 – ident: ref23 doi: 10.1109/LGRS.2008.915930 – ident: ref20 doi: 10.1109/TGRS.2018.2828161 – ident: ref7 doi: 10.1016/j.isprsjprs.2016.12.012 – ident: ref6 doi: 10.1016/j.rse.2016.03.024 – ident: ref16 doi: 10.1080/01431160802609718 – ident: ref38 doi: 10.1109/TGRS.2017.2743110 – ident: ref31 doi: 10.1109/IGARSS.2012.6350781 – ident: ref40 doi: 10.1007/s11222-007-9033-z – ident: ref3 doi: 10.1109/JSTARS.2013.2267204 – ident: ref11 doi: 10.1109/MGRS.2016.2616418 – ident: ref28 doi: 10.1109/ICIP.2011.6116223 – ident: ref21 doi: 10.1109/JSTARS.2016.2591004 – ident: ref15 doi: 10.1109/TGRS.2014.2326655 – ident: ref18 doi: 10.1109/TGRS.2018.2794443 – ident: ref9 doi: 10.1109/TGRS.2017.2686842 – ident: ref41 doi: 10.1109/LGRS.2008.2000619 – ident: ref19 doi: 10.1109/TGRS.2015.2450759 – ident: ref33 doi: 10.1109/ICCV.2011.6126422 – ident: ref39 doi: 10.1201/9781315140919 – ident: ref25 doi: 10.1109/JSTARS.2015.2417156 – ident: ref8 doi: 10.1016/j.isprsjprs.2013.12.003 – ident: ref4 doi: 10.1016/j.rse.2017.05.014 – ident: ref26 doi: 10.1109/JSTARS.2016.2539981 – ident: ref30 doi: 10.3390/rs8030238 – ident: ref17 doi: 10.1109/TNNLS.2015.2477537 – ident: ref13 doi: 10.1109/36.803411 – ident: ref12 doi: 10.1109/JSTARS.2017.2737400 – ident: ref29 doi: 10.1007/s12145-014-0201-3 – ident: ref37 doi: 10.1109/LGRS.2016.2581172 – ident: ref10 doi: 10.1109/TGRS.2017.2729882 – ident: ref24 doi: 10.1109/JSTARS.2019.2922201 – ident: ref27 doi: 10.1631/jzus.C1000304 – ident: ref42 doi: 10.1109/TGRS.2018.2811046 – year: 2010 ident: ref34 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: ArXiv 1009 5055 – ident: ref14 doi: 10.1109/TGRS.2007.904951 – ident: ref35 doi: 10.1016/j.sigpro.2008.07.005 – ident: ref1 doi: 10.1201/9781315120607 – start-page: 663 year: 2010 ident: ref36 article-title: Robust subspace segmentation by low-rank representation publication-title: Proc 27th Int Conf Mach Learn (ICML-10) – ident: ref22 doi: 10.1109/TIP.2016.2617462 |
SSID | ssj0014517 |
Score | 2.5892985 |
Snippet | This article presents a fast and latent low-rank subspace clustering (FLLRSC) method to select hyperspectral bands. The FLLRSC assumes that all the bands are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3906 |
SubjectTerms | Affinity Algorithms Band selection Banded structure Centroids Clustering Clustering algorithms Coefficients Computational efficiency Computer applications Computing costs correntropy measure Dictionaries hyperspectral imagery (HSI) Hyperspectral imaging Lagrange multiplier latent low-rank subspace clustering Optimization remote sensing Representations Similarity Sparse matrices Subspace methods Subspaces |
Title | Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection |
URI | https://ieeexplore.ieee.org/document/8949559 https://www.proquest.com/docview/2406701036 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VJCT2wHNXWyjIB06rdUkdx42PgCgVohx4SNwiP6YXqnRFUyHx6_E4acVLK245eBTL48f32TPfABx5cqV0hucpKi61ybjNEuTCemnDCWp8rEUwulbDe3n5kD204O8yFwYRY_AZdukzvuX7qZvTVdlxriUJpq3ASiBuda7W8sVAZr0mNVrxQCJE84LZS_Tx3cXNLQVx6a4gGV4p3p1BsajKp504Hi-DTRgtOlZHlTx255XtupcPmo3f7fkWbDQ4k53UE2MbWljuwI836oM7sBajP91sF0YDM6uYKT27CtCzrNjV9JnfmPKR0b4SWDWys8mcJBWCIQswlw0Dfa2zNJ_CX07J9DZW1Alu_gn3g_O7syFv6ixwl2a64t5bKcep6Qsb6JlV6C3JDmY5yb8bSVKFzsrEByyI6KQYC-1cptH3vFLGY_oLVstpib-BkRxdrlKbYIANNkMj-4l0uRPK41ikug3JYuQL14iQUy2MSRHJSKILclZBzioaZ7Xhz9LkX63A8b_GuzT4y4bNuLehs3Bv0azRWUFYpk9lLtTe11b7sC6IXcc7lw6sVk9zPAgQpLKHce69Aukw1q8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VIgQ98GhBBAr4ABckpxuv7eweOEAhpDTpoU2l3rZ-TC6tNlWzUVV-C3-F_4bH60S8xK0Stz14drWeT_Y39sw3AK89uVI6w4scNZelUdyqDLmwXtqwgxofexGMD_TwWH45USdr8G1VC4OIMfkMu_QY7_L9zC3oqGynKCUJpqUUyn28vgoB2vzd3sfgzTdCDD5Ndoc89RDgLldlw723Uk5z0xc2hB5Wo7ckqacKkjY3kmT4nJWZDzwH0UkxFaVzqkTf81obj3l47y24HXiGEm112OqOQqpeKsbWPIQtIt2Z9rJyZ_L58IjSxsquIOFfKX7Z9WIblz_W_rihDR7A9-VUtHksZ91FY7vu628qkf_rXD2E-4lJs_ct9B_BGtabsPGTvuIm3In5rW6-BeOBmTfM1J6NArmuGzaaXfFDU58xWjkvjEO2e74g0YhgyAKRZ8MQoLd1qJfhKx_I9Cj2DApAfgzHN_JnT2C9ntX4FBgJ7hU6txkGYmQVGtnPpCuc0B6nIi87kC09Xbkks07dPs6rGG5lZUXgqAgcVQJHB96uTC5ajZF_Dd4iZ68GJj93YHsJpyqtQvOK2FqfGnnoZ3-3egV3h5PxqBrtHew_h3uCzhLiCdM2rDeXC3wRCFdjX0bcMzi9afD8APtoNNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Latent+Low-Rank+Subspace+Clustering+for+Hyperspectral+Band+Selection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Sun%2C+Weiwei&rft.au=Peng%2C+Jiangtao&rft.au=Yang%2C+Gang&rft.au=Du%2C+Qian&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=6&rft.spage=3906&rft_id=info:doi/10.1109%2FTGRS.2019.2959342&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |