Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation
Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles a...
Saved in:
Published in | SN applied sciences Vol. 2; no. 7; p. 1222 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base fluid. Using similarity transformation method, the governing equations are changed into system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using finite-element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nanofluid intensified in both steady and unsteady cases as volume fraction of both nanoparticles rises. |
---|---|
AbstractList | Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects and thermal radiation is analyzed in this problem. Combination of carbon nanotubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base fluid. Using similarity transformation method, the governing equations are changed into system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using finite-element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nanofluid intensified in both steady and unsteady cases as volume fraction of both nanoparticles rises. |
ArticleNumber | 1222 |
Author | Sudarsana Reddy, P. Sreedevi, P. Chamkha, Ali |
Author_xml | – sequence: 1 givenname: P. surname: Sreedevi fullname: Sreedevi, P. organization: Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology – sequence: 2 givenname: P. orcidid: 0000-0003-1337-950X surname: Sudarsana Reddy fullname: Sudarsana Reddy, P. email: suda1983@gmail.com organization: Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology – sequence: 3 givenname: Ali surname: Chamkha fullname: Chamkha, Ali organization: Mechanical Engineering Department, Prince Mohammad Endowment for Nanoscience and Technology, Prince Mohammad Bin Fahd University |
BookMark | eNp9kE1rGzEQhkVxIGmaH5CboOdN9eG1do_BtHEg0Et7FpPVKKuwllyNXNv_PnIcWiikJw3ifebj-chmMUVk7FqKGymE-UJzNW9VI5RotJCy2X9gF6pVutG9kbM_9UKfsyuiZyGEMr2ed_qCbVYIhUN0fA1EvGSI5DHXH5gOFIgnz7eRCoI78PHwmIPjEWLy07ZWfko7nn4f85xKxjKMIT5xGhEL34Uy8jJiXsPEM7gAJaT4iZ15mAiv3t5L9vPb1x_LVfPw_e5-efvQDLrtS-N62Ys5CkThu1Z4rTQO3uhBusfBt2hA9U5CL2HRgmqdkaYbvF445RdKg9eX7POp7yanX1ukYp_TNteryCrTddWYkaKm5Ck15ESU0dtNDmvIByuFPbq1J7e2urVHt3ZfGfMPM4Tyelu1F6b_kupEUp0SnzD_3el96AUFiJI9 |
CitedBy_id | crossref_primary_10_1038_s41598_021_00423_2 crossref_primary_10_1016_j_aej_2023_05_089 crossref_primary_10_1142_S0217979223502843 crossref_primary_10_1007_s40819_024_01734_4 crossref_primary_10_1080_01430750_2022_2127892 crossref_primary_10_1002_htj_22739 crossref_primary_10_1177_09544062231209828 crossref_primary_10_1080_15502287_2022_2030426 crossref_primary_10_1016_j_hybadv_2025_100446 crossref_primary_10_1140_epjs_s11734_021_00409_1 crossref_primary_10_1038_s41598_022_25600_9 crossref_primary_10_1002_htj_22695 crossref_primary_10_1108_MMMS_04_2024_0093 crossref_primary_10_1134_S1810232823010071 crossref_primary_10_1166_jon_2024_2145 crossref_primary_10_1177_16878132231169685 crossref_primary_10_1016_j_csite_2022_102655 crossref_primary_10_1140_epjp_s13360_023_04257_x crossref_primary_10_1002_adts_202401554 crossref_primary_10_1016_j_csite_2022_102361 crossref_primary_10_1007_s12648_023_02912_8 crossref_primary_10_1080_01430750_2022_2111356 crossref_primary_10_1002_zamm_202301027 crossref_primary_10_1016_j_aej_2021_12_020 crossref_primary_10_1007_s12668_023_01282_z crossref_primary_10_1177_09544089221133966 crossref_primary_10_1080_17455030_2021_2023780 crossref_primary_10_1080_17455030_2022_2108159 crossref_primary_10_1080_01430750_2022_2132287 crossref_primary_10_1080_01430750_2024_2372681 crossref_primary_10_1080_10407782_2023_2207731 crossref_primary_10_1016_j_csite_2023_103632 crossref_primary_10_1016_j_csite_2023_103510 crossref_primary_10_1002_zamm_202200608 crossref_primary_10_3389_fenrg_2022_967444 crossref_primary_10_1007_s13399_022_02785_7 crossref_primary_10_1080_01430750_2021_1888800 crossref_primary_10_1063_5_0216570 crossref_primary_10_3390_coatings11121554 crossref_primary_10_1142_S0217979223502028 crossref_primary_10_1080_01430750_2021_1888803 crossref_primary_10_1166_jon_2024_2176 crossref_primary_10_1038_s41598_023_36631_1 crossref_primary_10_1016_j_csite_2023_102909 crossref_primary_10_1016_j_asej_2021_08_015 crossref_primary_10_1007_s42452_020_04057_3 crossref_primary_10_1142_S021798492450204X crossref_primary_10_1166_jon_2021_1811 crossref_primary_10_1080_01430750_2020_1852113 crossref_primary_10_1007_s12668_024_01514_w crossref_primary_10_1063_5_0157429 crossref_primary_10_1177_09544089211050715 crossref_primary_10_1515_phys_2023_0181 crossref_primary_10_1016_j_asej_2023_102449 crossref_primary_10_1166_jon_2024_2169 crossref_primary_10_32604_fhmt_2023_041539 crossref_primary_10_3389_fmech_2022_900316 crossref_primary_10_1016_j_csite_2021_100932 crossref_primary_10_1016_j_est_2021_103664 crossref_primary_10_1080_10407782_2024_2338259 crossref_primary_10_1016_j_icheatmasstransfer_2024_107572 crossref_primary_10_1080_17455030_2022_2072018 crossref_primary_10_1016_j_ctta_2025_100163 crossref_primary_10_1080_17455030_2021_1968537 crossref_primary_10_1016_j_matcom_2021_12_018 crossref_primary_10_1177_09544089221078153 crossref_primary_10_1016_j_jppr_2023_11_002 crossref_primary_10_1007_s12668_023_01279_8 crossref_primary_10_1002_htj_22965 crossref_primary_10_1177_09544089221100092 crossref_primary_10_3390_mca27060091 crossref_primary_10_1177_16878132221106577 crossref_primary_10_1038_s41598_022_27265_w crossref_primary_10_1080_01430750_2022_2029765 crossref_primary_10_1016_j_csite_2024_105538 crossref_primary_10_1142_S0218625X24500288 crossref_primary_10_1021_acsomega_3c02949 crossref_primary_10_1016_j_heliyon_2023_e14472 crossref_primary_10_1016_j_jmmm_2022_170284 crossref_primary_10_3390_lubricants12060221 crossref_primary_10_1088_1361_6528_aced57 crossref_primary_10_1166_jon_2020_1751 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121222 crossref_primary_10_1080_02286203_2022_2062166 crossref_primary_10_3390_nanomanufacturing3040027 crossref_primary_10_1166_jon_2023_2100 crossref_primary_10_1038_s41598_022_22460_1 crossref_primary_10_1016_j_jmrt_2021_07_029 crossref_primary_10_1016_j_aej_2025_01_031 crossref_primary_10_3390_sym13122334 crossref_primary_10_1016_j_padiff_2024_100786 crossref_primary_10_1016_j_thradv_2025_100026 crossref_primary_10_1002_htj_22258 crossref_primary_10_1155_2024_7733414 crossref_primary_10_1080_01430750_2020_1831599 crossref_primary_10_1016_j_rineng_2024_102431 crossref_primary_10_1038_s41598_020_80554_0 crossref_primary_10_1177_09544089211001353 crossref_primary_10_3390_nano12224102 crossref_primary_10_1063_5_0074894 crossref_primary_10_1007_s40819_024_01751_3 crossref_primary_10_1080_02286203_2024_2345256 crossref_primary_10_1140_epjp_s13360_021_01095_7 crossref_primary_10_3390_math9222927 crossref_primary_10_1002_zamm_202300934 crossref_primary_10_1016_j_rineng_2024_102019 crossref_primary_10_1016_j_mseb_2023_116602 crossref_primary_10_1007_s11587_022_00687_4 crossref_primary_10_1038_s41598_021_04587_9 crossref_primary_10_1016_j_sajce_2022_01_005 crossref_primary_10_3389_fchem_2022_1032805 crossref_primary_10_1155_2022_4471450 crossref_primary_10_1080_17455030_2022_2157512 crossref_primary_10_1002_htj_22429 crossref_primary_10_1088_1361_6528_acbda1 crossref_primary_10_1002_htj_21972 crossref_primary_10_1016_j_tsep_2024_102798 crossref_primary_10_3389_fphy_2022_986501 crossref_primary_10_1007_s10973_022_11797_4 crossref_primary_10_1016_j_csite_2021_101132 crossref_primary_10_1016_j_nanoso_2025_101463 crossref_primary_10_1002_htj_22784 crossref_primary_10_1016_j_ctta_2022_100045 crossref_primary_10_1088_1361_6528_acd38b crossref_primary_10_1140_epjp_s13360_020_01025_z crossref_primary_10_1515_ntrev_2023_0171 crossref_primary_10_3390_nano12111791 crossref_primary_10_1142_S0217984925500551 crossref_primary_10_1016_j_icheatmasstransfer_2020_105022 crossref_primary_10_3389_fchem_2022_1010591 crossref_primary_10_1016_j_csite_2023_103364 crossref_primary_10_1016_j_csite_2024_104095 crossref_primary_10_1039_D3NA00453H crossref_primary_10_1039_D3NA00481C crossref_primary_10_1080_17455030_2022_2058112 crossref_primary_10_2298_TSCI23S1141J crossref_primary_10_1088_1402_4896_ac0077 crossref_primary_10_1080_02286203_2023_2301627 crossref_primary_10_3390_math10163013 crossref_primary_10_1016_j_jics_2022_100845 crossref_primary_10_1016_j_padiff_2022_100322 crossref_primary_10_23939_mmc2022_04_871 crossref_primary_10_1007_s42452_020_3156_7 crossref_primary_10_1080_10407782_2024_2363496 crossref_primary_10_1016_j_csite_2021_101300 crossref_primary_10_1142_S0217984924500593 crossref_primary_10_1016_j_cjph_2022_03_013 crossref_primary_10_1080_10407790_2024_2386584 crossref_primary_10_1038_s41598_021_04658_x crossref_primary_10_1142_S0217984924504554 crossref_primary_10_3390_math12244012 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2024047358 crossref_primary_10_1080_02286203_2023_2191582 crossref_primary_10_1080_17455030_2022_2103752 crossref_primary_10_3390_nano12091566 crossref_primary_10_1007_s11043_024_09725_0 crossref_primary_10_1016_j_jmmm_2023_170953 crossref_primary_10_1142_S0217979223501242 crossref_primary_10_1038_s41598_022_21255_8 crossref_primary_10_23939_mmc2023_04_1222 crossref_primary_10_1016_j_heliyon_2024_e27675 crossref_primary_10_1016_j_aej_2021_06_055 crossref_primary_10_1007_s10973_023_11946_3 crossref_primary_10_1142_S0217984924500222 crossref_primary_10_1016_j_csite_2024_104888 crossref_primary_10_1007_s10973_025_14029_7 crossref_primary_10_1177_00368504231180032 |
Cites_doi | 10.1371/journal.pone.0126486 10.1007/s40430-018-1494-9 10.1016/j.ijheatmasstransfer.2017.10.126 10.1007/s00231-016-1941-z 10.1109/TNANO.2015.2435899 10.1007/s42452-019-1678-7 10.1016/j.ijhydene.2017.07.085 10.1016/j.powtec.2018.03.020 10.1016/j.powtec.2014.03.021 10.1016/j.ijheatmasstransfer.2017.08.120 10.1016/j.ijheatmasstransfer.2016.05.114 10.1016/j.ijheatmasstransfer.2016.07.070 10.1016/j.ijheatmasstransfer.2015.09.071 10.1108/HFF-02-2017-0061 10.1108/HFF-12-2017-0499 10.1016/j.icheatmasstransfer.2017.12.019 10.1016/j.ijheatmasstransfer.2017.10.036 10.1016/j.solmat.2017.10.027 10.1007/s10973-019-08127-6 10.1108/HFF-09-2017-0375 10.1007/s42452-019-1831-3 10.1016/j.icheatmasstransfer.2018.07.002 10.1016/j.ijmecsci.2017.12.007 10.1007/s10973-016-5833-8 10.1016/j.icheatmasstransfer.2017.12.020 10.1016/j.ijheatmasstransfer.2019.03.169 10.1016/j.ijheatmasstransfer.2019.02.101 10.1140/epjp/i2016-16016-8 10.1016/j.ijheatmasstransfer.2019.06.028 10.1016/j.molliq.2016.10.069 10.1016/j.powtec.2017.03.059 10.1007/s42452-019-0682-2 10.1080/08916152.2015.1135199 10.3390/e21050480 10.1016/j.cep.2018.01.004 10.1007/s42452-020-2445-5 10.1016/j.icheatmasstransfer.2016.08.019 10.1016/j.apt.2016.04.005 10.1016/j.rinp.2018.09.029 10.1080/08916152.2014.973974 10.1016/j.icheatmasstransfer.2017.08.010 10.1007/s42452-020-2523-8 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s42452-020-3011-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2523-3971 |
ExternalDocumentID | 10_1007_s42452_020_3011_x |
GroupedDBID | -EM 0R~ 88I AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACULB ADKNI ADMLS ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ H13 HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ACSTC CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c359t-d91904e0ee0f850f323ecf73c1dbcf5e7a29d1a91a65a25d7178cf36d2f623af3 |
ISSN | 2523-3963 |
IngestDate | Wed Aug 13 10:49:52 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Jul 01 04:23:19 EDT 2025 Fri Feb 21 02:29:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Slip effects Thermal radiation MWCNT/Ag‒water hybrid nanofluid Chemical reaction Magneto-hydrodynamics FEM |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-d91904e0ee0f850f323ecf73c1dbcf5e7a29d1a91a65a25d7178cf36d2f623af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1337-950X |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s42452-020-3011-x.pdf |
PQID | 2788424710 |
PQPubID | 5758472 |
ParticipantIDs | proquest_journals_2788424710 crossref_primary_10_1007_s42452_020_3011_x crossref_citationtrail_10_1007_s42452_020_3011_x springer_journals_10_1007_s42452_020_3011_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200700 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | SN applied sciences |
PublicationTitleAbbrev | SN Appl. Sci |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Hashim, Khan, Hamid (CR19) 2018; 118 Ahammed, Asirvatham, Wongwises (CR22) 2016; 103 Dinarvand, Nademi Rostami (CR36) 2019; 138 Megatif, Ghozatloo, Arimi, Shariati-Niasar (CR20) 2015; 29 Yildiz, Arici, Karabay (CR34) 2019; 140 Ibrar, Reddy, Shehzad, Sreenivasulu, Poornima (CR40) 2020; 2 Shiriny, Bayareh, Ahmadi Nadooshan, Bahrami (CR38) 2019; 1 Ellahi, Hassan, Zeeshan (CR4) 2015; 14 Yarmand, Zulkifli, Gharehkhani, Shirazi, Alrashed, Ali, Dahari, Kazi (CR24) 2017; 88 Asadi, Asadi, Rezaniakolaei, Rosendahl, Afrand, Wongwises (CR27) 2018; 117 Ghalambaz, Sheremet, Pop (CR3) 2015 Jyothi, Sudarsana Reddy, Suryanarayana Reddy (CR44) 2018; 331 Waini, Ishak, Pop (CR32) 2019; 136 Hussien, Abdullah, Yusop, Al-Kouz, Mahmoudi, Mehrali (CR35) 2019; 21 Izadi, Mohebbi, Karimi, Sheremet (CR26) 2018; 125 Bhattad, Sarkar, Ghosh (CR29) 2018; 91 Rahman, Leong, Idris, Saad, Anwar (CR23) 2016; 53 Hussien, Abdullah, Yusop, Al-Nimr, Atieh, Mehrali (CR25) 2017; 115 Hussain, Hayat, Ahmed, Ahmed (CR11) 2018; 11 Sreedevi, Sudarsana Reddy, Chamkha (CR12) 2018; 135 Sidik, Adamu, Jamil, Kefayati, Mamat, Najafi (CR21) 2016; 78 Sudarsana Reddy, Chamkha (CR6) 2016; 27 Maddah, Aghayari, Mirzaee, Ahmadi, Sadeghzadeh, Chamkha (CR30) 2018; 97 Sudarsana Reddy, Chamkha (CR45) 2018; 28 Kumar, Sarkar (CR28) 2018; 91 Sreedevi, Sudarsana Reddy, Chamkha (CR43) 2017; 315 Biglarian, Rahimi Gorji, Pourmehran, Domairry (CR16) 2017; 42 Sudarsana Reddy, Prasada Rao (CR42) 2012; 5 Sheremet, Pop, Rosca (CR18) 2018; 28 Imtiaz, Hayat, Alsaedi, Ahmad (CR8) 2016; 101 Choi, Zhang, Yu, Lockwood, Grulke (CR1) 2001; 79 Estelle, Halelfadl, Mare (CR10) 2017; 127 Mahdy, Chamkha (CR17) 2018; 28 Ahmed, Aly, Raizah (CR37) 2019; 1 Abbasi, Zebarjad, Baghban, Youssefi (CR7) 2016; 29 Hayat, Liaz Khan, Farooq, Yasmeen, Alsaedi (CR9) 2016; 224 Ma, Mohebbi, Rashidi, Yang (CR33) 2019; 137 Sudarsana Reddy, Jyothi, Suryanarayana Reddy (CR13) 2018; 40 Sheremet, Pop, Bachok (CR5) 2016; 92 Ahmadi, Zahmatkesh, Hatami, Ganji (CR14) 2014; 258 Akilu, Baheta, Said, Minea, Sharma (CR31) 2018; 179 Gopal, Naik, Kishan, Raju (CR41) 2020; 2 Khan, Nie, Ali (CR39) 2020; 2 Eastman, Choi, Li, Yu, Thompson (CR2) 2001; 78 Qasim, Khan, Lopez, Khan (CR15) 2016; 131 MA Sheremet (3011_CR5) 2016; 92 AA Hussien (3011_CR25) 2017; 115 SE Ahmed (3011_CR37) 2019; 1 D Gopal (3011_CR41) 2020; 2 S Abbasi (3011_CR7) 2016; 29 M Imtiaz (3011_CR8) 2016; 101 SUS Choi (3011_CR1) 2001; 79 P Estelle (3011_CR10) 2017; 127 M Ghalambaz (3011_CR3) 2015 C Yildiz (3011_CR34) 2019; 140 S Dinarvand (3011_CR36) 2019; 138 SA Khan (3011_CR39) 2020; 2 T Hayat (3011_CR9) 2016; 224 P Sudarsana Reddy (3011_CR45) 2018; 28 L Megatif (3011_CR20) 2015; 29 V Kumar (3011_CR28) 2018; 91 MRA Rahman (3011_CR23) 2016; 53 H Maddah (3011_CR30) 2018; 97 N Ibrar (3011_CR40) 2020; 2 R Ellahi (3011_CR4) 2015; 14 M Biglarian (3011_CR16) 2017; 42 P Sudarsana Reddy (3011_CR42) 2012; 5 I Waini (3011_CR32) 2019; 136 AA Hussien (3011_CR35) 2019; 21 NAC Sidik (3011_CR21) 2016; 78 P Sreedevi (3011_CR12) 2018; 135 Z Hussain (3011_CR11) 2018; 11 AR Ahmadi (3011_CR14) 2014; 258 P Sudarsana Reddy (3011_CR6) 2016; 27 JA Eastman (3011_CR2) 2001; 78 M Qasim (3011_CR15) 2016; 131 M Hashim (3011_CR19) 2018; 118 A Asadi (3011_CR27) 2018; 117 H Yarmand (3011_CR24) 2017; 88 P Sudarsana Reddy (3011_CR13) 2018; 40 K Jyothi (3011_CR44) 2018; 331 A Shiriny (3011_CR38) 2019; 1 MA Sheremet (3011_CR18) 2018; 28 M Izadi (3011_CR26) 2018; 125 P Sreedevi (3011_CR43) 2017; 315 N Ahammed (3011_CR22) 2016; 103 S Akilu (3011_CR31) 2018; 179 Y Ma (3011_CR33) 2019; 137 A Mahdy (3011_CR17) 2018; 28 A Bhattad (3011_CR29) 2018; 91 |
References_xml | – volume: 42 start-page: 22005 year: 2017 end-page: 22014 ident: CR16 article-title: H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer publication-title: Int J Hydrogen Energy – volume: 101 start-page: 948 year: 2016 end-page: 957 ident: CR8 article-title: Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects publication-title: Int J Heat Mass Transf – volume: 125 start-page: 56 year: 2018 end-page: 66 ident: CR26 article-title: Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe O /water hybrid nanofluids using LBM publication-title: Chem Eng Process Process Intensif – volume: 179 start-page: 118 year: 2018 end-page: 128 ident: CR31 article-title: Properties of glycerol and ethylene glycol mixture based SiO –CuO/C hybrid nanofluid for enhanced solar energy transport publication-title: Sol Energy Mater Sol Cells – volume: 2 start-page: 677 year: 2020 ident: CR40 article-title: Interaction of single and multiwalls carbon nanotubes in magnetized-nano Casson fluid over radiated horizontal needle publication-title: SN Appl Sci – volume: 5 start-page: 139 year: 2012 end-page: 144 ident: CR42 article-title: Thermo-diffusion and diffusion-thermo effects on convective heat and mass transfer through a porous medium in a circular cylindrical annulus with quadratic density temperature variation—finite element study publication-title: J Appl Fluid Mech – volume: 27 start-page: 1207 year: 2016 end-page: 1218 ident: CR6 article-title: Soret and Dufour effects on MHD convective flow of Al O –water and TiO –water nanofluids past a stretching sheet in porous media with heat generation/absorption publication-title: Adv Powder Technol – volume: 14 start-page: 726 year: 2015 end-page: 734 ident: CR4 article-title: Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution publication-title: IEEE Trans Nanotechnol – volume: 331 start-page: 326 year: 2018 end-page: 337 ident: CR44 article-title: Influence of magnetic field and thermal radiation on convective flow of SWCNTs-water and MWCNTs-water nanofluid between rotating stretchable disks with convective boundary conditions publication-title: Powder Technol – volume: 315 start-page: 194 year: 2017 end-page: 204 ident: CR43 article-title: Heat and mass transfer analysis of nanofluid over linear and non-linear stretching surface with thermal radiation and chemical reaction publication-title: Powder Technol – volume: 224 start-page: 786 year: 2016 end-page: 791 ident: CR9 article-title: Water-carbon nanofluid flow with variable heat flux by a thin needle publication-title: J Mol Liq – volume: 40 start-page: 576 year: 2018 ident: CR13 article-title: Flow and heat transfer analysis of carbon nanotubes based maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation publication-title: J Braz Soc Mech Sci Eng – volume: 53 start-page: 1835 year: 2016 end-page: 1842 ident: CR23 article-title: Numerical analysis of the forced convective heat transfer on Al O –Cu/water hybrid nanofluid publication-title: Heat Mass Transf – volume: 1 start-page: 1631 year: 2019 ident: CR38 article-title: Forced convection heat transfer of water/FMWCNT nanofluid in a microchannel with triangular ribs publication-title: SN Appl Sci – volume: 127 start-page: 2075 year: 2017 end-page: 2081 ident: CR10 article-title: Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids publication-title: J Therm Anal Calorim – volume: 28 start-page: 532 year: 2018 end-page: 546 ident: CR45 article-title: Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based Alumina nanofluid publication-title: Int J Numer Methods Heat Fluid Flow – volume: 28 start-page: 2567 issue: 11 year: 2018 end-page: 2580 ident: CR17 article-title: Unsteady MHD boundary layer flow of tangent hyperbolic two phase nanofluid of moving stretched porous wedge publication-title: Int J Numer Methods Heat Fluid Flow – volume: 91 start-page: 239 year: 2018 end-page: 247 ident: CR28 article-title: Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation publication-title: Int Commun Heat Mass Transf – volume: 140 start-page: 598 year: 2019 end-page: 605 ident: CR34 article-title: Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al O –SiO /water hybrid-nanofluid publication-title: Int J Heat Mass Transf – volume: 115 start-page: 1121 year: 2017 end-page: 1131 ident: CR25 article-title: Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube publication-title: Int J Heat Mass Transf – volume: 29 start-page: 124 year: 2015 end-page: 138 ident: CR20 article-title: Investigation of laminar convective heat transfer of a novel TiO –carbon nanotube hybrid water-based nanofluid publication-title: Exp Heat Transf – volume: 97 start-page: 92 year: 2018 end-page: 102 ident: CR30 article-title: Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O –TiO hybrid nanofluid publication-title: Int Commun Heat Mass Transf – volume: 29 start-page: 781 year: 2016 end-page: 795 ident: CR7 article-title: Comparison between experimental and theoretical thermal conductivity of nanofluids containing MWCNTs decorated with TiO nanoparticles publication-title: Exp Heat Transf – volume: 78 start-page: 68 year: 2016 end-page: 79 ident: CR21 article-title: Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review publication-title: Int Commun Heat Mass Transf – volume: 92 start-page: 1053 year: 2016 end-page: 1060 ident: CR5 article-title: Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model publication-title: Int J Heat Mass Transf – volume: 258 start-page: 125 year: 2014 end-page: 133 ident: CR14 article-title: A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate publication-title: Powder Technol – volume: 21 start-page: 480 year: 2019 ident: CR35 article-title: Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluids in microtubes publication-title: Entropy – volume: 136 start-page: 288 year: 2019 end-page: 297 ident: CR32 article-title: Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid publication-title: Int J Heat Mass Transf – volume: 137 start-page: 714 year: 2019 end-page: 726 ident: CR33 article-title: MHD convective heat transfer of Ag–MgO/water hybrid nanofluid in a channel with active heaters and coolers publication-title: Int J Heat Mass Transf – volume: 28 start-page: 1738 issue: 8 year: 2018 end-page: 1750 ident: CR18 article-title: The influence of thermal radiation on unsteady free convection in inclined enclosures filled by a nanofluid with sinusoidal boundary conditions publication-title: Int J Numer Methods Heat Fluid Flow – volume: 138 start-page: 845 year: 2019 end-page: 855 ident: CR36 article-title: An innovative mass-based model of aqueous zinc oxide–gold hybrid nanofluid for von Kármán’s swirling flow publication-title: J Therm Anal Calorimetry – volume: 2 start-page: 639 year: 2020 ident: CR41 article-title: The impact of thermal stratification and heat generation/absorption on MHD carreau nano fluid flow over a permeable cylinder publication-title: SN Appl Sci – volume: 135 start-page: 646 year: 2018 end-page: 655 ident: CR12 article-title: Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition publication-title: Int J Mech Sci – volume: 103 start-page: 1084 year: 2016 end-page: 1097 ident: CR22 article-title: Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler publication-title: Int J Heat Mass Transf – volume: 88 start-page: 120 year: 2017 end-page: 125 ident: CR24 article-title: Convective heat transfer enhancement with graphene nanoplatelet/platinum hybrid nanofluid publication-title: Int Commun Heat Mass Transf – volume: 1 start-page: 661 year: 2019 ident: CR37 article-title: Heat transfer enhancement from an inclined plate through a heat generating and variable porosity porous medium using nanofluids due to solar radiation publication-title: SN Appl Sci – volume: 118 start-page: 480 year: 2018 end-page: 491 ident: CR19 article-title: Numerical investigation on time-dependent flow of Williamson nanofluid along with heat and mass transfer characteristics past a wedge geometry publication-title: Int J Heat Mass Transf – volume: 11 start-page: 801 year: 2018 end-page: 816 ident: CR11 article-title: Darcy Forhheimer aspects for CNTs nanofluid past a stretching cylinder using Keller box method publication-title: Results Phys – volume: 91 start-page: 262 year: 2018 end-page: 273 ident: CR29 article-title: Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger publication-title: Int Commun Heat Mass Transf – volume: 78 start-page: 718 year: 2001 end-page: 720 ident: CR2 article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nano-particles publication-title: Appl Phys – volume: 131 start-page: 16 year: 2016 ident: CR15 article-title: Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno’s model publication-title: Eur Phys J Plus – volume: 117 start-page: 474 year: 2018 end-page: 486 ident: CR27 article-title: Heat transfer efficiency of Al O –MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation publication-title: Int J Heat Mass Transf – volume: 2 start-page: 66 year: 2020 ident: CR39 article-title: Multiple slip effects on MHD unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method publication-title: SN Appl Sci – volume: 79 start-page: 2252 year: 2001 end-page: 2254 ident: CR1 article-title: Anomalous thermal conductivity enhancement in nano-tube suspensions publication-title: Appl Phys – year: 2015 ident: CR3 article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das Nanofluid Model publication-title: PLoS ONE doi: 10.1371/journal.pone.0126486 – volume: 79 start-page: 2252 year: 2001 ident: 3011_CR1 publication-title: Appl Phys – volume: 5 start-page: 139 year: 2012 ident: 3011_CR42 publication-title: J Appl Fluid Mech – volume: 40 start-page: 576 year: 2018 ident: 3011_CR13 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-018-1494-9 – volume: 118 start-page: 480 year: 2018 ident: 3011_CR19 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.10.126 – volume: 53 start-page: 1835 year: 2016 ident: 3011_CR23 publication-title: Heat Mass Transf doi: 10.1007/s00231-016-1941-z – volume: 14 start-page: 726 year: 2015 ident: 3011_CR4 publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2015.2435899 – volume: 1 start-page: 1631 year: 2019 ident: 3011_CR38 publication-title: SN Appl Sci doi: 10.1007/s42452-019-1678-7 – volume: 42 start-page: 22005 year: 2017 ident: 3011_CR16 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.085 – volume: 331 start-page: 326 year: 2018 ident: 3011_CR44 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.03.020 – volume: 258 start-page: 125 year: 2014 ident: 3011_CR14 publication-title: Powder Technol doi: 10.1016/j.powtec.2014.03.021 – volume: 115 start-page: 1121 year: 2017 ident: 3011_CR25 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.08.120 – volume: 101 start-page: 948 year: 2016 ident: 3011_CR8 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.05.114 – volume: 103 start-page: 1084 year: 2016 ident: 3011_CR22 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.07.070 – volume: 92 start-page: 1053 year: 2016 ident: 3011_CR5 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.09.071 – volume: 28 start-page: 532 year: 2018 ident: 3011_CR45 publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-02-2017-0061 – volume: 28 start-page: 2567 issue: 11 year: 2018 ident: 3011_CR17 publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-12-2017-0499 – volume: 91 start-page: 239 year: 2018 ident: 3011_CR28 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.12.019 – volume: 117 start-page: 474 year: 2018 ident: 3011_CR27 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.10.036 – volume: 179 start-page: 118 year: 2018 ident: 3011_CR31 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2017.10.027 – volume: 138 start-page: 845 year: 2019 ident: 3011_CR36 publication-title: J Therm Anal Calorimetry doi: 10.1007/s10973-019-08127-6 – volume: 28 start-page: 1738 issue: 8 year: 2018 ident: 3011_CR18 publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-09-2017-0375 – volume: 2 start-page: 66 year: 2020 ident: 3011_CR39 publication-title: SN Appl Sci doi: 10.1007/s42452-019-1831-3 – year: 2015 ident: 3011_CR3 publication-title: PLoS ONE doi: 10.1371/journal.pone.0126486 – volume: 97 start-page: 92 year: 2018 ident: 3011_CR30 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2018.07.002 – volume: 135 start-page: 646 year: 2018 ident: 3011_CR12 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.12.007 – volume: 127 start-page: 2075 year: 2017 ident: 3011_CR10 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5833-8 – volume: 91 start-page: 262 year: 2018 ident: 3011_CR29 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.12.020 – volume: 137 start-page: 714 year: 2019 ident: 3011_CR33 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.03.169 – volume: 136 start-page: 288 year: 2019 ident: 3011_CR32 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.02.101 – volume: 131 start-page: 16 year: 2016 ident: 3011_CR15 publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2016-16016-8 – volume: 140 start-page: 598 year: 2019 ident: 3011_CR34 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.06.028 – volume: 224 start-page: 786 year: 2016 ident: 3011_CR9 publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.10.069 – volume: 315 start-page: 194 year: 2017 ident: 3011_CR43 publication-title: Powder Technol doi: 10.1016/j.powtec.2017.03.059 – volume: 1 start-page: 661 year: 2019 ident: 3011_CR37 publication-title: SN Appl Sci doi: 10.1007/s42452-019-0682-2 – volume: 29 start-page: 781 year: 2016 ident: 3011_CR7 publication-title: Exp Heat Transf doi: 10.1080/08916152.2015.1135199 – volume: 21 start-page: 480 year: 2019 ident: 3011_CR35 publication-title: Entropy doi: 10.3390/e21050480 – volume: 125 start-page: 56 year: 2018 ident: 3011_CR26 publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2018.01.004 – volume: 2 start-page: 639 year: 2020 ident: 3011_CR41 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2445-5 – volume: 78 start-page: 68 year: 2016 ident: 3011_CR21 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2016.08.019 – volume: 27 start-page: 1207 year: 2016 ident: 3011_CR6 publication-title: Adv Powder Technol doi: 10.1016/j.apt.2016.04.005 – volume: 11 start-page: 801 year: 2018 ident: 3011_CR11 publication-title: Results Phys doi: 10.1016/j.rinp.2018.09.029 – volume: 29 start-page: 124 year: 2015 ident: 3011_CR20 publication-title: Exp Heat Transf doi: 10.1080/08916152.2014.973974 – volume: 78 start-page: 718 year: 2001 ident: 3011_CR2 publication-title: Appl Phys – volume: 88 start-page: 120 year: 2017 ident: 3011_CR24 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.08.010 – volume: 2 start-page: 677 year: 2020 ident: 3011_CR40 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2523-8 |
SSID | ssj0002793483 ssib051670015 |
Score | 2.536879 |
Snippet | Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nanofluid flow over stretching surface with chemical reaction, suction, slip effects... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1222 |
SubjectTerms | 3. Engineering (general) Applied and Technical Physics Boundary conditions Carbon Carbon nanotubes Chemical reactions Chemistry/Food Science Cooling Differential equations Earth Sciences Engineering Environment Finite element analysis Finite element method Fluid flow Fluids Graphene Heat conductivity Heat transfer Mass transfer Materials Science Nanofluids Nanomaterials Nanoparticles Nanotechnology Nanotubes Partial differential equations Radiation Research Article Reynolds number Silver Sketches Stretching Suction Thermal radiation Velocity |
Title | Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation |
URI | https://link.springer.com/article/10.1007/s42452-020-3011-x https://www.proquest.com/docview/2788424710 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbQuMAB8VMUBvKBE5GnxImT-DhNQxXSdtkm7RY5sa0CWTq1qWAc-Nt5z7GTUm2IcamiJHXSfl-ev5f3w4R8wMhcLpVgIHcFy2qVs9payXKdweSl4lw7pE9O8_lF9vlSXE4pQa66pK8Pmp-31pX8D6qwD3DFKtl7IDsOCjtgG_CFT0AYPv8J4zm69_jm-wokMK72ABrUYFLk1Ghk0zkYb6LFDdZmRZ3qlrbdwJZtl98jTOCMlKsY6YesyvUCo9TD69kFmu02WmH_ghFAr2TPTiPlFayfRUd1fraCKREmXKdQD6awkwYnGu4NINWDaZ8OHi3U1bch9nTYftl-FQF-Z0hb9RaLg1fLUuktltneN6yzEkwu32JWcashH3I31hiX5QwvhYaI_ZhmrRCp35nMxhTDsR2zG6KCISocAv2NhxxcClzt4uTXcbA9IsF6JS-NvrqArEwz18V1_FUhKI6Vl7s39qesmXyVnfC6Uy3nT8kT727Qw4E7z8gD0z0nj7eaUL4g18giCiyiyCIaWEQDi-jS0sAiOrCIjiyiyCKKLKKKTiyijkUUWUQ9i-jIopfk4tPx-dGc-XU4WJMK2TMtQTVmJjYmtqWIbcpT09gibRJdN1aYQnGpEyUTlQvFhS6SomxsmmtuQVwrm74ie92yM68JTVTBdSripsgs-NqiLJVslK5lnSibqWRG4vA3Vo1vUo9rpbTVnXjOyMfxK9dDh5a_nbwfsKn8g7yueFGWcCJo7RmJAl7T4TsHe3OfK78lj6ZHZp_s9auNeQd6tq_fOyL-BjJRnOw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transfer+analysis+of+unsteady+hybrid+nanofluid+flow+over+a+stretching+sheet+with+thermal+radiation&rft.jtitle=SN+applied+sciences&rft.au=Sreedevi%2C+P.&rft.au=Sudarsana+Reddy%2C+P.&rft.au=Chamkha%2C+Ali&rft.date=2020-07-01&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=2&rft.issue=7&rft_id=info:doi/10.1007%2Fs42452-020-3011-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42452_020_3011_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |