Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation

Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles a...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 2; no. 7; p. 1222
Main Authors Sreedevi, P., Sudarsana Reddy, P., Chamkha, Ali
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base fluid. Using similarity transformation method, the governing equations are changed into system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using finite-element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nanofluid intensified in both steady and unsteady cases as volume fraction of both nanoparticles rises.
AbstractList Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base fluid. Using similarity transformation method, the governing equations are changed into system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using finite-element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nanofluid intensified in both steady and unsteady cases as volume fraction of both nanoparticles rises.
ArticleNumber 1222
Author Sudarsana Reddy, P.
Sreedevi, P.
Chamkha, Ali
Author_xml – sequence: 1
  givenname: P.
  surname: Sreedevi
  fullname: Sreedevi, P.
  organization: Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology
– sequence: 2
  givenname: P.
  orcidid: 0000-0003-1337-950X
  surname: Sudarsana Reddy
  fullname: Sudarsana Reddy, P.
  email: suda1983@gmail.com
  organization: Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology
– sequence: 3
  givenname: Ali
  surname: Chamkha
  fullname: Chamkha, Ali
  organization: Mechanical Engineering Department, Prince Mohammad Endowment for Nanoscience and Technology, Prince Mohammad Bin Fahd University
BookMark eNp9kE1rGzEQhkVxIGmaH5CboOdN9eG1do_BtHEg0Et7FpPVKKuwllyNXNv_PnIcWiikJw3ifebj-chmMUVk7FqKGymE-UJzNW9VI5RotJCy2X9gF6pVutG9kbM_9UKfsyuiZyGEMr2ed_qCbVYIhUN0fA1EvGSI5DHXH5gOFIgnz7eRCoI78PHwmIPjEWLy07ZWfko7nn4f85xKxjKMIT5xGhEL34Uy8jJiXsPEM7gAJaT4iZ15mAiv3t5L9vPb1x_LVfPw_e5-efvQDLrtS-N62Ys5CkThu1Z4rTQO3uhBusfBt2hA9U5CL2HRgmqdkaYbvF445RdKg9eX7POp7yanX1ukYp_TNteryCrTddWYkaKm5Ck15ESU0dtNDmvIByuFPbq1J7e2urVHt3ZfGfMPM4Tyelu1F6b_kupEUp0SnzD_3el96AUFiJI9
CitedBy_id crossref_primary_10_1038_s41598_021_00423_2
crossref_primary_10_1016_j_aej_2023_05_089
crossref_primary_10_1142_S0217979223502843
crossref_primary_10_1007_s40819_024_01734_4
crossref_primary_10_1080_01430750_2022_2127892
crossref_primary_10_1002_htj_22739
crossref_primary_10_1177_09544062231209828
crossref_primary_10_1080_15502287_2022_2030426
crossref_primary_10_1016_j_hybadv_2025_100446
crossref_primary_10_1140_epjs_s11734_021_00409_1
crossref_primary_10_1038_s41598_022_25600_9
crossref_primary_10_1002_htj_22695
crossref_primary_10_1108_MMMS_04_2024_0093
crossref_primary_10_1134_S1810232823010071
crossref_primary_10_1166_jon_2024_2145
crossref_primary_10_1177_16878132231169685
crossref_primary_10_1016_j_csite_2022_102655
crossref_primary_10_1140_epjp_s13360_023_04257_x
crossref_primary_10_1002_adts_202401554
crossref_primary_10_1016_j_csite_2022_102361
crossref_primary_10_1007_s12648_023_02912_8
crossref_primary_10_1080_01430750_2022_2111356
crossref_primary_10_1002_zamm_202301027
crossref_primary_10_1016_j_aej_2021_12_020
crossref_primary_10_1007_s12668_023_01282_z
crossref_primary_10_1177_09544089221133966
crossref_primary_10_1080_17455030_2021_2023780
crossref_primary_10_1080_17455030_2022_2108159
crossref_primary_10_1080_01430750_2022_2132287
crossref_primary_10_1080_01430750_2024_2372681
crossref_primary_10_1080_10407782_2023_2207731
crossref_primary_10_1016_j_csite_2023_103632
crossref_primary_10_1016_j_csite_2023_103510
crossref_primary_10_1002_zamm_202200608
crossref_primary_10_3389_fenrg_2022_967444
crossref_primary_10_1007_s13399_022_02785_7
crossref_primary_10_1080_01430750_2021_1888800
crossref_primary_10_1063_5_0216570
crossref_primary_10_3390_coatings11121554
crossref_primary_10_1142_S0217979223502028
crossref_primary_10_1080_01430750_2021_1888803
crossref_primary_10_1166_jon_2024_2176
crossref_primary_10_1038_s41598_023_36631_1
crossref_primary_10_1016_j_csite_2023_102909
crossref_primary_10_1016_j_asej_2021_08_015
crossref_primary_10_1007_s42452_020_04057_3
crossref_primary_10_1142_S021798492450204X
crossref_primary_10_1166_jon_2021_1811
crossref_primary_10_1080_01430750_2020_1852113
crossref_primary_10_1007_s12668_024_01514_w
crossref_primary_10_1063_5_0157429
crossref_primary_10_1177_09544089211050715
crossref_primary_10_1515_phys_2023_0181
crossref_primary_10_1016_j_asej_2023_102449
crossref_primary_10_1166_jon_2024_2169
crossref_primary_10_32604_fhmt_2023_041539
crossref_primary_10_3389_fmech_2022_900316
crossref_primary_10_1016_j_csite_2021_100932
crossref_primary_10_1016_j_est_2021_103664
crossref_primary_10_1080_10407782_2024_2338259
crossref_primary_10_1016_j_icheatmasstransfer_2024_107572
crossref_primary_10_1080_17455030_2022_2072018
crossref_primary_10_1016_j_ctta_2025_100163
crossref_primary_10_1080_17455030_2021_1968537
crossref_primary_10_1016_j_matcom_2021_12_018
crossref_primary_10_1177_09544089221078153
crossref_primary_10_1016_j_jppr_2023_11_002
crossref_primary_10_1007_s12668_023_01279_8
crossref_primary_10_1002_htj_22965
crossref_primary_10_1177_09544089221100092
crossref_primary_10_3390_mca27060091
crossref_primary_10_1177_16878132221106577
crossref_primary_10_1038_s41598_022_27265_w
crossref_primary_10_1080_01430750_2022_2029765
crossref_primary_10_1016_j_csite_2024_105538
crossref_primary_10_1142_S0218625X24500288
crossref_primary_10_1021_acsomega_3c02949
crossref_primary_10_1016_j_heliyon_2023_e14472
crossref_primary_10_1016_j_jmmm_2022_170284
crossref_primary_10_3390_lubricants12060221
crossref_primary_10_1088_1361_6528_aced57
crossref_primary_10_1166_jon_2020_1751
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121222
crossref_primary_10_1080_02286203_2022_2062166
crossref_primary_10_3390_nanomanufacturing3040027
crossref_primary_10_1166_jon_2023_2100
crossref_primary_10_1038_s41598_022_22460_1
crossref_primary_10_1016_j_jmrt_2021_07_029
crossref_primary_10_1016_j_aej_2025_01_031
crossref_primary_10_3390_sym13122334
crossref_primary_10_1016_j_padiff_2024_100786
crossref_primary_10_1016_j_thradv_2025_100026
crossref_primary_10_1002_htj_22258
crossref_primary_10_1155_2024_7733414
crossref_primary_10_1080_01430750_2020_1831599
crossref_primary_10_1016_j_rineng_2024_102431
crossref_primary_10_1038_s41598_020_80554_0
crossref_primary_10_1177_09544089211001353
crossref_primary_10_3390_nano12224102
crossref_primary_10_1063_5_0074894
crossref_primary_10_1007_s40819_024_01751_3
crossref_primary_10_1080_02286203_2024_2345256
crossref_primary_10_1140_epjp_s13360_021_01095_7
crossref_primary_10_3390_math9222927
crossref_primary_10_1002_zamm_202300934
crossref_primary_10_1016_j_rineng_2024_102019
crossref_primary_10_1016_j_mseb_2023_116602
crossref_primary_10_1007_s11587_022_00687_4
crossref_primary_10_1038_s41598_021_04587_9
crossref_primary_10_1016_j_sajce_2022_01_005
crossref_primary_10_3389_fchem_2022_1032805
crossref_primary_10_1155_2022_4471450
crossref_primary_10_1080_17455030_2022_2157512
crossref_primary_10_1002_htj_22429
crossref_primary_10_1088_1361_6528_acbda1
crossref_primary_10_1002_htj_21972
crossref_primary_10_1016_j_tsep_2024_102798
crossref_primary_10_3389_fphy_2022_986501
crossref_primary_10_1007_s10973_022_11797_4
crossref_primary_10_1016_j_csite_2021_101132
crossref_primary_10_1016_j_nanoso_2025_101463
crossref_primary_10_1002_htj_22784
crossref_primary_10_1016_j_ctta_2022_100045
crossref_primary_10_1088_1361_6528_acd38b
crossref_primary_10_1140_epjp_s13360_020_01025_z
crossref_primary_10_1515_ntrev_2023_0171
crossref_primary_10_3390_nano12111791
crossref_primary_10_1142_S0217984925500551
crossref_primary_10_1016_j_icheatmasstransfer_2020_105022
crossref_primary_10_3389_fchem_2022_1010591
crossref_primary_10_1016_j_csite_2023_103364
crossref_primary_10_1016_j_csite_2024_104095
crossref_primary_10_1039_D3NA00453H
crossref_primary_10_1039_D3NA00481C
crossref_primary_10_1080_17455030_2022_2058112
crossref_primary_10_2298_TSCI23S1141J
crossref_primary_10_1088_1402_4896_ac0077
crossref_primary_10_1080_02286203_2023_2301627
crossref_primary_10_3390_math10163013
crossref_primary_10_1016_j_jics_2022_100845
crossref_primary_10_1016_j_padiff_2022_100322
crossref_primary_10_23939_mmc2022_04_871
crossref_primary_10_1007_s42452_020_3156_7
crossref_primary_10_1080_10407782_2024_2363496
crossref_primary_10_1016_j_csite_2021_101300
crossref_primary_10_1142_S0217984924500593
crossref_primary_10_1016_j_cjph_2022_03_013
crossref_primary_10_1080_10407790_2024_2386584
crossref_primary_10_1038_s41598_021_04658_x
crossref_primary_10_1142_S0217984924504554
crossref_primary_10_3390_math12244012
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2024047358
crossref_primary_10_1080_02286203_2023_2191582
crossref_primary_10_1080_17455030_2022_2103752
crossref_primary_10_3390_nano12091566
crossref_primary_10_1007_s11043_024_09725_0
crossref_primary_10_1016_j_jmmm_2023_170953
crossref_primary_10_1142_S0217979223501242
crossref_primary_10_1038_s41598_022_21255_8
crossref_primary_10_23939_mmc2023_04_1222
crossref_primary_10_1016_j_heliyon_2024_e27675
crossref_primary_10_1016_j_aej_2021_06_055
crossref_primary_10_1007_s10973_023_11946_3
crossref_primary_10_1142_S0217984924500222
crossref_primary_10_1016_j_csite_2024_104888
crossref_primary_10_1007_s10973_025_14029_7
crossref_primary_10_1177_00368504231180032
Cites_doi 10.1371/journal.pone.0126486
10.1007/s40430-018-1494-9
10.1016/j.ijheatmasstransfer.2017.10.126
10.1007/s00231-016-1941-z
10.1109/TNANO.2015.2435899
10.1007/s42452-019-1678-7
10.1016/j.ijhydene.2017.07.085
10.1016/j.powtec.2018.03.020
10.1016/j.powtec.2014.03.021
10.1016/j.ijheatmasstransfer.2017.08.120
10.1016/j.ijheatmasstransfer.2016.05.114
10.1016/j.ijheatmasstransfer.2016.07.070
10.1016/j.ijheatmasstransfer.2015.09.071
10.1108/HFF-02-2017-0061
10.1108/HFF-12-2017-0499
10.1016/j.icheatmasstransfer.2017.12.019
10.1016/j.ijheatmasstransfer.2017.10.036
10.1016/j.solmat.2017.10.027
10.1007/s10973-019-08127-6
10.1108/HFF-09-2017-0375
10.1007/s42452-019-1831-3
10.1016/j.icheatmasstransfer.2018.07.002
10.1016/j.ijmecsci.2017.12.007
10.1007/s10973-016-5833-8
10.1016/j.icheatmasstransfer.2017.12.020
10.1016/j.ijheatmasstransfer.2019.03.169
10.1016/j.ijheatmasstransfer.2019.02.101
10.1140/epjp/i2016-16016-8
10.1016/j.ijheatmasstransfer.2019.06.028
10.1016/j.molliq.2016.10.069
10.1016/j.powtec.2017.03.059
10.1007/s42452-019-0682-2
10.1080/08916152.2015.1135199
10.3390/e21050480
10.1016/j.cep.2018.01.004
10.1007/s42452-020-2445-5
10.1016/j.icheatmasstransfer.2016.08.019
10.1016/j.apt.2016.04.005
10.1016/j.rinp.2018.09.029
10.1080/08916152.2014.973974
10.1016/j.icheatmasstransfer.2017.08.010
10.1007/s42452-020-2523-8
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
DOI 10.1007/s42452-020-3011-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10_1007_s42452_020_3011_x
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c359t-d91904e0ee0f850f323ecf73c1dbcf5e7a29d1a91a65a25d7178cf36d2f623af3
ISSN 2523-3963
IngestDate Wed Aug 13 10:49:52 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 04:23:19 EDT 2025
Fri Feb 21 02:29:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Slip effects
Thermal radiation
MWCNT/Ag‒water hybrid nanofluid
Chemical reaction
Magneto-hydrodynamics
FEM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-d91904e0ee0f850f323ecf73c1dbcf5e7a29d1a91a65a25d7178cf36d2f623af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1337-950X
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s42452-020-3011-x.pdf
PQID 2788424710
PQPubID 5758472
ParticipantIDs proquest_journals_2788424710
crossref_primary_10_1007_s42452_020_3011_x
crossref_citationtrail_10_1007_s42452_020_3011_x
springer_journals_10_1007_s42452_020_3011_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200700
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Hashim, Khan, Hamid (CR19) 2018; 118
Ahammed, Asirvatham, Wongwises (CR22) 2016; 103
Dinarvand, Nademi Rostami (CR36) 2019; 138
Megatif, Ghozatloo, Arimi, Shariati-Niasar (CR20) 2015; 29
Yildiz, Arici, Karabay (CR34) 2019; 140
Ibrar, Reddy, Shehzad, Sreenivasulu, Poornima (CR40) 2020; 2
Shiriny, Bayareh, Ahmadi Nadooshan, Bahrami (CR38) 2019; 1
Ellahi, Hassan, Zeeshan (CR4) 2015; 14
Yarmand, Zulkifli, Gharehkhani, Shirazi, Alrashed, Ali, Dahari, Kazi (CR24) 2017; 88
Asadi, Asadi, Rezaniakolaei, Rosendahl, Afrand, Wongwises (CR27) 2018; 117
Ghalambaz, Sheremet, Pop (CR3) 2015
Jyothi, Sudarsana Reddy, Suryanarayana Reddy (CR44) 2018; 331
Waini, Ishak, Pop (CR32) 2019; 136
Hussien, Abdullah, Yusop, Al-Kouz, Mahmoudi, Mehrali (CR35) 2019; 21
Izadi, Mohebbi, Karimi, Sheremet (CR26) 2018; 125
Bhattad, Sarkar, Ghosh (CR29) 2018; 91
Rahman, Leong, Idris, Saad, Anwar (CR23) 2016; 53
Hussien, Abdullah, Yusop, Al-Nimr, Atieh, Mehrali (CR25) 2017; 115
Hussain, Hayat, Ahmed, Ahmed (CR11) 2018; 11
Sreedevi, Sudarsana Reddy, Chamkha (CR12) 2018; 135
Sidik, Adamu, Jamil, Kefayati, Mamat, Najafi (CR21) 2016; 78
Sudarsana Reddy, Chamkha (CR6) 2016; 27
Maddah, Aghayari, Mirzaee, Ahmadi, Sadeghzadeh, Chamkha (CR30) 2018; 97
Sudarsana Reddy, Chamkha (CR45) 2018; 28
Kumar, Sarkar (CR28) 2018; 91
Sreedevi, Sudarsana Reddy, Chamkha (CR43) 2017; 315
Biglarian, Rahimi Gorji, Pourmehran, Domairry (CR16) 2017; 42
Sudarsana Reddy, Prasada Rao (CR42) 2012; 5
Sheremet, Pop, Rosca (CR18) 2018; 28
Imtiaz, Hayat, Alsaedi, Ahmad (CR8) 2016; 101
Choi, Zhang, Yu, Lockwood, Grulke (CR1) 2001; 79
Estelle, Halelfadl, Mare (CR10) 2017; 127
Mahdy, Chamkha (CR17) 2018; 28
Ahmed, Aly, Raizah (CR37) 2019; 1
Abbasi, Zebarjad, Baghban, Youssefi (CR7) 2016; 29
Hayat, Liaz Khan, Farooq, Yasmeen, Alsaedi (CR9) 2016; 224
Ma, Mohebbi, Rashidi, Yang (CR33) 2019; 137
Sudarsana Reddy, Jyothi, Suryanarayana Reddy (CR13) 2018; 40
Sheremet, Pop, Bachok (CR5) 2016; 92
Ahmadi, Zahmatkesh, Hatami, Ganji (CR14) 2014; 258
Akilu, Baheta, Said, Minea, Sharma (CR31) 2018; 179
Gopal, Naik, Kishan, Raju (CR41) 2020; 2
Khan, Nie, Ali (CR39) 2020; 2
Eastman, Choi, Li, Yu, Thompson (CR2) 2001; 78
Qasim, Khan, Lopez, Khan (CR15) 2016; 131
MA Sheremet (3011_CR5) 2016; 92
AA Hussien (3011_CR25) 2017; 115
SE Ahmed (3011_CR37) 2019; 1
D Gopal (3011_CR41) 2020; 2
S Abbasi (3011_CR7) 2016; 29
M Imtiaz (3011_CR8) 2016; 101
SUS Choi (3011_CR1) 2001; 79
P Estelle (3011_CR10) 2017; 127
M Ghalambaz (3011_CR3) 2015
C Yildiz (3011_CR34) 2019; 140
S Dinarvand (3011_CR36) 2019; 138
SA Khan (3011_CR39) 2020; 2
T Hayat (3011_CR9) 2016; 224
P Sudarsana Reddy (3011_CR45) 2018; 28
L Megatif (3011_CR20) 2015; 29
V Kumar (3011_CR28) 2018; 91
MRA Rahman (3011_CR23) 2016; 53
H Maddah (3011_CR30) 2018; 97
N Ibrar (3011_CR40) 2020; 2
R Ellahi (3011_CR4) 2015; 14
M Biglarian (3011_CR16) 2017; 42
P Sudarsana Reddy (3011_CR42) 2012; 5
I Waini (3011_CR32) 2019; 136
AA Hussien (3011_CR35) 2019; 21
NAC Sidik (3011_CR21) 2016; 78
P Sreedevi (3011_CR12) 2018; 135
Z Hussain (3011_CR11) 2018; 11
AR Ahmadi (3011_CR14) 2014; 258
P Sudarsana Reddy (3011_CR6) 2016; 27
JA Eastman (3011_CR2) 2001; 78
M Qasim (3011_CR15) 2016; 131
M Hashim (3011_CR19) 2018; 118
A Asadi (3011_CR27) 2018; 117
H Yarmand (3011_CR24) 2017; 88
P Sudarsana Reddy (3011_CR13) 2018; 40
K Jyothi (3011_CR44) 2018; 331
A Shiriny (3011_CR38) 2019; 1
MA Sheremet (3011_CR18) 2018; 28
M Izadi (3011_CR26) 2018; 125
P Sreedevi (3011_CR43) 2017; 315
N Ahammed (3011_CR22) 2016; 103
S Akilu (3011_CR31) 2018; 179
Y Ma (3011_CR33) 2019; 137
A Mahdy (3011_CR17) 2018; 28
A Bhattad (3011_CR29) 2018; 91
References_xml – volume: 42
  start-page: 22005
  year: 2017
  end-page: 22014
  ident: CR16
  article-title: H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer
  publication-title: Int J Hydrogen Energy
– volume: 101
  start-page: 948
  year: 2016
  end-page: 957
  ident: CR8
  article-title: Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects
  publication-title: Int J Heat Mass Transf
– volume: 125
  start-page: 56
  year: 2018
  end-page: 66
  ident: CR26
  article-title: Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe O /water hybrid nanofluids using LBM
  publication-title: Chem Eng Process Process Intensif
– volume: 179
  start-page: 118
  year: 2018
  end-page: 128
  ident: CR31
  article-title: Properties of glycerol and ethylene glycol mixture based SiO –CuO/C hybrid nanofluid for enhanced solar energy transport
  publication-title: Sol Energy Mater Sol Cells
– volume: 2
  start-page: 677
  year: 2020
  ident: CR40
  article-title: Interaction of single and multiwalls carbon nanotubes in magnetized-nano Casson fluid over radiated horizontal needle
  publication-title: SN Appl Sci
– volume: 5
  start-page: 139
  year: 2012
  end-page: 144
  ident: CR42
  article-title: Thermo-diffusion and diffusion-thermo effects on convective heat and mass transfer through a porous medium in a circular cylindrical annulus with quadratic density temperature variation—finite element study
  publication-title: J Appl Fluid Mech
– volume: 27
  start-page: 1207
  year: 2016
  end-page: 1218
  ident: CR6
  article-title: Soret and Dufour effects on MHD convective flow of Al O –water and TiO –water nanofluids past a stretching sheet in porous media with heat generation/absorption
  publication-title: Adv Powder Technol
– volume: 14
  start-page: 726
  year: 2015
  end-page: 734
  ident: CR4
  article-title: Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution
  publication-title: IEEE Trans Nanotechnol
– volume: 331
  start-page: 326
  year: 2018
  end-page: 337
  ident: CR44
  article-title: Influence of magnetic field and thermal radiation on convective flow of SWCNTs-water and MWCNTs-water nanofluid between rotating stretchable disks with convective boundary conditions
  publication-title: Powder Technol
– volume: 315
  start-page: 194
  year: 2017
  end-page: 204
  ident: CR43
  article-title: Heat and mass transfer analysis of nanofluid over linear and non-linear stretching surface with thermal radiation and chemical reaction
  publication-title: Powder Technol
– volume: 224
  start-page: 786
  year: 2016
  end-page: 791
  ident: CR9
  article-title: Water-carbon nanofluid flow with variable heat flux by a thin needle
  publication-title: J Mol Liq
– volume: 40
  start-page: 576
  year: 2018
  ident: CR13
  article-title: Flow and heat transfer analysis of carbon nanotubes based maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation
  publication-title: J Braz Soc Mech Sci Eng
– volume: 53
  start-page: 1835
  year: 2016
  end-page: 1842
  ident: CR23
  article-title: Numerical analysis of the forced convective heat transfer on Al O –Cu/water hybrid nanofluid
  publication-title: Heat Mass Transf
– volume: 1
  start-page: 1631
  year: 2019
  ident: CR38
  article-title: Forced convection heat transfer of water/FMWCNT nanofluid in a microchannel with triangular ribs
  publication-title: SN Appl Sci
– volume: 127
  start-page: 2075
  year: 2017
  end-page: 2081
  ident: CR10
  article-title: Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids
  publication-title: J Therm Anal Calorim
– volume: 28
  start-page: 532
  year: 2018
  end-page: 546
  ident: CR45
  article-title: Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based Alumina nanofluid
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 28
  start-page: 2567
  issue: 11
  year: 2018
  end-page: 2580
  ident: CR17
  article-title: Unsteady MHD boundary layer flow of tangent hyperbolic two phase nanofluid of moving stretched porous wedge
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 91
  start-page: 239
  year: 2018
  end-page: 247
  ident: CR28
  article-title: Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation
  publication-title: Int Commun Heat Mass Transf
– volume: 140
  start-page: 598
  year: 2019
  end-page: 605
  ident: CR34
  article-title: Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al O –SiO /water hybrid-nanofluid
  publication-title: Int J Heat Mass Transf
– volume: 115
  start-page: 1121
  year: 2017
  end-page: 1131
  ident: CR25
  article-title: Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube
  publication-title: Int J Heat Mass Transf
– volume: 29
  start-page: 124
  year: 2015
  end-page: 138
  ident: CR20
  article-title: Investigation of laminar convective heat transfer of a novel TiO –carbon nanotube hybrid water-based nanofluid
  publication-title: Exp Heat Transf
– volume: 97
  start-page: 92
  year: 2018
  end-page: 102
  ident: CR30
  article-title: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O –TiO hybrid nanofluid
  publication-title: Int Commun Heat Mass Transf
– volume: 29
  start-page: 781
  year: 2016
  end-page: 795
  ident: CR7
  article-title: Comparison between experimental and theoretical thermal conductivity of nanofluids containing MWCNTs decorated with TiO nanoparticles
  publication-title: Exp Heat Transf
– volume: 78
  start-page: 68
  year: 2016
  end-page: 79
  ident: CR21
  article-title: Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review
  publication-title: Int Commun Heat Mass Transf
– volume: 92
  start-page: 1053
  year: 2016
  end-page: 1060
  ident: CR5
  article-title: Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model
  publication-title: Int J Heat Mass Transf
– volume: 258
  start-page: 125
  year: 2014
  end-page: 133
  ident: CR14
  article-title: A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate
  publication-title: Powder Technol
– volume: 21
  start-page: 480
  year: 2019
  ident: CR35
  article-title: Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluids in microtubes
  publication-title: Entropy
– volume: 136
  start-page: 288
  year: 2019
  end-page: 297
  ident: CR32
  article-title: Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid
  publication-title: Int J Heat Mass Transf
– volume: 137
  start-page: 714
  year: 2019
  end-page: 726
  ident: CR33
  article-title: MHD convective heat transfer of Ag–MgO/water hybrid nanofluid in a channel with active heaters and coolers
  publication-title: Int J Heat Mass Transf
– volume: 28
  start-page: 1738
  issue: 8
  year: 2018
  end-page: 1750
  ident: CR18
  article-title: The influence of thermal radiation on unsteady free convection in inclined enclosures filled by a nanofluid with sinusoidal boundary conditions
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 138
  start-page: 845
  year: 2019
  end-page: 855
  ident: CR36
  article-title: An innovative mass-based model of aqueous zinc oxide–gold hybrid nanofluid for von Kármán’s swirling flow
  publication-title: J Therm Anal Calorimetry
– volume: 2
  start-page: 639
  year: 2020
  ident: CR41
  article-title: The impact of thermal stratification and heat generation/absorption on MHD carreau nano fluid flow over a permeable cylinder
  publication-title: SN Appl Sci
– volume: 135
  start-page: 646
  year: 2018
  end-page: 655
  ident: CR12
  article-title: Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition
  publication-title: Int J Mech Sci
– volume: 103
  start-page: 1084
  year: 2016
  end-page: 1097
  ident: CR22
  article-title: Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler
  publication-title: Int J Heat Mass Transf
– volume: 88
  start-page: 120
  year: 2017
  end-page: 125
  ident: CR24
  article-title: Convective heat transfer enhancement with graphene nanoplatelet/platinum hybrid nanofluid
  publication-title: Int Commun Heat Mass Transf
– volume: 1
  start-page: 661
  year: 2019
  ident: CR37
  article-title: Heat transfer enhancement from an inclined plate through a heat generating and variable porosity porous medium using nanofluids due to solar radiation
  publication-title: SN Appl Sci
– volume: 118
  start-page: 480
  year: 2018
  end-page: 491
  ident: CR19
  article-title: Numerical investigation on time-dependent flow of Williamson nanofluid along with heat and mass transfer characteristics past a wedge geometry
  publication-title: Int J Heat Mass Transf
– volume: 11
  start-page: 801
  year: 2018
  end-page: 816
  ident: CR11
  article-title: Darcy Forhheimer aspects for CNTs nanofluid past a stretching cylinder using Keller box method
  publication-title: Results Phys
– volume: 91
  start-page: 262
  year: 2018
  end-page: 273
  ident: CR29
  article-title: Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger
  publication-title: Int Commun Heat Mass Transf
– volume: 78
  start-page: 718
  year: 2001
  end-page: 720
  ident: CR2
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nano-particles
  publication-title: Appl Phys
– volume: 131
  start-page: 16
  year: 2016
  ident: CR15
  article-title: Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno’s model
  publication-title: Eur Phys J Plus
– volume: 117
  start-page: 474
  year: 2018
  end-page: 486
  ident: CR27
  article-title: Heat transfer efficiency of Al O –MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation
  publication-title: Int J Heat Mass Transf
– volume: 2
  start-page: 66
  year: 2020
  ident: CR39
  article-title: Multiple slip effects on MHD unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method
  publication-title: SN Appl Sci
– volume: 79
  start-page: 2252
  year: 2001
  end-page: 2254
  ident: CR1
  article-title: Anomalous thermal conductivity enhancement in nano-tube suspensions
  publication-title: Appl Phys
– year: 2015
  ident: CR3
  article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das Nanofluid Model
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126486
– volume: 79
  start-page: 2252
  year: 2001
  ident: 3011_CR1
  publication-title: Appl Phys
– volume: 5
  start-page: 139
  year: 2012
  ident: 3011_CR42
  publication-title: J Appl Fluid Mech
– volume: 40
  start-page: 576
  year: 2018
  ident: 3011_CR13
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-018-1494-9
– volume: 118
  start-page: 480
  year: 2018
  ident: 3011_CR19
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.10.126
– volume: 53
  start-page: 1835
  year: 2016
  ident: 3011_CR23
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-016-1941-z
– volume: 14
  start-page: 726
  year: 2015
  ident: 3011_CR4
  publication-title: IEEE Trans Nanotechnol
  doi: 10.1109/TNANO.2015.2435899
– volume: 1
  start-page: 1631
  year: 2019
  ident: 3011_CR38
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1678-7
– volume: 42
  start-page: 22005
  year: 2017
  ident: 3011_CR16
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.085
– volume: 331
  start-page: 326
  year: 2018
  ident: 3011_CR44
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.03.020
– volume: 258
  start-page: 125
  year: 2014
  ident: 3011_CR14
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2014.03.021
– volume: 115
  start-page: 1121
  year: 2017
  ident: 3011_CR25
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.08.120
– volume: 101
  start-page: 948
  year: 2016
  ident: 3011_CR8
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.05.114
– volume: 103
  start-page: 1084
  year: 2016
  ident: 3011_CR22
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.07.070
– volume: 92
  start-page: 1053
  year: 2016
  ident: 3011_CR5
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.09.071
– volume: 28
  start-page: 532
  year: 2018
  ident: 3011_CR45
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-02-2017-0061
– volume: 28
  start-page: 2567
  issue: 11
  year: 2018
  ident: 3011_CR17
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-12-2017-0499
– volume: 91
  start-page: 239
  year: 2018
  ident: 3011_CR28
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2017.12.019
– volume: 117
  start-page: 474
  year: 2018
  ident: 3011_CR27
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.10.036
– volume: 179
  start-page: 118
  year: 2018
  ident: 3011_CR31
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2017.10.027
– volume: 138
  start-page: 845
  year: 2019
  ident: 3011_CR36
  publication-title: J Therm Anal Calorimetry
  doi: 10.1007/s10973-019-08127-6
– volume: 28
  start-page: 1738
  issue: 8
  year: 2018
  ident: 3011_CR18
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-09-2017-0375
– volume: 2
  start-page: 66
  year: 2020
  ident: 3011_CR39
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1831-3
– year: 2015
  ident: 3011_CR3
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126486
– volume: 97
  start-page: 92
  year: 2018
  ident: 3011_CR30
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2018.07.002
– volume: 135
  start-page: 646
  year: 2018
  ident: 3011_CR12
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.12.007
– volume: 127
  start-page: 2075
  year: 2017
  ident: 3011_CR10
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-016-5833-8
– volume: 91
  start-page: 262
  year: 2018
  ident: 3011_CR29
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2017.12.020
– volume: 137
  start-page: 714
  year: 2019
  ident: 3011_CR33
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.03.169
– volume: 136
  start-page: 288
  year: 2019
  ident: 3011_CR32
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.02.101
– volume: 131
  start-page: 16
  year: 2016
  ident: 3011_CR15
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2016-16016-8
– volume: 140
  start-page: 598
  year: 2019
  ident: 3011_CR34
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.06.028
– volume: 224
  start-page: 786
  year: 2016
  ident: 3011_CR9
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.10.069
– volume: 315
  start-page: 194
  year: 2017
  ident: 3011_CR43
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2017.03.059
– volume: 1
  start-page: 661
  year: 2019
  ident: 3011_CR37
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-0682-2
– volume: 29
  start-page: 781
  year: 2016
  ident: 3011_CR7
  publication-title: Exp Heat Transf
  doi: 10.1080/08916152.2015.1135199
– volume: 21
  start-page: 480
  year: 2019
  ident: 3011_CR35
  publication-title: Entropy
  doi: 10.3390/e21050480
– volume: 125
  start-page: 56
  year: 2018
  ident: 3011_CR26
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/j.cep.2018.01.004
– volume: 2
  start-page: 639
  year: 2020
  ident: 3011_CR41
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2445-5
– volume: 78
  start-page: 68
  year: 2016
  ident: 3011_CR21
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2016.08.019
– volume: 27
  start-page: 1207
  year: 2016
  ident: 3011_CR6
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2016.04.005
– volume: 11
  start-page: 801
  year: 2018
  ident: 3011_CR11
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2018.09.029
– volume: 29
  start-page: 124
  year: 2015
  ident: 3011_CR20
  publication-title: Exp Heat Transf
  doi: 10.1080/08916152.2014.973974
– volume: 78
  start-page: 718
  year: 2001
  ident: 3011_CR2
  publication-title: Appl Phys
– volume: 88
  start-page: 120
  year: 2017
  ident: 3011_CR24
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2017.08.010
– volume: 2
  start-page: 677
  year: 2020
  ident: 3011_CR40
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2523-8
SSID ssj0002793483
ssib051670015
Score 2.536879
Snippet Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1222
SubjectTerms 3. Engineering (general)
Applied and Technical Physics
Boundary conditions
Carbon
Carbon nanotubes
Chemical reactions
Chemistry/Food Science
Cooling
Differential equations
Earth Sciences
Engineering
Environment
Finite element analysis
Finite element method
Fluid flow
Fluids
Graphene
Heat conductivity
Heat transfer
Mass transfer
Materials Science
Nanofluids
Nanomaterials
Nanoparticles
Nanotechnology
Nanotubes
Partial differential equations
Radiation
Research Article
Reynolds number
Silver
Sketches
Stretching
Suction
Thermal radiation
Velocity
Title Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation
URI https://link.springer.com/article/10.1007/s42452-020-3011-x
https://www.proquest.com/docview/2788424710
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQuMAB8VMUBvKBE5GnxImT-DhNQxXSdtkm7RY5sa0CWTq1qWAc-Nt5z7GTUm2IcamiJHXSfl-ev5f3w4R8wMhcLpVgIHcFy2qVs9payXKdweSl4lw7pE9O8_lF9vlSXE4pQa66pK8Pmp-31pX8D6qwD3DFKtl7IDsOCjtgG_CFT0AYPv8J4zm69_jm-wokMK72ABrUYFLk1Ghk0zkYb6LFDdZmRZ3qlrbdwJZtl98jTOCMlKsY6YesyvUCo9TD69kFmu02WmH_ghFAr2TPTiPlFayfRUd1fraCKREmXKdQD6awkwYnGu4NINWDaZ8OHi3U1bch9nTYftl-FQF-Z0hb9RaLg1fLUuktltneN6yzEkwu32JWcashH3I31hiX5QwvhYaI_ZhmrRCp35nMxhTDsR2zG6KCISocAv2NhxxcClzt4uTXcbA9IsF6JS-NvrqArEwz18V1_FUhKI6Vl7s39qesmXyVnfC6Uy3nT8kT727Qw4E7z8gD0z0nj7eaUL4g18giCiyiyCIaWEQDi-jS0sAiOrCIjiyiyCKKLKKKTiyijkUUWUQ9i-jIopfk4tPx-dGc-XU4WJMK2TMtQTVmJjYmtqWIbcpT09gibRJdN1aYQnGpEyUTlQvFhS6SomxsmmtuQVwrm74ie92yM68JTVTBdSripsgs-NqiLJVslK5lnSibqWRG4vA3Vo1vUo9rpbTVnXjOyMfxK9dDh5a_nbwfsKn8g7yueFGWcCJo7RmJAl7T4TsHe3OfK78lj6ZHZp_s9auNeQd6tq_fOyL-BjJRnOw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transfer+analysis+of+unsteady+hybrid+nanofluid+flow+over+a+stretching+sheet+with+thermal+radiation&rft.jtitle=SN+applied+sciences&rft.au=Sreedevi%2C+P.&rft.au=Sudarsana+Reddy%2C+P.&rft.au=Chamkha%2C+Ali&rft.date=2020-07-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=7&rft_id=info:doi/10.1007%2Fs42452-020-3011-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_020_3011_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon